FINAL EXAM - PART 1

Instructions:

- There are 4 questions. Do only THREE questions.
- With THREE complete problems there are 60 total points for PART 1. Full marks for PART 1 will be given for 55 points.
- Write on ONE side of the paper.
- Show all necessary working and reasoning to receive full credit.
- Your work needs to be written in a proper and coherent fashion.
- When giving proofs your reasoning should be clear.
- Only scientific calculators are allowed. No programmable or graphing calculators are allowed.
- A table of primes is supplied.
- Throughout this test unless otherwise stated all variables a, b, \ldots are assumed to be integers.

1. $[3+5+12=20$ points $]$
(i) Let $a, b \in \mathbb{Z}$. Define $a \mid b$.
(ii) Let $a, b, c \in \mathbb{Z}$. Prove that if $a \mid b$ and $b \mid c$ then $a \mid c$.
(iii) Let $a, b, c \in \mathbb{Z}$ with $(a, b)=1$. Prove (without assuming the Fundamental Theorem of Arithmetic) that if $a \mid b c$ then $a \mid c$.

HINT: Since $(a, b)=1$ there are integers x, y such that $a x+b y=1$.
2. $[5+15=20$ points $]$
(i) Let $a, b \in \mathbb{Z}$. Prove that if a and b are expressible in the form $6 n+1$, where n is an integer, then $a b$ is also expressible in that form.
(ii) Prove that there are infinitely many prime numbers of the form $6 n+5$, where n is an integer.

HINT: Assume by way of contradiction that there are only finitely many such primes, say, $p_{0}=5, p_{1}, \ldots, p_{r}$. Let $N=6\left(p_{1} p_{2} \cdots p_{r}\right)+5$.
3. $[3+7+3+7=20$ points $]$
(i) Define pseudoprime.
(ii) Suppose that m and n are positive integers and $m \mid n$. Prove that $\left(2^{m}-1\right) \mid\left(2^{n}-1\right)$.

HINT: $\left(x^{d}-1\right)=(x-1)\left(x^{d-1}+x^{d-2}+\cdots x+1\right)$.
(iii) State Fermat's Little Theorem.
(iv) Prove that $2^{11}-1=2047=(23)(89)$ is a pseudprime.

HINT: Use parts (ii),(iii).
4. $[3+3+14=20$ points]
(i) State Euler's Theorem.
(ii) Define the term reduced residue system $\bmod m$.
(iii) Let m be a positive integer $m>2$. If $\left\{r_{1}, r_{2}, \ldots, r_{\phi(m)}\right\}$ is reduced residue system mod m, prove that

$$
r_{1}+r_{2}+\cdots+r_{\phi(m)} \equiv 0 \quad(\bmod m) .
$$

HINT: First prove that if $(a, m)=1$ then $(m-a, m)=1$.

