MAS 4203 - SPRING 2010 TEST 2

2 BONUS PTS: This math professor from Penn. State University gave the ERDOS COLLOQUIUM on February 15.

What was his name? What country was Paul Erdos from?

WEDNESDAY, MARCH 17
Name: \qquad
Instructions: Answer all questions. Show all necessary working and reasoning. Your work should be written in a proper and coherent fashion, and in a way that any student in the class can follow your work. When giving proofs your reasoning should be clear. Only scientific calculators are allowed. 50 points total.

1. $[6+6=12 \mathrm{pts}]$
(i) Find the smallest positive integer x that satisfies the following linear congruences:

$$
\begin{array}{ll}
x \equiv 1 & (\bmod 3) \\
x \equiv 2 & (\bmod 5) \\
x \equiv 3 & (\bmod 7)
\end{array}
$$

Check your answer.
(ii) Find the multiplicative inverse of $47 \bmod 863$.

Check your answer.
2. $[4+2+6+8=20$ points $]$
(i) State Fermat's Little Theorem.
(ii) Define what it means for a positive integer n to be a pseudoprime.
(iii) Prove that $645=(3)(5)(43)$ is a pseudoprime.
(iv) Let p and q be distinct primes, and suppose that $a \in \mathbb{Z}$. Prove that

$$
a^{p q}+a \equiv a^{p}+a^{q} \quad(\bmod p q) .
$$

HINT: First prove that $a^{p q}+a \equiv a^{p}+a^{q}(\bmod p)$.
3. $[2+2+3+(2+3+3+3)=18$ points]
(i) Define what it means for an arithmetic function $f(n)$ to be multiplicative.
(ii) Define what it means for an arithmetic function $f(n)$ to be completely multiplicative.
(iii) Let k be a fixed positive integer. Prove that $f(n)=n^{k}$ is completely multiplicative.
(iv) Let k be a fixed positive integer. Define

$$
\sigma_{k}(n)=\sum_{d \mid n} d^{k}
$$

(As usual, in the summation it assumed that $d>0$).
(a) Find $\sigma_{2}(6)$.
(b) Prove that $\sigma_{k}(n)$ is multiplicative, stating any theorems used in the proof.
(c) Let p be prime and suppose a is a positive integer. Find a formula for $\sigma_{k}\left(p^{a}\right)$. HINT: $1+x+x^{2}+\cdots+x^{a}=\frac{\left(x^{a+1}-1\right)}{(x-1)}$, if $x \neq 1$.
(d) Suppose $n>1$ and let $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$ be a prime factorization. Find a formula for $\sigma_{k}(n)$, giving reasons.

