Graphs

- A graph on X is a symmetric, irreflexive $G \subseteq X^2$
- A graph G on a Polish space X is Borel if it is a Borel subset of $X^2 \setminus \{(x, x) : x \in X\}$.
- $A \subseteq X$ is an anticlique (G-free) if $A^2 \cap G = \emptyset$
- $C \subseteq X$ is a clique if for all distinct $x, y \in C$ we have xGy.
Theorem (Geschke)

Let G be a closed graph on ω^ω without perfect cliques. Then there is a ccc forcing extension $V[H]$ such that $(\omega^\omega)^V$ is covered by countably many compact G-anticliques.
Definition

The Borel chromatic number of a graph G on a Polish space X, written $\chi_B(G)$, is the least size of a Polish space Y such that there is a Borel function $c : X \to Y$ where $x_0 G x_1 \Rightarrow c(x_0) \neq c(x_1)$.

Definition

The weak Borel chromatic number of a graph G on a Polish space X is the least size of a family of pairwise disjoint Borel anticliques which cover X.

Francis Adams
Definable Graphs and Dominating Reals
Definition

The Borel chromatic number of a graph G on a Polish space X, written $\chi_B(G)$, is the least size of a Polish space Y such that there is a Borel function $c : X \to Y$ where $x_0 G x_1 \Rightarrow c(x_0) \neq c(x_1)$.

Definition

The weak Borel chromatic number of a graph G on a Polish space X is the least size of a family of pairwise disjoint Borel anticliques which cover X.
Theorem (Geschke)

Let G be a closed graph on a Polish space X. Then either G has a perfect clique or there is a ccc forcing extension where the weak Borel chromatic number of G is $\aleph_1 < c$.
On \(\omega^\omega \) say \(x \leq^* y \) if \(x(n) \leq y(n) \) for all but finitely many \(n \).

Say \(V[H] \) has a dominating real if there is some \(y \in (\omega^\omega)^{V[H]} \) such that \(x \leq^* y \) for all \(x \in (\omega^\omega)^V \).
Dominating Reals

Topological Rephrasing:
In ω^ω, sets of the form $\{x : x \leq^* y\}$ are K_σ and every K_σ set is contained in such a set.
Dominating Reals

Topological Rephrasing:
In ω^ω, sets of the form $\{x : x \leq^* y\}$ are K_σ and every K_σ set is contained in such a set.

So adding a dominating real is equivalent to covering $(\omega^\omega)^V$ by a K_σ set.
Question

For a graph G on a Polish space X, when can we cover X^V by countably many compact G-anticliques without adding a dominating real?
If $X = \omega^\omega$, we must add a dominating real.
Adding Dominating Reals?

If $X = \omega^\omega$, we must add a dominating real. If X has a closed copy of ω^ω in it, we must also add a dominating real.
Adding Dominating Reals?

If $X = \omega^\omega$, we must add a dominating real.
If X has a closed copy of ω^ω in it, we must also add a dominating real.

Theorem (Hurewicz)

*For X Polish, X has a closed subspace homeomorphic to ω^ω iff X isn’t K_σ.***
Adding Dominating Reals.

Define the F_σ graph D on 2^ω by xDy if x has finitely many 1’s and y agrees with x up to its last 1 (or vice versa).
Adding Dominating Reals.

Define the F_σ graph D on 2^ω by xDy if x has finitely many 1’s and y agrees with x up to its last 1 (or vice versa).

Let $A \subseteq 2^\omega$ be the sequences with finitely many ones and $B = A^c$.

If $C \subseteq 2^\omega$ is a closed D-anticlique, then $C \cap B$ is closed in 2^ω.
Adding Dominating Reals.

Define the F_σ graph D on 2^ω by xDy if x has finitely many 1’s and y agrees with x up to its last 1 (or vice versa).

Let $A \subseteq 2^\omega$ be the sequences with finitely many ones and $B = A^c$.

If $C \subseteq 2^\omega$ is a closed D-anticlique, then $C \cap B$ is closed in 2^ω. By covering 2^ω by countably many closed D-anticliques, $2^\omega = \bigcup C_n$, we also have $B = \bigcup(B \cap C_n)$, so B is K_σ. But B is homeomorphic to ω^ω.
Loose Graphs

Definition

Let G be a graph on a Polish space X. Say $B \subseteq X$ is G-loose if there is no \{x_n\} $\subseteq B$ such that $x_n \to x$ and $x_n G x$ for all $n \in \omega$. Say G is loose if $X = \bigcup B_n$ where each B_n is G-loose.
Loose Graphs

Definition

Let G be a graph on a Polish space X. Say $B \subseteq X$ is G-loose if there is no $\{x_n\} \subseteq B$ such that $x_n \to x$ and $x_n G x$ for all $n \in \omega$.

