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Heterogeneity in rates of survival, growth and reproduction among viruses is

related to virus particle (i.e. virion) size, but we have little understanding of

the factors that govern the four to five orders of magnitude in virus size variation.

Here, we analyse variation in virion size in 67 double-stranded DNAviruses (i.e.

dsDNA) that span all major biomes, and infect organisms ranging from single-

celled prokaryotes to multicellular eukaryotes. We find that two metrics of virion

size (i.e. virion volume and genome length) decrease by about 55-fold as the

temperature of occurrence increases from 0 to 408C. We also find that gene over-

lap increases exponentially with temperature, such that smaller viruses have

proportionally greater gene overlap at higher temperatures. These results

indicate dsDNA virus size increases with environmental temperature in much

the same way as the cell or genome size of many host species.
1. Introduction
Viruses play a major role in governing the diversity and abundance of species

through their effects on the evolution and ecology of their hosts [1–3]. They

may strongly impact the biological systems they inhabit, from effects on

human health to effects on population dynamics and biogeochemical cycling

[4–7]. The strength of these impacts depends on the individual-level attributes

of virions (i.e. virus particles) that affect rates of survival, growth and reproduc-

tion [8–9], and influence population-level dynamics [8–9]. However, little is

known about how these basic ‘life-history’ features of viruses vary across

species and environments given the tremendous structural and functional

diversity present in viruses [7,10].

Many key features of viruses that affect virility (e.g. mutation rate, burst size,

multiplication rate, decay rate, etc.) appear related to virus genome length and/

or virion volume [11–13]. Similar to living organisms, smaller-sized viruses tend

to exhibit higher rates of growth, decay and mutation than larger-sized viruses

(i.e. ‘r-selected’) [7]. Yet, we have little understanding of the factors that govern

virus size variation in viruses at broad scales. From the small polyomaviruses to

the recently discovered megaviruses, virus size varies by at least four orders of mag-

nitude (2571 to 75 � 106 nm3) across all virus types (ssDNA, dsDNA, RNA) [14].

Here, we focus on understanding the size variation of double-stranded

DNA (i.e. dsDNA) viruses. These viruses are found in all biomes, and infect

all major groups of organisms, from single-celled prokaryotes to multicellular

eukaryotes. The 28 families of dsDNA viruses currently recognized vary con-

siderably in size (approx. two orders of magnitude), shape (e.g. spherical to

rod-like) and basic genetics (e.g. linear and circular genomes) [3,14].

We evaluate our hypothesis that dsDNA virus size decreases exponentially

with increasing temperature, as has been observed for cell volumes and

genome sizes of some single-celled prokaryotes and eukaryotes [15,16]. We first

examine if either of two independent, but highly correlated measures of virus

size [14], virion volume and virus genome length, decline with increasing temp-

erature. We do so by analysing data from 67 dsDNA viruses that vary in their
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Figure 1. (a,b) Effect of temperature of occurrence on (a) virus genome length and (b) virion volume for dsDNA viruses. Species associated with single-celled or
multicellular hosts are indicated by shaded or open symbols, respectively.
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taxonomic affiliations (18þ families), host types (prokaryotes,

single-celled eukaryotes and multicellular eukaryotes) and

environments (terrestrial, freshwater, marine). The tempera-

ture of occurrence in these viruses ranges from near zero for

those inhabiting polar environments to over 408C for those

inhabiting endothermic vertebrates. We then examine whether

gene overlap increases exponentially with temperature among

dsDNA viruses, as has been observed among single-celled

organisms [17]. These analyses provide a first step towards

better understanding how and why dsDNA viruses vary in

size across species and environments.
2. Material and methods
(a) Data collection
Data were collected from the literature (electronic supplementary

material, appendix 1) for dsDNA viruses from locations ranging

from the Siberian permafrost at 608N [18] to the Chilean Sea at

338S [19]. Data include viruses that inhabit diverse host species

(nine prokaryotes, seven single-celled eukaryotes, 16 vertebrate

endotherms (10 mammals, six birds), 17 vertebrate ectotherms

(three reptiles, three amphibians and 11 fishes) and four

invertebrate ectotherms; see electronic supplementary material).

(b) Virion volumes and genome lengths
Volumes of both enveloped and non-enveloped virions were esti-

mated from linear dimensions. For enveloped virions or non-

enveloped virions with capsids, we used length or diameter

measures of the capsid, defined as the innermost protein shell

of the virion. For non-enveloped virions without capsids, we

used length or diameter measures of the outermost layer, not

including fibrils. Virion volumes were categorized into one of

four shape categories following previous work (icosahedral,

spherical, ovoid and rod; [14]), and standard geometric formulae

were used to calculate volumes [14]. Genome lengths of viruses

were taken from the literature.

(c) Temperature estimates
Temperatures of occurrence were estimated based on one of three

measures of temperature: the internal temperature of the host
inhabited by the virus (n ¼ 30), the temperature at which the

virus was isolated (n ¼ 7) or the temperature at which the host

was most infected by the virus (n ¼ 30). The use of these three

temperature measures, while not strictly equivalent, offers the

best available approximation of virus temperatures of occurrence

for purposes of analyses. Differences in the error associated with

any single measure of temperature are likely small relative to the

range of temperatures considered here (1–42.18C).

