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Abstract

Background: A better understanding of the size and abundance of open reading frames (ORFS) in whole genomes may
shed light on the factors that control genome complexity. Here we examine the statistical distributions of open reading
frames (i.e. distribution of start and stop codons) in the fully sequenced genomes of 297 prokaryotes, and 14 eukaryotes.

Methodology/Principal Findings: By fitting mixture models to data from whole genome sequences we show that the size-
frequency distributions for ORFS are strikingly similar across prokaryotic and eukaryotic genomes. Moreover, we show that i)
a large fraction (60–80%) of ORF size-frequency distributions can be predicted a priori with a stochastic assembly model
based on GC content, and that (ii) size-frequency distributions of the remaining ‘‘non-random’’ ORFs are well-fitted by log-
normal or gamma distributions, and similar to the size distributions of annotated proteins.

Conclusions/Significance: Our findings suggest stochastic processes have played a primary role in the evolution of genome
complexity, and that common processes govern the conservation and loss of functional genomics units in both prokaryotes
and eukaryotes.
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Introduction

Understanding the origins of genome complexity remains a

central challenge in evolutionary biology. The sequencing of

genomes across the tree of life has revealed considerable

heterogeneity in both coding and non-coding portions of genomes

that does not appear to be related to organismal complexity [e.g.

1,2–5]]. Stark differences between prokaryotic and eukaryotic

genomes have sparked debate regarding the relative importance of

neutral versus adaptive processes in the evolution of genome

architecture [2,3,6–8], as well as the relative importance of

epigenetic phenomena [9].

Still, some clear patterns in genome architecture have emerged

in recent years. In general, multicellular organisms have larger

genomes than their unicellular prokaryotic and eukaryotic

ancestors. Although larger genomes generally have larger genes

and more introns, most of the increase in genome size has been

attributed to an increase in what appears to be non-coding DNA

[4,6,7,10–13]. This observation has led some to hypothesize as to

the possible adaptive significance of non-coding DNA [e.g., the

skeletal-DNA hypothesis, 14] [i.e. the buffering-DNA hypothesis,

11], and others to suggest a primary role for neutral processes

owing to the generally smaller effective population sizes of more

derived organisms [2].

In this study, we assess the contribution of stochastic processes

to observed variation in genome architecture. We do so by

evaluating the extent to which a random assembly model can

predict the size distribution of open reading frames (ORFs) in

genomes, and the extent to which the remaining ‘‘non-random’’

ORF size distribution corresponds to the size distribution of

annotated proteins. We test the model using data from 311 fully

sequenced and referenced genomes from simple bacteria to

multicellular eukaryotes (Table S1). Our results show that the

vast majority of the heterogeneity in the size distributions of ORFs

can be predicted based on random assembly, and that much of the

remaining, non-random variation shows a size distribution similar

to that of proteins. However, we observe a much larger absolute

number of non-random ORFs than predicted based on known

annotated proteins. We conclude by speculating as to how the

further development of purely stochastic models, such as the one

presented here, may provide insights into the origin and

maintenance of genome complexity.

Models
We assessed the contributions of random and non-random

processes to variation in the size distributions of ORFs among

prokaryotic and eukaryotic genomes by evaluating two hypotheses.

Hypothesis 1 is that ORFs that do not code for proteins follow

expectations for a random sequence of nucleotides. Hypothesis 2 is

that ORFs that do code for proteins adhere to a size distribution

that is distinct from that observed for random ORFs, but similar to

that of annotated proteins, as previously suggested [15,16].

Together, Hypotheses 1 and 2 imply that the size-frequency

distribution of ORFs should adhere to a ‘‘mixture’’ model [17,18]
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comprised of two statistical distributions, one corresponding to

non-coding sequences, and another corresponding to coding

sequences.