Francis Adams
Definable Graphs and Dominating Reals
Loose Graphs

Definition

Let G be a graph on a Polish space X. Say $B \subseteq X$ is G-loose if there is no $\{x_n\} \subseteq B$ such that $x_n \to x$ and $x_n G x$ for all $n \in \omega$. Say G is loose if $X = \bigcup B_n$ where each B_n is G-loose.
Loose Graphs

Theorem

Let G be a closed, loose graph on a K_σ Polish space X. Then there is a ccc poset $P(G)$ such that in $V[H]$ there are no dominating reals and X^V is covered by countably many compact G-anticliques.
Loose Graphs

Question

Which graphs are loose?
Closure Properties

- If G on X is loose and $F \subseteq G$, then F is loose.
- If G_1, G_2 are loose graphs on X, Y respectively, then $G_1 \times G_2$ is loose on $X \times Y$.
- If G on X is loose, H is a graph on Y and $f : Y \to X$ is a continuous homomorphism, then H is loose.
Nonexamples

Claim

The graph D on 2^ω where xDy if x has finitely many 1’s and y agrees with x up to its last 1 (or vice versa) is not loose

Suppose $2^\omega = \bigcup B_n$ where the B_n are all D-loose. We may assume the B_n are contained in B or are a singleton containing one element of A.
Nonexamples

Claim

The graph D on 2^ω where $x D y$ if x has finitely many 1's and y agrees with x up to its last 1 (or vice versa) is not loose.

Suppose $2^\omega = \bigcup B_n$ where the B_n are all D-loose. We may assume the B_n are contained in B or are a singleton containing one element of A. For the $B_n \subseteq B$, we know $\overline{B_n} \cap A = \emptyset$.

Francis Adams
Definable Graphs and Dominating Reals
Nonexamples

Claim
The graph D on 2^ω where xDy if x has finitely many 1’s and y agrees with x up to its last 1 (or vice versa) is not loose

Suppose $2^\omega = \bigcup B_n$ where the B_n are all D-loose. We may assume the B_n are contained in B or are a singleton containing one element of A. For the $B_n \subseteq B$, we know $\overline{B_n} \cap A = \emptyset$. So $\overline{B_n} \subseteq B$ and $B = \bigcup \overline{B_n}$, hence B is K_σ, a contradiction.
Proposition

If G on a K_σ space X has a perfect clique, then G is not loose.

Proof.

Write $X = \bigcup K_m$ for compact K_n, let $X = \bigcup B_n$ for G-loose B_n, and let $C \subseteq X$ be a perfect clique.
Proposition

If G on a K_σ space X has a perfect clique, then G is not loose.

Proof.

Write $X = \bigcup K_m$ for compact K_n, let $X = \bigcup B_n$ for G-loose B_n, and let $C \subseteq X$ be a perfect clique. For some $m, n \in \omega$ the set $S = C \cap B_n \cap K_m$ must be uncountable. Let x be a limit point of some $\{x_i\} \subseteq S$.

Francis Adams

Definable Graphs and Dominating Reals
Nonexamples

Proposition

If G on a K^σ space X has a perfect clique, then G is not loose.

Proof.

Write $X = \bigcup K_m$ for compact K_n, let $X = \bigcup B_n$ for G-loose B_n, and let $C \subseteq X$ be a perfect clique. For some $m, n \in \omega$ the set $S = C \cap B_n \cap K_m$ must be uncountable. Let x be a limit point of some $\{x_i\} \subseteq S$. Then $\{x_i\} \subseteq B_n$, $x_i \to x$, and x_iGx for each i since they all come from the clique C. □
Proposition

If G on X is locally countable, then G is loose.

Proof.

If G is locally countable, each connected component is countable.
Examples

Proposition

If G on X is locally countable, then G is loose.

Proof.

If G is locally countable, each connected component is countable. Write $X = \bigcup B_n$ where each B_n contains at most one element from each component. Then each B_n is G-loose since any element of X can share an edge with at most one element of B_n. \qed
Definable Looseness

What if we require the loose sets to be Borel?

Definition

Say that G on X is Borel loose if G is loose, witnessed by $X = \bigcup B_n$ for Borel sets B_n.
Fix \(\{s_k\} \subseteq 2^{<\omega} \) dense with \(|s_k| = k \). Define the graph \(G_0 \) on \(2^\omega \) by \(xG_0y \) iff \(\exists n \in \omega, z \in 2^\omega \) \(x = s_n \upharpoonright 0 \upharpoonright z \) and \(y = s_n \upharpoonright 1 \upharpoonright z \) or vice versa.

\(G_0 \) is closed, locally countable, and has uncountable Borel chromatic number (since every nonmeager Borel set has a \(G_0 \) edge).
Theorem (Kechris-Solecki-Todorcevic)

For an analytic graph G, exactly one of the following holds:

- G has countable Borel chromatic number.
- There is a continuous homomorphism of G_0 to G.

Borel-looseness

Theorem

\(G_0 \) isn’t Borel-loose. Moreover, a nonmeager Borel set isn’t \(G_0 \)-loose.
Theorem

G_0 isn’t Borel-loose. Moreover, a nonmeager Borel set isn’t G_0-loose.

So if an analytic graph G is Borel-loose, it must have countable Borel chromatic number.
The F_σ graph D isn’t loose, but has countable Borel chromatic number.
Borel-looseness

The F_σ graph D isn’t loose, but has countable Borel chromatic number.

Even worse the complete bipartite graph with partite sets $\mathbb{Q}, \mathbb{R} \setminus \mathbb{Q}$ is Δ^0_3 and has Borel chromatic number 2.
Open Questions

To what extent can we extend the forcing result to F_σ graphs?

Is there a closed, non-loose graph that has no perfect cliques?

Is there a minimal non-loose graph?
Open Questions

- To what extent can we extend the forcing result to F_σ graphs?
Open Questions

- To what extent can we extend the forcing result to F_σ graphs?
- Is there a closed, non-loose graph that has no perfect cliques?
Open Questions

- To what extent can we extend the forcing result to F_σ graphs?
- Is there a closed, non-loose graph that has no perfect cliques?
- Is there a minimal non-loose graph?