The Replacement Theorem

Theorem (Theorem 1.10)
Let V be a vector space and suppose \mathcal{G} and \mathcal{L} are finite subsets of V such that

$$
\begin{array}{ll}
V=\operatorname{Span}(\mathcal{G}), & |\mathcal{G}|=n, \\
\mathcal{L} \text { is linearly independent, and } & |\mathcal{L}|=m .
\end{array}
$$

Then $m \leq n$ and there is a set $\mathcal{H} \subset G$, such that $|\mathcal{H}|=n-m$ and $\operatorname{Span}(\mathcal{H} \cup \mathcal{L})=V$.

The Replacement Theorem

Theorem (Theorem 1.10)
Let V be a vector space and suppose \mathcal{G} and \mathcal{L} are finite subsets of V such that

$$
\begin{array}{ll}
V=\operatorname{Span}(\mathcal{G}), & |\mathcal{G}|=n, \\
\mathcal{L} \text { is linearly independent, and } & |\mathcal{L}|=m .
\end{array}
$$

Then $m \leq n$ and there is a set $\mathcal{H} \subset G$, such that $|\mathcal{H}|=n-m$ and $\operatorname{Span}(\mathcal{H} \cup \mathcal{L})=V$.

The Replacement Theorem

Theorem (Theorem 1.10)
Let V be a vector space and suppose \mathcal{G} and \mathcal{L} are finite subsets of V such that

$$
\begin{array}{ll}
V=\operatorname{Span}(\mathcal{G}), & |\mathcal{G}|=n, \\
\mathcal{L} \text { is linearly independent, and } & |\mathcal{L}|=m .
\end{array}
$$

Then $m \leq n$ and there is a set $\mathcal{H} \subset \mathcal{G}$, such that \square $\operatorname{Span}(\mathcal{H} \cup \mathcal{L})$

The Replacement Theorem

Theorem (Theorem 1.10)
Let V be a vector space and suppose \mathcal{G} and \mathcal{L} are finite subsets of V such that

$$
\begin{array}{ll}
V=\operatorname{Span}(\mathcal{G}), & |\mathcal{G}|=n, \\
\mathcal{L} \text { is linearly independent, and } & |\mathcal{L}|=m .
\end{array}
$$

Then $m \leq n$ and there is a set $\mathcal{H} \subset \mathcal{G}$, such that $|\mathcal{H}|=n-m$ and

The Replacement Theorem

Theorem (Theorem 1.10)
Let V be a vector space and suppose \mathcal{G} and \mathcal{L} are finite subsets of V such that

$$
\begin{array}{ll}
V=\operatorname{Span}(\mathcal{G}), & |\mathcal{G}|=n, \\
\mathcal{L} \text { is linearly independent, and } & |\mathcal{L}|=m .
\end{array}
$$

Then $m \leq n$ and there is a set $\mathcal{H} \subset \mathcal{G}$, such that $|\mathcal{H}|=n-m$ and $\operatorname{Span}(\mathcal{H} \cup \mathcal{L})=V$.

Proof

We proceed by induction on m.
If $m=0$ then $\mathcal{L}=\phi$ and we let $\mathcal{H}=\mathcal{G}$ so that $m=0 \leq n$ and
$\operatorname{Span}(\mathcal{H} \cup \mathcal{L})=\operatorname{Span}(\mathcal{G})=V$.
Now suppose the statement is true for $m=\mu$, where μ is a fixed nonnegative integer. We assume that

$$
\mathcal{L}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}, \vec{v}_{\mu+1}\right\}
$$

is linearly independent. Then the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right\}$ is linearly independent. So by the induction hypothesis there is a subset $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}\right\} \subset \mathcal{G}$ such that