We evaluated Hypotheses 1 and 2 by first fitting two different

mixture models to the ORF size data, a mixture of an exponential

distribution and a lognormal distribution

f xð Þ~ple{lxz 1{pð Þe{ log x{mð Þ2=2s2
. ffiffiffiffiffiffi

2p
p

sx ð1Þ

and a mixture of an exponential distribution and a gamma

distribution

f xð Þ~ple{lxz 1{pð Þsa{1e{s=b
�

baC að Þ ð2Þ

In these expressions, f xð Þdx is the overall probability of

obtaining an ORF in the size range (x – dx/2, x+dx/2), p is the

probability that a given ORF adheres to the first distribution in the

mixture, l characterizes the exponential distributions, m and s
characterize the lognormal distribution, and a and b characterize

the shape and scale of the gamma distribution. We chose to

consider lognormal and gamma distributions for the non-random

portion of the models because sizes of genes and proteins are often

fitted to these distributions [16]. Both distributions arise naturally

assuming a birth-death process whereby genomes increase in size

due to random processes (e.g. self-replicating elements), that lead

to genome degradation (e.g. mutations) [18–20]. These distribu-

tions correspond to somewhat different stochastic processes [e.g.

21,22], so distinguishing between them may be important.

Hypothesis 1 predicts a one-to-one correspondence between l,

which is estimated based on the observed size distribution of ORFs,

and lR, which is calculated based on the nucleotide composition of

the sequence. Thus, evaluating hypothesis 1 entails comparing the

parameter estimate l in the first term of the mixture model, ple{lx,

to its expected value for a random sequence of nucleotides, lR. The

lengths of random sequences between successive occurrences of a

specific codon should follow a geometric distribution (GD) [5] but can

be well approximated by an exponential distribution (the continuous

counterpart to the GD) since the lengths of the sequences extend over

several orders of magnitude. In the exponential distribution lR is the

probability that a given nucleotide triplet is a stop codon [23,24]. This

quantity is calculated based on the overall nucleotide composition of

the sequence by summing the probabilities of obtaining each of the

three stop codons. Note that the three nucleotides that constitute a

start or stop codon differ in the sense (start = ATG; stop = TAA,

TAG, TGA) and antisense directions (start = CAT; stop = TTA,

CTA, TCA) such that lR is the same in either direction.

Hypothesis 2 predicts a correspondence between parameter

estimates of the lognormal (m, s), and gamma (a, b) parameters

obtained from the ORF mixture models (Eqs. 1–2) and from size

distributions of proteins. Thus, evaluating hypothesis 2 entails

comparing the estimated parameters of the second terms of the

ORF-size models to parameter estimates obtained by fitting the

lognormal, and gamma distributions to size distributions of

annotated protein sequences.

Methods

Genome Sequence Data and ORF Counting
We used the contributed packages GeneR [25]and seqinR [26]

in the R statistical programming environment [27] to acquire and

analyze 311 complete genome sequences representing 297 species

of prokaryotes and 14 species of eukaryotes, including both

unicellular and multicellular forms (Table S1). Genomes ranged in

size from less than 48 thousand base pairs for the bacterium

Geobacillus kaustophilus to more than 120 million base pairs for the

eukaryote Drosophila melanogaster, and these ranged in GC content

from approximately 16 to 75 percent. When species were

represented by more than one genome sequence, we randomly

selected one sequence for inclusion in this comparative analysis.

All sequences used in this study were acquired from the RefSeq

library at NCBI (Table S1). For each sequence, we collected data

on nucleotide composition, genome size, number of annotated

genes, and protein size from the NCBI database. We then

quantified the numbers and sizes of ORFs by summing across all

six reading frames (+1, +2, +3, 21, 22, or 23) based on the first

stop codon found upstream of each start codon in the sequence.

Introns were not removed from ORFs prior to analysis.

Statistics. For each genome, the two mixture models (Eqs 1–

2) were fitted to ORF-size data using the package ‘‘bbmle’’ in the

R statistical programming environment [28]. The fits for the

models for each genome were compared using Akaike’s

Information Criterion (AIC) [29].

