MAS 4203 Number Theory Name: \qquad
Spring 2010
CODE-Name: \qquad

FINAL EXAM

Instructions:

- There are 8 questions. Do only SIX questions.
- With SIX complete problems there are 120 total points. Full marks will be given for 120 points.
- Write on ONE side of the paper.
- Show all necessary working and reasoning to receive full credit.
- Your work needs to be written in a proper and coherent fashion.
- When giving proofs your reasoning should be clear.
- Only scientific calculators are allowed.
- A table of primes is supplied.

PLEASE GRADE THE FOLLOWING SIX QUESTIONS:

For 4 bonus points who are the people in the photos below and what is their connection with Question 8?

1. $[10+10=20$ points $]$ Prove the following without assuming the Fundamental Theorem of Arithmetic.
(i) Suppose $a, b, c \in \mathbb{Z}$ with $(a, b)=(a, c)=1$. Then

$$
(a, b c)=1
$$

(ii) Suppose $a, b_{1}, b_{2}, \ldots, b_{n} \in \mathbb{Z}$ with

$$
\begin{aligned}
\left(a, b_{1}\right)=\left(a, b_{2}\right)=\cdots=\left(a, b_{n}\right)=1 . & \text { Then } \\
& \left(a, b_{1} b_{2} \cdots b_{n}\right)=1 .
\end{aligned}
$$

2. $[6+7+7=20$ points $] \quad$ Prove or disprove the following statements.
(i) If $a, b \in \mathbb{Z}, a, b>0, a^{2} \mid b^{3}$, then $a \mid b$.
(ii) If $a, b \in \mathbb{Z}, a, b>0, a^{2} \mid b^{2}$, then $a \mid b$.
(iii) If $a, b \in \mathbb{Z}, a, b>0, a^{3} \mid b^{2}$, then $a \mid b$.
3. $[4+6+6+4=20$ points $] \quad$ Let $a, b, c, d, m \in \mathbb{Z}$ with $m>0$.
(i) Define what it means to write

$$
a \equiv b \quad(\bmod m) .
$$

(ii) Prove that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ implies that $a c \equiv b d(\bmod m)$.
(iii) Let p be prime. Prove that $a^{2} \equiv a(\bmod p)$ implies that $a \equiv 0$ $(\bmod p)$ or $a \equiv 1(\bmod p)$.
(iv) Is (iii) still true if p is not prime? If not, give an example.
4. $[2+2+2+6+8=20$ points $]$
(i) State Fermat's Little Theorem.
(ii) State Euler's Theorem.
(iii) Define what it means for a positive integer n to be a pseudoprime.
(iv) Prove that $1729=(7)(13)(19)$ is a pseudoprime.
(v) Let p be a prime number. Prove that if $2^{p}-1$ is a composite number then $2^{p}-1$ is a pseudoprime.
(You may assume that $m \mid n$ implies $\left(2^{m}-1\right) \mid\left(2^{n}-1\right)$ provided m and n are positive integers).
5. $[2+2+(8+8)=20$ points $]$
(i) Define what it means for an arithmetic function to be multiplicative.
(ii) Define what it means for an arithmetic function to be completely multiplicative.
(iii) Define an arithmetic function ρ by $\rho(1)=1$ and $\rho(n)=2^{m}$ when n is an integer greater than 1 and where m is the number of distinct prime numbers in the prime factorization of n.
(a) Prove that ρ is multiplicative but not completely multiplicative.
(b) Find a formula for the function

$$
f(n)=\sum_{d \mid n} \rho(d),
$$

in terms of the prime factorization of $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{m}^{a_{m}}$.
6. $[5+(2+4+5+4)=20$ points $]$
(i) Let k be a fixed positive integer. Prove that $f(n)=n^{k}$ is completely multiplicative.
(ii) Let k be a fixed positive integer. Define

$$
\sigma_{k}(n)=\sum_{d \mid n} d^{k}
$$

(As usual, in the summation it assumed that $d>0$).
(a) Find $\sigma_{2}(6)$.
(b) Prove that $\sigma_{k}(n)$ is multiplicative, stating any theorems used in the proof.
(c) Let p be prime and suppose a is a positive integer. Find a formula for $\sigma_{k}\left(p^{a}\right)$. HINT: $1+x+x^{2}+\cdots+x^{a}=\frac{\left(x^{a+1}-1\right)}{(x-1)}$, if $x \neq 1$.
(d) Suppose $n>1$ and let $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$ be a prime factorization. Find a formula for $\sigma_{k}(n)$, giving reasons.
7. $[2+2+8+8=20$ points]
(i) Suppose $a, m \in \mathbb{Z}$ with $m>0$. Define what it means for a to be a quadratic residue modulo m.
(ii) Define the Legendre symbol.
(iii) Prove that there are infinitely many primes of the form $4 n+1$ where n is a positive integer.
[HINT: Assume, by way of contradiction, that there are only finitely many such primes, say $p_{1}, p_{2}, \ldots, p_{r}$. Then let
$\left.N=4 p_{1}^{2} p_{2}^{2} \cdots p_{r}^{2}.\right]$
(iv) Find the Legendre symbol $\left(\frac{2819}{4177}\right)$.
8. [20 points] Do either (A) or (B) but NOT BOTH.
(A) Explain what the RSA algorithm is and give a proof of the decoding procedure.
(B) State the a-test for primality and prove that p passes the a-test for any given a, for all odd primes $p>a$.