$$
\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right)=V .
$$

Proof

We proceed by induction on m.
If $m=0$ then $\mathcal{L}=\phi$ and we let $\mathcal{H}=\mathcal{G}$ so that $m=0 \leq n$ and
$\operatorname{Span}(\mathcal{H} \cup \mathcal{L})=\operatorname{Span}(\mathcal{G})=V$.
Now suppose the statement is true for $m=\mu$, where μ is a fixed nonnegative integer. We assume that

$$
\mathcal{L}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}, \vec{v}_{\mu+1}\right\}
$$

is linearly independent. Then the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right\}$ is linearly independent. So by the induction hypothesis there is a subset $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}\right\} \subset \mathcal{G}$ such that

$$
\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right)=V .
$$

Proof

We proceed by induction on m.
If $m=0$ then $\mathcal{L}=\phi$ and we let $\mathcal{H}=\mathcal{G}$ so that $m=0 \leq n$ and
$\operatorname{Span}(\mathcal{H} \cup \mathcal{L})=\operatorname{Span}(\mathcal{G})=V$.
Now suppose the statement is true for $m=\mu$, where μ is a fixed nonnegative integer. We assume that

$$
\mathcal{L}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}, \vec{v}_{\mu+1}\right\}
$$

is linearly independent. Then the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right\}$ is linearly independent. So by the induction hypothesis there is a subset $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}\right\} \subset \mathcal{G}$ such that

$$
\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right)=V .
$$

Proof

We proceed by induction on m.
If $m=0$ then $\mathcal{L}=\phi$ and we let $\mathcal{H}=\mathcal{G}$ so that $m=0 \leq n$ and $\operatorname{Span}(\mathcal{H} \cup \mathcal{L})=\operatorname{Span}(\mathcal{G})=V$.
Now suppose the statement is true for $m=\mu$, where μ is a fixed nonnegative integer. We assume that

$$
\mathcal{L}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}, \vec{v}_{\mu+1}\right\}
$$

is linearly independent. Then the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right\}$ is linearly independent. So by the induction hypothesis there is a subset $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}\right\} \subset \mathcal{G}$ such that

$$
\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right)=V .
$$

Proof

We proceed by induction on m.
If $m=0$ then $\mathcal{L}=\phi$ and we let $\mathcal{H}=\mathcal{G}$ so that $m=0 \leq n$ and $\operatorname{Span}(\mathcal{H} \cup \mathcal{L})=\operatorname{Span}(\mathcal{G})=V$.
Now suppose the statement is true for $m=\mu$, where μ is a fixed nonnegative integer. We assume that

$$
\mathcal{L}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}, \vec{v}_{\mu+1}\right\}
$$

is linearly independent. Then the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right\}$ is linearly
independent. So by the induction hypothesis there is a subset
$\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}\right\} \subset \mathcal{G}$ such that

Proof

We proceed by induction on m.
If $m=0$ then $\mathcal{L}=\phi$ and we let $\mathcal{H}=\mathcal{G}$ so that $m=0 \leq n$ and $\operatorname{Span}(\mathcal{H} \cup \mathcal{L})=\operatorname{Span}(\mathcal{G})=V$.
Now suppose the statement is true for $m=\mu$, where μ is a fixed nonnegative integer. We assume that

$$
\mathcal{L}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}, \vec{v}_{\mu+1}\right\}
$$

is linearly independent. \square
independent. So by the induction hypothesis there is a subset $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}\right\} \subset \mathcal{G}$ such that

Proof

We proceed by induction on m.
If $m=0$ then $\mathcal{L}=\phi$ and we let $\mathcal{H}=\mathcal{G}$ so that $m=0 \leq n$ and $\operatorname{Span}(\mathcal{H} \cup \mathcal{L})=\operatorname{Span}(\mathcal{G})=V$.
Now suppose the statement is true for $m=\mu$, where μ is a fixed nonnegative integer. We assume that

$$
\mathcal{L}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}, \vec{v}_{\mu+1}\right\}
$$

is linearly independent. Then the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right\}$ is
independent. So by the induction hypothesis there is a subset
$\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}\right\} \subset \mathcal{G}$ such that