To evaluate whether frequency distributions of ORFs adhered

to random expectations (Hypothesis 1), we regressed l against lR

using ordinary least squares regression (OLS). For this analysis we

only used the estimates of l obtained from fits of the exponential-

lognormal mixture because the estimates of lambda from model

fits were highly correlated (r = 0.99). A linear relationship between

the l and lR with a slope of 1 and an intercept of 0 would provide

statistical support for Hypothesis 1 by demonstrating a one-to-one

relationship between the two variables. Similarly, to evaluate the

extent to which non-random ORF-size distributions correspond to

protein-size distributions (Hypothesis 2), we used OLS to compare

ORF-derived estimates of the lognormal (m, s), gamma (a, b)

distributional parameters in Eqs. 1–2 to estimates obtained from

size distributions of annotated proteins. As an additional test of

Hypothesis 2, we used OLS to assess whether there was a one-to-

one correspondence between the numbers of non-random ORFs

(as estimated from the mixture models) and the number of

annotated proteins. Differences between prokaryote and eukary-

otes in the observed relationships were assessed using ANCOVA.

Finally, we wanted to determine if genome size was correlated

with randomly generated ORFs. Because genome size and GC

content are often correlated [e.g. 30,31] we used non-parametric

smoothing functions in generalized additive models [32] to test for

relationships between genome size, GC content for both the total

numbers of ORFs in a genome, and for the fraction of ORFs

explained by random processes (represented by p in Eqs. 1–2).

Results

The representative examples of model fits in Figure 1 illustrate

that the ORF size distributions for entire genomes of both

prokaryotes and eukaryotes are well described by both mixture

models. Most deviations occur for large ORFs in the upper tails of

the distributions (e.g., Fig. 1c and Fig. 2). In general, size

distributions of small ORFs are well-characterized by the first (i.e.

exponential) component of the mixture models in Eqs. 1–2. Size

distributions of large ORFS are well-characterized by the second

component of the mixture models (Eqs. 1–2). Specifically, AIC

comparisons of overall model fits indicate that size distributions of

large ORFs in 60% of the genomes are best characterized by the

lognormal distribution (Eq. 1), while the remaining 40% of genomes

are well characterized by the gamma distribution (Eq. 2).

Comparisons of model fits, however, should be interpreted with

some caution because even modest differences in goodness of fit will

ORF Distributions
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be statistically significant owing to the large number of points used

to fit the models. However, this caution is only necessary for

interpreting relative model fits and does not affect subsequent results

and interpretation, as both mixture models have similar shapes, and

may therefore indicate similar processes, as we will show.

Consistent with Hypothesis 1, the parameter estimate for the

first component of the mixture model, l(taken from the best fit

mixture model), is linearly related to the value expected for a

random sequence of nucleotides, lR, with a slope of 1 (95%

CI = 0.99 to 1.06) and an intercept near 0 (95% CI = 20.002 to

Figure 1. Fits of the 2 mixture models (Eqs. 1–2) to the genomes of three representative taxa. (a) Escherichia coli, a prokaryote, (b)
Yarrowia lypolytica, a unicellular eukaryote, and (c) Drosophila melanogaster, a multicellular eukaryote.
doi:10.1371/journal.pone.0006456.g001

Figure 2. The size distributions of small ORFs in 311 whole genomes of prokaryotes and eukaryotes are consistent with random
expectations (each point represents a genome). Observed values obtained by fitting the exponential components of the mixture models (l in
Eqs. 1–2) were linearly related to the expected value for a random sequence of a given GC content, lR, with a slope statistically indistinguishable from
1 and an intercept near 0 (P.0.05, r2 = 0.92).
doi:10.1371/journal.pone.0006456.g002

