MAS 4203 - SPRING 2010 TEST 2

2 BONUS PTS: This math professor from Penn. State University gave the ERDOS COLLOQUIUM on February 15. What was his name? What country was Paul Erdos from?

WEDNESDAY, MARCH 17

Name: _____

Instructions: Answer all questions. Show all necessary working and reasoning. Your work should be written in a proper and coherent fashion, and in a way that any student in the class can follow your work. When giving proofs your reasoning should be clear. Only scientific calculators are allowed. 50 points total.

- **1**. [6 + 6 = 12 pts]
 - (i) Find the smallest positive integer x that satisfies the following linear congruences:

$$x \equiv 1 \pmod{3}$$
$$x \equiv 2 \pmod{5}$$
$$x \equiv 3 \pmod{7}$$

Check your answer.

(ii) Find the multiplicative inverse of 47 mod 863.

Check your answer.

- **2.** [4+2+6+8=20 points]
 - (i) State Fermat's Little Theorem.
 - (ii) Define what it means for a positive integer n to be a pseudoprime.
 - (iii) Prove that 645 = (3)(5)(43) is a pseudoprime.
 - (iv) Let p and q be distinct primes, and suppose that $a \in \mathbb{Z}$. Prove that

$$a^{pq} + a \equiv a^p + a^q \pmod{pq}$$
.

HINT: First prove that $a^{pq} + a \equiv a^p + a^q \pmod{p}$.

- **3.** [2+2+3+(2+3+3+3)=18 points]
 - (i) Define what it means for an arithmetic function f(n) to be multiplicative.
- (ii) Define what it means for an arithmetic function f(n) to be completely multiplicative.
- (iii) Let k be a fixed positive integer. Prove that $f(n) = n^k$ is completely multiplicative.
- (iv) Let k be a fixed positive integer. Define

$$\sigma_k(n) = \sum_{d|n} d^k.$$

(As usual, in the summation it assumed that d > 0).

- (a) Find $\sigma_2(6)$.
- (b) Prove that $\sigma_k(n)$ is multiplicative, stating any theorems used in the proof.
- (c) Let p be prime and suppose a is a positive integer. Find a formula for σ_k(p^a). HINT: 1 + x + x² + ··· + x^a = (x^{a+1}-1)/(x-1), if x ≠ 1.
 (d) Suppose n > 1 and let n = p₁^{a₁} p₂^{a₂} ··· p_r^{a_r} be a prime factorization. Find a
- formula for $\sigma_k(n)$, giving reasons.