Proof

We proceed by induction on m.
If $m=0$ then $\mathcal{L}=\phi$ and we let $\mathcal{H}=\mathcal{G}$ so that $m=0 \leq n$ and $\operatorname{Span}(\mathcal{H} \cup \mathcal{L})=\operatorname{Span}(\mathcal{G})=V$.
Now suppose the statement is true for $m=\mu$, where μ is a fixed nonnegative integer. We assume that

$$
\mathcal{L}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}, \vec{v}_{\mu+1}\right\}
$$

is linearly independent. Then the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right\}$ is linearly independent. So by the induction hypothesis there is a subset

Proof

We proceed by induction on m.
If $m=0$ then $\mathcal{L}=\phi$ and we let $\mathcal{H}=\mathcal{G}$ so that $m=0 \leq n$ and $\operatorname{Span}(\mathcal{H} \cup \mathcal{L})=\operatorname{Span}(\mathcal{G})=V$.
Now suppose the statement is true for $m=\mu$, where μ is a fixed nonnegative integer. We assume that

$$
\mathcal{L}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}, \vec{v}_{\mu+1}\right\}
$$

is linearly independent. Then the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right\}$ is linearly independent. So by the induction hypothesis there is a subset $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}\right\} \subset \mathcal{G}$

Proof

We proceed by induction on m.
If $m=0$ then $\mathcal{L}=\phi$ and we let $\mathcal{H}=\mathcal{G}$ so that $m=0 \leq n$ and $\operatorname{Span}(\mathcal{H} \cup \mathcal{L})=\operatorname{Span}(\mathcal{G})=V$.
Now suppose the statement is true for $m=\mu$, where μ is a fixed nonnegative integer. We assume that

$$
\mathcal{L}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}, \vec{v}_{\mu+1}\right\}
$$

is linearly independent. Then the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right\}$ is linearly independent. So by the induction hypothesis there is a subset $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}\right\} \subset \mathcal{G}$ such that

Proof

We proceed by induction on m.
If $m=0$ then $\mathcal{L}=\phi$ and we let $\mathcal{H}=\mathcal{G}$ so that $m=0 \leq n$ and $\operatorname{Span}(\mathcal{H} \cup \mathcal{L})=\operatorname{Span}(\mathcal{G})=V$.
Now suppose the statement is true for $m=\mu$, where μ is a fixed nonnegative integer. We assume that

$$
\mathcal{L}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}, \vec{v}_{\mu+1}\right\}
$$

is linearly independent. Then the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right\}$ is linearly independent. So by the induction hypothesis there is a subset $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}\right\} \subset \mathcal{G}$ such that

$$
\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right)=V .
$$

Proof (continued)

Hence
$\vec{v}_{\mu+1}=a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+\cdots+a_{n-\mu} \vec{u}_{n-\mu}+b_{1} \vec{v}_{1}+b_{1} \vec{v}_{2}+\cdots+b_{\mu} \vec{v}_{\mu}$,
for some scalars $a_{1}, a_{2}, \ldots, a_{n-\mu}, b_{1}, b_{2}, \ldots, b_{\mu}$. We note that
$n-\mu>0$ since otherwise $\vec{v}_{\mu+1}$ would be a linear combination of
$\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}$ would contradict \mathcal{L} being linearly independent.
Therefore $n-\mu \geq 1$ and $n \geq \mu+1$. Similarly at least of the scalars $a_{1}, a_{2}, \ldots a_{n-\mu}$ must be nonzero since \mathcal{L} is linearly independent. Suppose without loss of generality that $a_{1} \neq 0$. Then

$$
\begin{aligned}
\vec{u}_{1} & =\left(-a_{2} / a_{1}\right) \vec{u}_{2}+\cdots+\left(-a_{n-\mu} / a_{1}\right) \vec{u}_{n-\mu} \\
& \left.\left.+\left(-b_{1} / a_{1}\right) \vec{v}_{1}+\cdots+\left(-b_{\mu}\right) / a_{1}\right) \vec{v}_{\mu}+\left(1 / a_{1}\right) \vec{v}_{\mu+1}\right) .
\end{aligned}
$$

