
The Replacement Theorem

Theorem (Theorem 1.10)

Let V be a vector space and suppose G and L are finite subsets of
V such that

V = Span(G), |G| = n,
L is linearly independent, and |L| = m.

Then m ≤ n and there is a set H ⊂ G, such that |H| = n −m and
Span(H ∪ L) = V .
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Proof

We proceed by induction on m.
If m = 0 then L = φ and we let H = G so that m = 0 ≤ n and
Span(H ∪ L) = Span(G) = V .
Now suppose the statement is true for m = µ, where µ is a fixed
nonnegative integer. We assume that

L = {~v1, ~v2, . . . , ~vµ, ~vµ+1}

is linearly independent. Then the set {~v1, ~v2, . . . , ~vµ} is linearly
independent. So by the induction hypothesis there is a subset
{~u1, ~u2, . . . , ~un−µ} ⊂ G such that

Span(~u1, ~u2, . . . , ~un−µ, ~v1, ~v2, . . . , ~vµ) = V .
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Proof (continued)

Hence

~vµ+1 = a1~u1 + a2~u2 + · · ·+ an−µ~un−µ + b1~v1 + b1~v2 + · · ·+ bµ~vµ,

for some scalars a1, a2, . . . , an−µ, b1, b2, . . . , bµ. We note that
n − µ > 0 since otherwise ~vµ+1 would be a linear combination of
~v1, ~v2, . . . , ~vµ would contradict L being linearly independent.
Therefore n − µ ≥ 1 and n ≥ µ+ 1. Similarly at least of the
scalars a1, a2, . . . an−µ must be nonzero since L is linearly
independent. Suppose without loss of generality that a1 6= 0. Then

~u1 = (−a2/a1)~u2 + · · ·+ (−an−µ/a1)~un−µ

+ (−b1/a1)~v1 + · · ·+ (−bµ)/a1)~vµ + (1/a1)~vµ+1).
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Proof (continued)

We let
H = {~u2, . . . , ~un−µ}.

Then
~u1 ∈ Span(H ∪ L),

and
{~u1, . . . , ~un−µ, ~v1, . . . , ~vµ} ⊂ Span(H ∪ L),

V = Span(~u1, ~u2, . . . , ~un−µ, ~v1, ~v2, . . . , ~vµ) ⊂ Span(H ∪ L) ⊂ V ,

and

V = Span(H ∪ L), H ⊂ G, |H| = (n − µ)− 1 = n − (µ+ 1),

and the theorem is true for m = µ+ 1. Hence the theorem is true
for all m by induction.
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