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Let V' be a vector space and suppose G and L are finite subsets of

V such that
V = Span(G), IG| = n,
L is linearly independent, and || = m.

Then m < n and there is a set H C G, such that |H| = n— m and
Span(HU L) = V.
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If m=0then £L = ¢ and we let H = G so that m =0 < n and
Span(H U L) = Span(G) = V.

Now suppose the statement is true for m = p, where p is a fixed
nonnegative integer. We assume that

L={V1,V2,...,Vy, Vus1}
is linearly independent. Then the set {vi,b,...,V,} is linearly
independent. So by the induction hypothesis there is a subset
{Ula 32, ceey L_influ,} C g such that
Span(dy, to, . . ., Up—p, Vi, Va,...,V,) = V.
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‘7/H—1 = a1l + aglip + -+ + an—u’jn—u + b1y + bivo + -+ bu\_/}“

for some scalars a1, a2, ..., an—p, b1, b2, ..., b,. We note that
n — p > 0 since otherwise V,,11 would be a linear combination of
Vi, V2, ..., V, would contradict £ being linearly independent.
Therefore n — > 1 and n > p+ 1. Similarly at least of the
scalars a1, a2, ...an—, must be nonzero since L is linearly
independent. Suppose without loss of generality that a; # 0. Then

—

Uy = (—ax/ar)ta + -+ (—an—p/a1)Un—p
+ (=b1/ai)va + -+ + (=bu)/a1) v + (1/a1) Viuy1).-
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We let
H={lo,..., 00—}
Then
Uy € Span(H U L),
and

{th,..., Up—p, V1,...,V,} CSpan(H U L),

V = Span(iy, U, . . ., Un—p, V1, Vo,...,V,) C Span(HU L) C V,
and
V=Span(HUL), HCG,[H|=n—-—p)—1=n—(u+1),

and the theorem is true for m =y + 1. Hence the theorem is true
for all m by induction. [