Proof (continued)

Hence
$\vec{v}_{\mu+1}=a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+\cdots+a_{n-\mu} \vec{u}_{n-\mu}+b_{1} \vec{v}_{1}+b_{1} \vec{v}_{2}+\cdots+b_{\mu} \vec{v}_{\mu}$, for some scalars $a_{1}, a_{2}, \ldots, a_{n-\mu}, b_{1}, b_{2}, \ldots, b_{\mu}$. We note that $n-\mu>0$ since otherwise $\vec{v}_{\mu+1}$ would be a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}$ would contradict \mathcal{L} being linearly independent. Therefore $n-\mu \geq 1$ and $n \geq \mu+1$. Similarly at least of the scalars $a_{1}, a_{2}, \ldots a_{n-\mu}$ must be nonzero since \mathcal{L} is linearly independent. Suppose without loss of generality that $a_{1} \neq 0$. Then

$$
\begin{aligned}
\vec{u}_{1} & =\left(-a_{2} / a_{1}\right) \vec{u}_{2}+\cdots+\left(-a_{n-\mu} / a_{1}\right) \vec{u}_{n-\mu} \\
& \left.\left.+\left(-b_{1} / a_{1}\right) \vec{v}_{1}+\cdots+\left(-b_{\mu}\right) / a_{1}\right) \vec{v}_{\mu}+\left(1 / a_{1}\right) \vec{v}_{\mu+1}\right) .
\end{aligned}
$$

Proof (continued)

Hence
$\vec{v}_{\mu+1}=a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+\cdots+a_{n-\mu} \vec{u}_{n-\mu}+b_{1} \vec{v}_{1}+b_{1} \vec{v}_{2}+\cdots+b_{\mu} \vec{v}_{\mu}$,
for some scalars $a_{1}, a_{2}, \ldots, a_{n-\mu}, b_{1}, b_{2}, \ldots, b_{\mu}$. We note that $n-\mu>0$ since otherwise $\vec{v}_{\mu+1}$ would be a
$\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}$ would contradict \mathcal{L} being linearly independent.
Therefore $n-\mu \geq 1$ and $n \geq \mu+1$. Similarly at least of the
scalars $a_{1}, a_{2}, \ldots a_{n-\mu}$ must be nonzero since \mathcal{L} is linearly
independent. Suppose without loss of generality that $a_{1} \neq 0$. Then

Proof (continued)

Hence
$\vec{v}_{\mu+1}=a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+\cdots+a_{n-\mu} \vec{u}_{n-\mu}+b_{1} \vec{v}_{1}+b_{1} \vec{v}_{2}+\cdots+b_{\mu} \vec{v}_{\mu}$,
for some scalars $a_{1}, a_{2}, \ldots, a_{n-\mu}, b_{1}, b_{2}, \ldots, b_{\mu}$. We note that $n-\mu>0$ since otherwise $\vec{v}_{\mu+1}$ would be a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}$ would contradict \mathcal{L} being linearly independent. Therefore $n-\mu \geq 1$ and $n \geq \mu+1$. Similarly at least of the scalars $a_{1}, a_{2}, \ldots a_{n-\mu}$ must be nonzero since \mathcal{L} is linearly independent. Suppose without loss of generality that $a_{1} \neq 0$. Then

Proof (continued)

