MAS 4203 Number Theory Name: \qquad
Spring 2009
CODE-Name: \qquad

FINAL EXAM

Instructions:

- There are 8 questions. Do only SIX questions.
- With SIX complete problems there are 120 total points. Full marks will be given for 120 points.
- Write on ONE side of the paper.
- Show all necessary working and reasoning to receive full credit.
- Your work needs to be written in a proper and coherent fashion.
- When giving proofs your reasoning should be clear.
- Only scientific calculators are allowed.
- A table of primes is supplied.

PLEASE GRADE THE FOLLOWING SIX QUESTIONS:

For 4 bonus points who are the people in the photos below and what is their connection with Question 8?

1. $[10+10=20$ points $] \quad$ Let a, m, n be positive integers with $a>1$ and $n>1$.
(i) Prove that if $m \mid n$ then $a^{m}-1 \mid a^{n}-1$. HINT: $\left(x^{b}-1\right)=(x-1)\left(x^{b-1}+x^{b-2}+\cdots+x+1\right)$.
(ii) Prove that if $a^{n}-1$ is prime then $a=2$ and n is prime.
2. $[5+15=20$ points $]$
(i) Let $a, b \in \mathbb{Z}$. Prove that if a and b are expressible in the form $6 n+1$ where n is an integer, then $a b$ is also expressible in that form.
(ii) Prove that there are infinitely many primes of the form $6 n+5$ where n is an integer.
3. $[4+6+6+4=20$ points $] \quad$ Let $a, b, c, d, m \in \mathbb{Z}$ with $m>0$.
(i) Define what it means to write

$$
a \equiv b \quad(\bmod m)
$$

(ii) Prove that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ implies that $a c \equiv b d(\bmod m)$.
(iii) Let p be prime. Prove that $a^{2} \equiv b^{2}(\bmod p)$ implies that $a \equiv \pm b$ $(\bmod p)$.
(iv) Is (iii) still true if p is not prime? If not, give an example.
4. $[4+2+6+8=20$ points $]$
(i) State Fermat's Little Theorem.
(ii) Define what it means for a positive integer n to be a pseudoprime.
(iii) Prove that $645=(3)(5)(43)$ is a pseudoprime.
(iv) Let p and q be distinct primes, and suppose that $a \in \mathbb{Z}$. Prove that

$$
a^{p q}+a \equiv a^{p}+a^{q} \quad(\bmod p q) .
$$

5. $[2+4+4+4+6=20$ points $]$
(i) Define what it means for an arithmetic function to be multiplicative.
(ii) Prove that if f is a multiplicative function then $f(1)=0$ or 1 .
(iii) Prove that if $f(n)$ and $g(n)$ are multiplicative functions then $h(n)=f(n) g(n)$ is multiplicative.
(iv) Define the Möbius function $\mu(n)$ and state one important theorem (or proposition) for the Möbius function.
(v) Suppose $n \in \mathbb{Z}, n>1$ and $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{m}^{a_{m}}$ is the prime factorization of n, f is multiplicative and $f(1)=1$. Prove that

$$
\sum_{d \mid n} \mu(d) f(d)=\prod_{i=1}^{m}\left(1-f\left(p_{i}\right)\right)
$$

6. $[4+6+4+6=20$ points]
(i) Define the arithmetic functions $\phi(n), \nu(n)$ and $\sigma(n)$.
(ii) Explain why $\nu(n)$ and $\sigma(n)$ are multiplicative.
(iii) Suppose $n \in \mathbb{Z}, n>1$ and $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{m}^{a_{m}}$ is the prime factorization of n. State formulas for $\phi(n), \nu(n)$ and $\sigma(n)$.
(iv) Prove that $\nu(n)$ is odd if and only if n is a perfect square.
7. $[2+4+4+4+6=20$ points $]$
(i) Suppose $a, m \in \mathbb{Z}$ with $m>0$. Define what it means for a to be a quadratic residue modulo m.
(ii) Find the quadratic residues modulo 17.
(iii) Define the Legendre symbol $\left(\frac{a}{p}\right)$, and state three properties of the Legendre symbol.
(iv) State the Law of Quadratic Reciprocity.
(v) Find the Legendre symbol $\left(\frac{425}{149}\right)$.
8. [20 points] Do either (A) or (B) but NOT BOTH.
(A) Explain what the RSA algorithm is and give a proof of the decoding procedure.
(B) State the a-test for primality and prove that p passes the a-test for any given a, for all primes p.