ORF Distributions
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20.0003) (F1,309 = 3588.1, P,0.0001, R2 = 0.92; Fig. 2). Note that

similar relationships were observed for both eukaryotes and

prokaryotes. Moreover, as expected, genome size and GC content

affected both the total number and the fractions of ORFs

described by the random distributions (Table 1). The total number

of random ORFs, as estimated from l, significantly increases with

genome size (F = 682.5, p,0.0001; Fig. 3a), but significantly

decreases with increasing GC content (F = 79.2, p,0.0001;Fig. 3b),

given the relationship between GC content and the probability of

getting a stop codon (Figure S1). Indeed, GC content and genome

size explained 94.9 percent of the deviance in number of random

ORFs (Table 1A). Interestingly, genome size did not explain a

significant amount of the deviance in the total fractions of ORFs (p

in Eqs. 1–2) described by the random components of the mixture

models (F = 2.36, p = 0.06; Fig. 3c). However, GC content did

explain a significant amount of the deviance (F = 23.12, p,0.0001;

Table 1B) in the fraction of ORFs described by the random

distribution such that the fraction of random ORFs decreases with

increasing GC content (Fig. 3d).

Consistent with Hypothesis 2, the size distribution of the

remaining fraction of ORFs, described by the non-random

distribution, is qualitatively quite similar to annotated protein

distributions for genomes (Table S1, Figures S2, and S3). Indeed,

supplements three and four illustrate the similarities between the

size distributions of ORFS described by the non-random

distribution and annotated proteins by illustrating the shapes of

the distributions drawn using the parameters from the mixture

model fits to the ORFs and proteins listed in Table S1. However,

the non-random distribution of ORFs varied for both exponential-

lognormal and exponential-gamma models such that the number

of small non-random ORFs was greater (i.e. smaller scale and

mean parameters in the exponential-gamma and exponential-log

normal distributions respectively) than the number of small

annotated proteins. Consequently, the peaks of the distributions

in supplements three and four are shifted to the left of those for

annotated proteins. Moreover, the number of small non-random

ORFs was greater in multicellular eukaryotes than in prokaryotes.

Specifically, for those species for which equation 1 provided the

best fit, the parameter m of the lognormal distribution for non-

random ORFS was linearly correlated with those estimated for the

annotated protein distributions for both prokaryotes and eukary-

otes (slope - F1,182 = 47.65, p,0.0001, intercepts = F1,182 = 80.39,

p,0.0001, interaction = F1,182 = 1.292, p = 0.297) (Fig. 4a). How-

ever, the estimated slopes of the relationships were substantially

less than the predicted value of one (95% CIs = 0.19 to 0.38), and

the intercepts were different from zero (95% CIs – Prokary-

otes = 4.09 to 5.53; Eukaryotes = 4.55 to 5.82). Similarly, the

parameter s of the lognormal distribution (Eq. 1) or non-random

ORFS was linearly correlated with those estimated for the

annotated protein distributions for both prokaryotes and eukary-

otes (slope - F1,182 = 57.01, p,0.0001, intercepts - F1,182 = 3.6411,

p = 0.058, interaction- F1,182 = 0.201, p = 0.654) (Fig. 4b), but

again the estimated slopes of these relationships were less than the

predicted value of one ( 95% CIs = 0.249 to 0.426), and the

intercept was different from zero (95% CIs – 0.358 to 0.491).

For those species with ORF distributions best described by the

exponential-gamma mixture (Eq. 2), the relationship of the

parameter b of the gamma distribution with those estimated from

the annotated protein distributions was different for prokaryotes

and eukaryotes (F1,121 = 33.595, p,0.0001) (Fig. 4c). For prokary-

otes, there was a significant positive relationship between the

estimates of b from the mixture models and estimates from the

annotated protein distributions (t121 = 0.939, p,0.0001), though

the slope and intercept of this relationship was different than

predicted (95% CIs – slope = 0.172 to 0.772; intercept = 2139.970

to 361.702). In contrast, for eukaryotes the estimates of b from the

mixture model were independent of those estimated from

annotated protein distributions (t121 = 5.796, p = 0.350) (Fig. 4c).