Hence
$\vec{v}_{\mu+1}=a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+\cdots+a_{n-\mu} \vec{u}_{n-\mu}+b_{1} \vec{v}_{1}+b_{1} \vec{v}_{2}+\cdots+b_{\mu} \vec{v}_{\mu}$,
for some scalars $a_{1}, a_{2}, \ldots, a_{n-\mu}, b_{1}, b_{2}, \ldots, b_{\mu}$. We note that $n-\mu>0$ since otherwise $\vec{v}_{\mu+1}$ would be a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}$ would contradict \mathcal{L} being
scalars $a_{1}, a_{2}, \ldots a_{n-\mu}$ must be nonzero since \mathcal{L} is linearly
independent. Suppose without loss of generality that $a_{1} \neq 0$. Then

Proof (continued)

Hence
$\vec{v}_{\mu+1}=a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+\cdots+a_{n-\mu} \vec{u}_{n-\mu}+b_{1} \vec{v}_{1}+b_{1} \vec{v}_{2}+\cdots+b_{\mu} \vec{v}_{\mu}$,
for some scalars $a_{1}, a_{2}, \ldots, a_{n-\mu}, b_{1}, b_{2}, \ldots, b_{\mu}$. We note that $n-\mu>0$ since otherwise $\vec{v}_{\mu+1}$ would be a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}$ would contradict \mathcal{L} being linearly independent. Therefore $n-\mu \geq 1$ and
scalars $a_{1}, a_{2}, \ldots a_{n-\mu}$ must be nonzero since \mathcal{L} is linearly
independent. Suppose without loss of generality that $a_{1} \neq 0$. Then

$$
\left.\left.+\left(-b_{1} / a_{1}\right) \vec{v}_{1}+\cdots+\left(-b_{\mu}\right) / a_{1}\right) \vec{v}_{\mu}+\left(1 / a_{1}\right) \vec{v}_{\mu+1}\right) .
$$

Proof (continued)

Hence

$$
\vec{v}_{\mu+1}=a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+\cdots+a_{n-\mu} \vec{u}_{n-\mu}+b_{1} \vec{v}_{1}+b_{1} \vec{v}_{2}+\cdots+b_{\mu} \vec{v}_{\mu},
$$

for some scalars $a_{1}, a_{2}, \ldots, a_{n-\mu}, b_{1}, b_{2}, \ldots, b_{\mu}$. We note that $n-\mu>0$ since otherwise $\vec{v}_{\mu+1}$ would be a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}$ would contradict \mathcal{L} being linearly independent. Therefore $n-\mu \geq 1$ and $n \geq \mu+1$. Similarly at least of the scalars
independent. Suppose without loss of generality that $a_{1} \neq 0$. Then

$$
\left.\left.+\left(-b_{1} / a_{1}\right) \vec{v}_{1}+\cdots+\left(-b_{\mu}\right) / a_{1}\right) \vec{v}_{\mu}+\left(1 / a_{1}\right) \vec{v}_{\mu+1}\right) .
$$

Proof (continued)

Hence

$$
\vec{v}_{\mu+1}=a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+\cdots+a_{n-\mu} \vec{u}_{n-\mu}+b_{1} \vec{v}_{1}+b_{1} \vec{v}_{2}+\cdots+b_{\mu} \vec{v}_{\mu},
$$

for some scalars $a_{1}, a_{2}, \ldots, a_{n-\mu}, b_{1}, b_{2}, \ldots, b_{\mu}$. We note that $n-\mu>0$ since otherwise $\vec{v}_{\mu+1}$ would be a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}$ would contradict \mathcal{L} being linearly independent. Therefore $n-\mu \geq 1$ and $n \geq \mu+1$. Similarly at least of the scalars $a_{1}, a_{2}, \ldots a_{n-\mu}$ must be
independent. Suppose without loss of generality that $a_{1} \neq 0$. Then

$$
\left.\left.+\left(-b_{1} / a_{1}\right) \vec{v}_{1}+\cdots+\left(-b_{\mu}\right) / a_{1}\right) \vec{v}_{\mu}+\left(1 / a_{1}\right) \vec{v}_{\mu+1}\right)
$$

Proof (continued)

