1. Let’s look at the relationship between a set A and its power set $\mathcal{P}(A)$.

a) For a set A, show that $A \in \mathcal{P}(A)$.

b) Find a set B such that $B \not\subseteq \mathcal{P}(B)$.

c) Find a nonempty set A such that $A \subseteq \mathcal{P}(A)$. (I say nonempty, because the empty set \emptyset is a subset of everything, in particular its power set.)

2. Let a, b be real numbers with $a \cdot b = 0$. Prove that if $a \neq 0$, then $b = 0$.

3. Assume $n \in \mathbb{N}$. Prove that if n^2 is odd, then n is odd.