Similarly, the estimates of a from the mixture model fits were

linearly correlated with those estimated from annotated protein

distributions (F1,121 = 8.9709, p = 0.003), but were not different for

prokaryotes and eukaryotes (F1,121 = 0.6678, p = 0.415) (95% CIs –

Intercept = 1.739 to 2.351; slope = 0.146 0.716) (Fig. 4d). These

relationships, for both the log-normal and gamma parameters,

suggest that the parameters estimated from the mixture models are

consistently smaller than those estimated from the annotated

proteins and thus are classifying more small ORFs as non random

than are known to be protein coding. Nevertheless the linear

relationships between these parameters suggest that the mixture

models could be used for predicting protein size distributions.

Furthermore, with respect to Hypothesis 2, a plot of total non-

random ORFs versus total annotated proteins (Fig. 5) reveals that

for both prokaryotes and eukaryotes the number of nonrandom

ORFs is strongly correlated with the number of annotated

proteins. But, differences in the intercepts (F1,544 = 35.710,

p,0.0001) and slopes (F1,544 = 9.144, p = 0.003) of these relation-

ships indicate systematic deviations such that there are substan-

tially larger numbers of non-random ORFS than annotated

proteins (Fig. 5).

This finding is consistent with systematic differences in the

estimated non-random ORF size distributions (e.g. differences in

the b and m parameters from the gamma and lognormal

distributions respectively) as discussed above and illustrated in

Figure 4.

Discussion

Our findings suggest stochastic processes have played a primary

role in the evolution of genome complexity. Surprisingly, the

mixture models developed here fit all species across a broad range

of genome sizes, both prokaryotes and eukaryotes, equally well

(Figures 1 and 2, Table S1). The size distributions of ORFs in both

random and non-random components were similar for all

organisms.

Moreover, in both prokaryotes and eukaryotes, a large fraction

of the total number of ORFs (60–80%) was predicted by a random

assembly process. This finding was surprising given that it is widely

held that larger, eukaryotic genomes (i.e. higher eukaryotes)

contain mostly noncoding ‘‘Junk’’ DNA [e.g.s 6,7,11,33,34],

whereas the vast majority of DNA in unicellular genomes is

thought to be protein-coding. Thus, these results suggest that

Table 1. Results of a generalized additive model (GAM) using
non-parametric smoothers.

Factor edf* F-value p-value R2 Dev. expl.#

A Genome Size
GC Content

6.722
6.286

682.5
79.2

,0.0001
,0.0001

0.95 94.9%

B Genome Size
GC Content

3.199
6.434

2.36
23.12

0.0584
,0.0001

0.37 39.1%

A. GAM testing for a relationship between number of random ORFs, genome
size, and GC content. B. GAM testing for a relationship between proportions of
random ORFs, genome size, and GC content.
*edf is the estimated degrees of freedom accounting for the smoothing
function.

#Deviance explained by the model with both factors.
doi:10.1371/journal.pone.0006456.t001

ORF Distributions
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eukaryotic and prokaryotic genomes may be more similar than

previously thought, and that the processes governing these

common features of genome architecture are shared.