Hence

$$
\vec{v}_{\mu+1}=a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+\cdots+a_{n-\mu} \vec{u}_{n-\mu}+b_{1} \vec{v}_{1}+b_{1} \vec{v}_{2}+\cdots+b_{\mu} \vec{v}_{\mu},
$$

for some scalars $a_{1}, a_{2}, \ldots, a_{n-\mu}, b_{1}, b_{2}, \ldots, b_{\mu}$. We note that $n-\mu>0$ since otherwise $\vec{v}_{\mu+1}$ would be a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}$ would contradict \mathcal{L} being linearly independent. Therefore $n-\mu \geq 1$ and $n \geq \mu+1$. Similarly at least of the scalars $a_{1}, a_{2}, \ldots a_{n-\mu}$ must be nonzero since \mathcal{L} is

$$
\text { independent. Suppose without loss of generality that } a_{1} \neq 0 \text {. Then }
$$

$$
\left.\left.+\left(-b_{1} / a_{1}\right) \vec{v}_{1}+\cdots+\left(-b_{\mu}\right) / a_{1}\right) \vec{v}_{\mu}+\left(1 / a_{1}\right) \vec{v}_{\mu+1}\right)
$$

Proof (continued)

Hence

$$
\vec{v}_{\mu+1}=a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+\cdots+a_{n-\mu} \vec{u}_{n-\mu}+b_{1} \vec{v}_{1}+b_{1} \vec{v}_{2}+\cdots+b_{\mu} \vec{v}_{\mu},
$$

for some scalars $a_{1}, a_{2}, \ldots, a_{n-\mu}, b_{1}, b_{2}, \ldots, b_{\mu}$. We note that $n-\mu>0$ since otherwise $\vec{v}_{\mu+1}$ would be a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}$ would contradict \mathcal{L} being linearly independent. Therefore $n-\mu \geq 1$ and $n \geq \mu+1$. Similarly at least of the scalars $a_{1}, a_{2}, \ldots a_{n-\mu}$ must be nonzero since \mathcal{L} is linearly independent. Suppose without loss of generality that

Proof (continued)

Hence

$$
\vec{v}_{\mu+1}=a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+\cdots+a_{n-\mu} \vec{u}_{n-\mu}+b_{1} \vec{v}_{1}+b_{1} \vec{v}_{2}+\cdots+b_{\mu} \vec{v}_{\mu},
$$

for some scalars $a_{1}, a_{2}, \ldots, a_{n-\mu}, b_{1}, b_{2}, \ldots, b_{\mu}$. We note that $n-\mu>0$ since otherwise $\vec{v}_{\mu+1}$ would be a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}$ would contradict \mathcal{L} being linearly independent. Therefore $n-\mu \geq 1$ and $n \geq \mu+1$. Similarly at least of the scalars $a_{1}, a_{2}, \ldots a_{n-\mu}$ must be nonzero since \mathcal{L} is linearly independent. Suppose without loss of generality that $a_{1} \neq 0$. Then

Proof (continued)

Hence

$$
\vec{v}_{\mu+1}=a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+\cdots+a_{n-\mu} \vec{u}_{n-\mu}+b_{1} \vec{v}_{1}+b_{1} \vec{v}_{2}+\cdots+b_{\mu} \vec{v}_{\mu},
$$

for some scalars $a_{1}, a_{2}, \ldots, a_{n-\mu}, b_{1}, b_{2}, \ldots, b_{\mu}$. We note that $n-\mu>0$ since otherwise $\vec{v}_{\mu+1}$ would be a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}$ would contradict \mathcal{L} being linearly independent. Therefore $n-\mu \geq 1$ and $n \geq \mu+1$. Similarly at least of the scalars $a_{1}, a_{2}, \ldots a_{n-\mu}$ must be nonzero since \mathcal{L} is linearly independent. Suppose without loss of generality that $a_{1} \neq 0$. Then

$$
\begin{aligned}
\vec{u}_{1} & =\left(-a_{2} / a_{1}\right) \vec{u}_{2}+\cdots+\left(-a_{n-\mu} / a_{1}\right) \vec{u}_{n-\mu} \\
& \left.\left.+\left(-b_{1} / a_{1}\right) \vec{v}_{1}+\cdots+\left(-b_{\mu}\right) / a_{1}\right) \vec{v}_{\mu}+\left(1 / a_{1}\right) \vec{v}_{\mu+1}\right) .
\end{aligned}
$$

