Theorem 0.1 (Theorem 1.10). Let V be a vector space and suppose \mathcal{G} and \mathcal{L} are finite subsets of V such that

$$V = Span(\mathcal{G}), \qquad |\mathcal{G}| = n,$$

 \mathcal{L} is linearly independent, and $|\mathcal{L}| = m$

Then $m \leq n$ and there is a set $\mathcal{H} \subset \mathcal{G}$, such that $|\mathcal{H}| = n - m$ and $Span(\mathcal{H} \cup \mathcal{L}) = V$.

Proof. We proceed by induction on m.

If m = 0 then $\mathcal{L} = \phi$ and we let $\mathcal{H} = \mathcal{G}$ so that $m = 0 \leq n$ and $\operatorname{Span}(\mathcal{H} \cup \mathcal{L}) = \operatorname{Span}(\mathcal{G}) = V$.

Now suppose the statement is true for $m = \mu$, where μ is a fixed nonnegative integer. We assume that

$$\mathcal{L} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_\mu, \vec{v}_{\mu+1}\}$$

is linearly independent. Then the set $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{\mu}\}$ is linearly independent. So by the induction hypothesis there is a subset $\{\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_{n-\mu}\} \subset \mathcal{G}$ such that

$$\text{Span}(\vec{u}_1, \vec{u}_2, \dots, \vec{u}_{n-\mu}, \vec{v}_1, \vec{v}_2, \dots, \vec{v}_{\mu}) = V.$$

Hence

$$\vec{v}_{\mu+1} = a_1 \vec{u}_1 + a_2 \vec{u}_2 + \dots + a_{n-\mu} \vec{u}_{n-\mu} + b_1 \vec{v}_1 + b_1 \vec{v}_2 + \dots + b_\mu \vec{v}_\mu,$$

for some scalars $a_1, a_2, \ldots, a_{n-\mu}, b_1, b_2, \ldots, b_{\mu}$. We note that $n-\mu > 0$ since otherwise $\vec{v}_{\mu+1}$ would be a linear combination of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{\mu}$ would contradict \mathcal{L} being linearly independent.

Therefore $n-\mu \ge 1$ and $n \ge \mu+1$. Similarly at least of the scalars a_1 , $a_2, \ldots a_{n-\mu}$ must be nonzero since \mathcal{L} is linearly independent. Suppose without loss of generality that $a_1 \ne 0$. Then

$$\vec{u}_1 = (-a_2/a_1)\vec{u}_2 + \dots + (-a_{n-\mu}/a_1)\vec{u}_{n-\mu} + (-b_1/a_1)\vec{v}_1 + \dots + (-b_{\mu})/a_1)\vec{v}_{\mu} + (1/a_1)\vec{v}_{\mu+1})$$

We let

 $\mathcal{H} = \{\vec{u}_2, \dots, \vec{u}_{n-\mu}\}.$

Then

$$\vec{u}_1 \in \operatorname{Span}(\mathcal{H} \cup \mathcal{L})$$

and

$$\{\vec{u}_1, \dots, \vec{u}_{n-\mu}, \vec{v}_1, \dots, \vec{v}_{\mu}\} \subset \operatorname{Span}(\mathcal{H} \cup \mathcal{L}),\$$
$$V = \operatorname{Span}(\vec{u}_1, \vec{u}_2, \dots, \vec{u}_{n-\mu}, \vec{v}_1, \vec{v}_2, \dots, \vec{v}_{\mu}) \subset \operatorname{Span}(\mathcal{H} \cup \mathcal{L}) \subset V$$

and

$$V = \operatorname{Span}(\mathcal{H} \cup \mathcal{L}), \quad \mathcal{H} \subset \mathcal{G}, |\mathcal{H}| = (n - \mu) - 1 = n - (\mu + 1),$$

and the theorem is true for $m = \mu + 1$. Hence the theorem is true for all *m* by induction.

 $\mathbf{2}$