The extent to which the ORF distributions deviate from the

random expectation could serve as a metric for predicting the

coding content of genomes [5]. Larger deviations from random

expectation could suggest greater potential coding content of the

genome [5]. In our analysis this deviation is described by the

weighting parameters p and 1-p such that as p gets smaller, and 1-

p larger, the greater the contribution of nonrandom ORFS is the

genome [e.g., 5]. Furthermore, in both prokaryotes and

eukaryotes, the number and distribution of ‘‘non-random’’ ORFs

are reasonably well explained by log-normal or gamma distribu-

tions. This, too, suggests that larger values of 1-p might indicate

higher coding content of the genome. It may also suggest a

common ‘‘birth-death’’ evolutionary process governing the

conservation and loss of functional genomic units and that the

processes governing the conversion of non-coding DNA into

functional non-random units (i.e. genes) might be similar across

taxa. Yet, we observed that the number of small non-random

ORFs far exceeds that of annotated proteins. This points to the

fact that these small ORFs, while not coding per se, are

nonetheless being conserved. Perhaps, this large number of small

non-random ORFs reflect the presence of transposable elements

(TEs) and/or non-protein coding genes. Indeed, our observation

that higher eukaryotes have a larger number of these small, non-

random ORFs is consistent with the observation that these

genomes are known to have more TEs than are lower eukaryotes

Figure 3. The relationship between ORFs and genome characteristics. Panels a and b: show the relationships between the total number of
random ORFs versus genome size and GC content. Panels c and d: Show the relationships between the fraction of all ORFs that are randomly
generated (p in Eqs. 1–2) versus genome size and GC content. Data were fitted using generalized additive models with non-parametric smoothing
functions. Dashed lines represent 95% point wise confidence intervals.
doi:10.1371/journal.pone.0006456.g003

ORF Distributions

PLoS ONE | www.plosone.org 5 July 2009 | Volume 4 | Issue 7 | e6456



and prokaryotes [35–37]. Some of these small sequences could also

be small proteins or other functional units not previously identified

[38–40]. In addition, because the start codon ATG also codes for

the amino acid methionine some conserved small ORFs may be

explained by the occurrence of ATG as a normal codon coding for

methionine in the protein coding region.

Finally, we wish to point out that in some respects our results are

consistent with the proposition that the evolution of genome

complexity occurs mainly via genetic drift [2]. Our observation

that the number of small ‘‘random’’ ORFs increases as genome

size (and complexity) increases appears to be consistent with the

hypothesis that large genomes, have evolved via neutral accumu-

lation of junk DNA fragments [6–8]. Yet, contrary to this

explanation, the total fraction of ORFs generated via random

processes was observed to decrease with increasing genome size.

Further research using newly available genomic data, combined

with modeling efforts that account for stochasticity, promise to

reveal much about genome evolution in the years ahead.

Supporting Information

Table S1 Species Names, Accession Numbers, and Statistical

Results. Table containing the names and accession numbers for

the 311 genome and protein coding sequences analyzed in this

study. This table also contains the parameter estimates and

statistical results from all model fits for each species.

Found at: doi:10.1371/journal.pone.0006456.s001 (0.10 MB

PDF)

Figure 4. The relationship between parameters estimated from the mixture models and annotated. Panels a and b: Show the
relationships between the parameters m and s of the lognormal distribution estimated from the mixture model fits with the m and s parameters
estimated from fits to annotated proteins. Panels c and d: Show the relationships between parameters a and b of the gamma distribution estimated
from the mixture model fits with the a and b parameters estimated from fits to annotated proteins. Data were fitted using analysis of covariance.
doi:10.1371/journal.pone.0006456.g004
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Figure S1 Supporting information for model development.

Figure illustrating how the expected probability of a randomly

generated stop codon declines with increasing GC content.

Found at: doi:10.1371/journal.pone.0006456.s002 (0.18 MB

PDF)

Figure S2 Relationships and illustrations of the shapes of the size

distributions of ORFS and annotated proteins using log normal

models. This supplement includes figures and analyses that depict

the statistical relationships between the parameters of the

exponential-log normal model and annotated proteins presented

in Supplement 1. This supplement also includes figures that

illustrate the shapes of each of these distributions.

Found at: doi:10.1371/journal.pone.0006456.s003 (0.74 MB

PDF)

Figure S3 Relationships and illustrations of the shapes of the size

distributions of ORFS and annotated proteins using gamma

distributions. This supplement includes figures and analyses that

depict the statistical relationships between the parameters of the

exponential-gamma model and annotated proteins presented in

Supplement 1. This supplement also includes figures that illustrate

the shapes of each of these distributions.

Found at: doi:10.1371/journal.pone.0006456.s004 (0.58 MB

PDF)
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