Proof (continued)

We let

$$
\mathcal{H}=\left\{\vec{u}_{2}, \ldots, \vec{u}_{n-\mu}\right\} .
$$

Then

$$
\vec{u}_{1} \in \operatorname{Span}(\mathcal{H} \cup \mathcal{L}),
$$

and

$$
\left\{\vec{u}_{1}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \ldots, \vec{v}_{\mu}\right\} \subset \operatorname{Span}(\mathcal{H} \cup \mathcal{L}),
$$

$$
V=\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right) \subset \operatorname{Span}(\mathcal{H} \cup \mathcal{L}) \subset V,
$$

and

$$
V=\operatorname{Span}(\mathcal{H} \cup \mathcal{L}), \quad \mathcal{H} \subset \mathcal{G},|\mathcal{H}|=(n-\mu)-1=n-(\mu+1),
$$

and the theorem is true for $m=\mu+1$. Hence the theorem is true for all m by induction.

Proof (continued)

We let

$$
\mathcal{H}=\left\{\vec{u}_{2}, \ldots, \vec{u}_{n-\mu}\right\} .
$$

Then $\vec{u}_{1} \in \operatorname{Span}(\mathcal{H} \cup \mathcal{L})$,
and

$$
\left\{\vec{u}_{1}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \ldots, \vec{v}_{\mu}\right\} \subset \operatorname{Span}(\mathcal{H} \cup \mathcal{L}),
$$

$V=\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right) \subset \operatorname{Span}(\mathcal{H} \cup \mathcal{L}) \subset V$,
and
$V=\operatorname{Span}(\mathcal{H} \cup \mathcal{L}), \quad \mathcal{H} \subset \mathcal{G},|\mathcal{H}|=(n-\mu)-1=n-(\mu+1)$,
and the theorem is true for $m=\mu+1$. Hence the theorem is true for all m by induction.

Proof (continued)

We let

$$
\mathcal{H}=\left\{\vec{u}_{2}, \ldots, \vec{u}_{n-\mu}\right\} .
$$

Then

$$
\vec{u}_{1} \in \operatorname{Span}(\mathcal{H} \cup \mathcal{L}),
$$

and

$$
\left\{\vec{u}_{1}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \ldots, \vec{v}_{\mu}\right\} \subset \operatorname{Span}(\mathcal{H} \cup \mathcal{L})
$$

$V=\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right) \subset \operatorname{Span}(\mathcal{H} \cup \mathcal{L}) \subset V$,
$V=\operatorname{Span}(\mathcal{H} \cup \mathcal{L}), \quad \mathcal{H} \subset \mathcal{G},|\mathcal{H}|=(n-\mu)-1=n-(\mu+1)$,
and the theorem is true for $m=\mu+1$. Hence the theorem is true for all m by induction.

Proof (continued)

We let

$$
\mathcal{H}=\left\{\vec{u}_{2}, \ldots, \vec{u}_{n-\mu}\right\} .
$$

Then

$$
\vec{u}_{1} \in \operatorname{Span}(\mathcal{H} \cup \mathcal{L}),
$$

and

$$
\left\{\vec{u}_{1}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \ldots, \vec{v}_{\mu}\right\} \subset \operatorname{Span}(\mathcal{H} \cup \mathcal{L}),
$$

$$
V=\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right) \subset \operatorname{Span}(\mathcal{H} \cup \mathcal{L}) \subset V,
$$

and
$V=\operatorname{Span}(\mathcal{H} \cup \mathcal{L}), \quad \mathcal{H} \subset \mathcal{G},|\mathcal{H}|=(n-\mu)-1=n-(\mu+1)$,
and the theorem is true for $m=\mu+1$. Hence the theorem is true for all m by induction.