(d) Virus gene overlap
The proportion of gene overlap in dsDNA viruses was estimated

at the family level for nine of the 18þ virus families given avail-

able data (see electronic supplementary material) [20]. Overlap

estimates did not include regulatory regions or overlap within

the same reading frame [20]. Temperatures of occurrence at

the family level were estimated as the mean temperature of

occurrence of species considered here from those families.

(e) Analysis
To evaluate relationships with temperature, we first performed

ordinary least-squares regression on natural log-transformed

data using R v. 3.0.1 [21]. Analyses were performed on the com-

plete set of dsDNA viruses, and on two subsets of data

representing species occupying single-celled or multicellular

hosts. Accounting for the possible effects of evolutionary related-

ness among dsDNA viruses was not deemed feasible, in part

because viruses are polyphyletic and do not share a common

evolutionary history [22]. Additionally, we performed a boot-

strapping procedure of the regressions to account for possible

pseudo-replication in the observed relationships. We also per-

formed partial correlation analyses on the relationships

between virion volume and genome length with temperature

(see electronic supplementary material).
3. Results
Both dsDNA genome length (bp) and virion volume (nm3)

decreased exponentially with increasing temperature

(figure 1a,b). Both relationships were highly significant ( p ,

0.001), with temperature explaining 47% and 40% of the vari-

ation in genome length and volume, respectively. The slopes
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Figure 2. Effect of temperature of occurrence on the proportion of gene over-
lap across nine families of dsDNA viruses. Species associated with single-celled
or multicellular hosts are indicated by shaded or open symbols, respectively.
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of the fitted lines in both relationships (20.10) show that on

average virus genome length and virion volume decrease

about 55-fold from 0 to 408C (figure 1a,b). Among only

species with single-celled hosts, similar relationships with

temperature were observed for both genome length

(y ¼ 20.10x þ 14.12; R2 ¼ 0.52; n ¼ 21) and virion volume

(y ¼ 20.16x þ 17.09; R2 ¼ 0.57; n ¼ 19). Among only those

with multicellular hosts, similar relationships with tempera-

ture were also observed for genome length (y ¼ 20.09x þ
13.67; R2 ¼ 0.38; n ¼ 39) and virion volume (y ¼ 20.065x þ
14.56; R2 ¼ 0.27, n ¼ 41). Bootstrapping analyses and partial

correlation analyses support the results described for figures 1

and 2 (see electronic supplementary material).

In contrast, the proportion of gene overlap among nine

families of dsDNA viruses increased exponentially with

increasing temperature (figure 2; y ¼ 0.11x 2 7.35; R2 ¼ 0.79;

n ¼ 9; p , 0.001). The slope of this relationship (0.11,

figure 2) is nearly inverse to the relationships with temperature

shown for virus genome length and virion volume (20.10,

figure 1). Based on this slope, gene overlap increases about

81-fold from 0 to 408C. Both virus families with single-

celled hosts (n ¼ 3) and virus families with multicellular

hosts (n ¼ 6) show this pattern (figure 2).
4. Discussion
Results show virion volume and genome length decrease

exponentially with increasing temperature in dsDNA viruses,
whereas the proportion of gene overlap shows the inverse

relationship with temperature (figures 1 and 2). Still, many

factors in addition to temperature may influence these two

metrics of virus size (e.g. host-specific differences), as

reflected by the unexplained variation in figure 1a,b. Surpris-

ingly, little is known on the topic of virus size variation [14].

The relationships of virion volume, genome length and

gene overlap with temperature are qualitatively similar to

those previously observed in some single-celled and multicel-

lular organisms, including host species [15–17,23,24]. This

suggests ‘genome streamlining’ (e.g. reduction in proportion

of noncoding DNA) in these viruses may compensate for any

functional loss that accompanies a reduction in genome

length at higher temperatures—as in single-celled organisms

[17,20]. It also suggests that the size of dsDNA viruses has

evolved with the sizes of the cells or genomes of their hosts

across gradients in temperature.

Finally, the macroscale patterns shown here may point to

trade-offs in virus life history across gradients in temperature.

At the individual level, smaller viruses have shorter gener-

ation times and higher rates of replication; our results

suggest that this trade-off may vary systematically across

gradients in temperature [7,13]. At the ecosystem level,

dsDNA viral abundance in marine environments is positively

correlated with host cell abundance, and increases with temp-

erature [25,26]. Our results suggest that virus size and

abundance may be inversely related, such that total viral bio-

mass varies relatively little across temperature gradients.

These individual-level and ecosystem-level trade-offs have

previously been shown to occur in a diversity of living organ-

isms (e.g. plants, animals, microbes) and have been attributed

to energetic trade-offs related to metabolism. At the individ-

ual level, Pearl’s rate of living hypothesis postulates that the

rate at which living species operate is inversely related to

their lifespan based on a finite lifetime energy budget [27].

At the ecosystem level, Damuth’s energetic equivalence rule

postulates that the population density of living organisms is

inversely related to individual size given finite resource avail-

ability [28]. On the surface, these explanations would not

appear to explain the aforementioned trade-offs in viruses,

because viruses have no intrinsic metabolism. Perhaps, how-

ever, these trade-offs in viruses are a consequence of the

energetic constraints imposed by their hosts.
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