## FINAL EXAM - PART 2

Instructions:

- There are 5 questions. Do only THREE questions.
- With THREE complete problems there are 60 total points for PART 2. Full marks for PART 2 will be given for 55 points.
- Write on ONE side of the paper.
- Show all necessary working and reasoning to receive full credit.
- Your work needs to be written in a proper and coherent fashion.
- When giving proofs your reasoning should be clear.
- Only scientific calculators are allowed. No programmable or graphing calculators are allowed.
- A table of primes is supplied.
- Throughout this test unless otherwise stated all variables $a, b, \ldots$ are assumed to be integers.

1. $[8+12=20$ points $]$
(i) Let $n \in \mathbb{Z}$ with $n>1$. If $p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{m}^{a_{m}}$ is the prime factorization of $n$, prove that

$$
\phi(n)=p_{1}^{a_{1}-1} p_{2}^{a_{2}-1} \cdots p_{m}^{a_{m}-1} \prod_{i=1}^{m}\left(p_{i}-1\right) .
$$

HINT: Use the fact that $\phi(n)$ is multiplicative and that $\phi\left(p^{a}\right)=p^{a}-p^{a-1}$, when $p$ is prime and $a$ is a positive integer.
(ii) Let $k \in \mathbb{Z}$ with $k>0$. Prove that the equation $\phi(n)=k$ has at most finitely many solutions.
2. $[5+(3+5+3+4)=20$ points $]$
(i) Let $k$ be a fixed positive integer. Prove that $f(n)=n^{k}$ is completely multiplicative.
(ii) Let $k$ be a fixed positive integer. Define

$$
\sigma_{k}(n)=\sum_{d \mid n} d^{k}
$$

(In the summation $d>0$ ).
(a) Find $\sigma_{2}(6)$.
(b) Prove that $\sigma_{k}(n)$ is multiplicative, stating any theorems used in the proof.
(c) Let $p$ be prime and suppose $a$ is a positive integer. Find a formula for $\sigma_{k}\left(p^{a}\right)$. HINT: $1+x+x^{2}+\cdots+x^{a}=\frac{\left(x^{a+1}-1\right)}{(x-1)}$, if $x \neq 1$.
(d) Suppose $n>1$ and let $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$ be a prime factorization. Find a formula for $\sigma_{k}(n)$, giving reasons.
3. $[3+5+12=20$ points]
(i) Define the Legendre symbol $\left(\frac{a}{p}\right)$.
(ii) Let $p$ be an odd prime. State a theorem about the number of incongruent quadratic residues $\bmod p$.
(iii) Let $a$ be a positive integer and let $p$ be an odd prime with $p \nmid a$. Prove that

$$
\left(\frac{a}{p}\right)+\left(\frac{2 a}{p}\right)+\left(\frac{3 a}{p}\right)+\cdots+\left(\frac{(p-1) a}{p}\right)=0 .
$$

4. [20 points]

Prove that there are infinitely many primes of the form $4 n+1$, where $n$ is a positive integer. HINT: Assume by way of contradiction that there are only finitely many such primes, say, $p_{1}, \ldots, p_{r}$. Let $N=4\left(p_{1}^{2} p_{2}^{2} \cdots p_{r}^{2}\right)+1$ and use the theorem about the Legendre symbol $\left(\frac{-1}{p}\right)$.
5. [20 points] Do either (A) or (B) but NOT BOTH.
(A) Explain what the RSA algorithm is and give a proof of the decoding procedure.

OR
(B) State the $a$-test for primality and prove that $p$ passes the $a$-test for any given $a$, for all primes $p>a$.