Proof (continued)

We let

$$
\mathcal{H}=\left\{\vec{u}_{2}, \ldots, \vec{u}_{n-\mu}\right\} .
$$

Then

$$
\vec{u}_{1} \in \operatorname{Span}(\mathcal{H} \cup \mathcal{L}),
$$

and

$$
\left\{\vec{u}_{1}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \ldots, \vec{v}_{\mu}\right\} \subset \operatorname{Span}(\mathcal{H} \cup \mathcal{L}),
$$

$$
V=\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right) \subset \operatorname{Span}(\mathcal{H} \cup \mathcal{L}) \subset V,
$$

and

$$
V=\operatorname{Span}(\mathcal{H} \cup \mathcal{L}), \quad \mathcal{H} \subset \mathcal{G},|\mathcal{H}|=(n-\mu)-1=n-(\mu+1)
$$

Proof (continued)

We let

$$
\mathcal{H}=\left\{\vec{u}_{2}, \ldots, \vec{u}_{n-\mu}\right\} .
$$

Then

$$
\vec{u}_{1} \in \operatorname{Span}(\mathcal{H} \cup \mathcal{L})
$$

and

$$
\left\{\vec{u}_{1}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \ldots, \vec{v}_{\mu}\right\} \subset \operatorname{Span}(\mathcal{H} \cup \mathcal{L})
$$

$$
V=\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right) \subset \operatorname{Span}(\mathcal{H} \cup \mathcal{L}) \subset V
$$

and

$$
V=\operatorname{Span}(\mathcal{H} \cup \mathcal{L}), \quad \mathcal{H} \subset \mathcal{G},|\mathcal{H}|=(n-\mu)-1=n-(\mu+1)
$$

and

Proof (continued)

We let

$$
\mathcal{H}=\left\{\vec{u}_{2}, \ldots, \vec{u}_{n-\mu}\right\} .
$$

Then

$$
\vec{u}_{1} \in \operatorname{Span}(\mathcal{H} \cup \mathcal{L})
$$

and

$$
\left\{\vec{u}_{1}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \ldots, \vec{v}_{\mu}\right\} \subset \operatorname{Span}(\mathcal{H} \cup \mathcal{L})
$$

$$
V=\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right) \subset \operatorname{Span}(\mathcal{H} \cup \mathcal{L}) \subset V
$$

and

$$
V=\operatorname{Span}(\mathcal{H} \cup \mathcal{L}), \quad \mathcal{H} \subset \mathcal{G},|\mathcal{H}|=(n-\mu)-1=n-(\mu+1)
$$

Proof (continued)

We let

$$
\mathcal{H}=\left\{\vec{u}_{2}, \ldots, \vec{u}_{n-\mu}\right\} .
$$

Then

$$
\vec{u}_{1} \in \operatorname{Span}(\mathcal{H} \cup \mathcal{L})
$$

and

$$
\left\{\vec{u}_{1}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \ldots, \vec{v}_{\mu}\right\} \subset \operatorname{Span}(\mathcal{H} \cup \mathcal{L})
$$

$$
V=\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-\mu}, \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{\mu}\right) \subset \operatorname{Span}(\mathcal{H} \cup \mathcal{L}) \subset V
$$

and

$$
V=\operatorname{Span}(\mathcal{H} \cup \mathcal{L}), \quad \mathcal{H} \subset \mathcal{G},|\mathcal{H}|=(n-\mu)-1=n-(\mu+1)
$$

and the theorem is true for $m=\mu+1$. Hence the theorem is true for all m by induction.

