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Abstract

Markov chain Monte Carlo algorithms provide a way of approximately sampling
from complicated probability distributions in high dimensions. The data augmentation
algorithm is a popular MCMC method which is easy to implement but sometimes
suffers from slow convergence. In this report, an overview of the data augmentation
algorithm is given, along with a description of two variants that can often result in
dramatic improvements in the convergence rates of the underlying Markov chains.
A general method based on operator theory is presented to facilitate a theoretical
comparison of the convergence rates associated with the above algorithms. The results
are illustrated using the Bayesian probit regression model analyzed by Albert and Chib
(1993).

1 Background and Motivation for MCMC

1.1 Classical Monte Carlo Methods

Suppose we are given a probability distribution π(·) defined on a measurable space (X,B)
and we are interested in computing a particular numerical characteristic of π(·), like its
mean or standard deviation, but the complexity of the expressions does not allow us to do
the computations directly.

More precisely, suppose π(·) has density f with respect to a σ-finite measure µ(·) on (X,B).
Typically X is an open subset of Rd and the densities are taken with respect to Lebesgue
measure. Suppose we want to estimate expectations of functions g : X→ R with respect to
π(·), i.e. we want to estimate

π(g) = Eπ[g(x)] =

∫
X

g(x) π(dx) =

∫
X

g(x) f(x)µ(dx).

If X is high dimensional and f is a complicated function, then direct integration (either
analytic or numerical) of the integrals above is infeasible.



The “gold standard” solution to the above problem, the classical Monte Carlo method,
goes as follows. Simulate iid random variables X1, X2, . . . , Xn ∼ π(·) and estimate π(g) by
π̂(g) = 1

n

∑n
i=1 g(Xi). Then π̂(g) is unbiased and if π(|g|) <∞, then by the usual SLLN for

iid sequences, π̂(g) is a strongly consistent estimator for π(g) having standard deviation of
order O(n−1/2). Furthermore, if π(g2) <∞, the error π̂(g)−π(g) will have a limiting normal
distribution by the classical CLT, which allows us to compute valid asymptotic standard
errors for π̂(g). The problem with this method is that if f is complicated, then it is very
difficult to directly simulate iid random variables from π(·).

1.2 Markov Chain Monte Carlo Methods

The Markov chain Monte Carlo (MCMC) solution is to construct a Markov chain {Xn} on
X which is easily run on a computer and which has stationary distribution π(·). That is,
define easily simulated Markov chain transition probabilities P (x, dy) for x, y ∈ X such that∫
X
π(dx)P (x, dy) = π(dy). A sufficient condition for {Xn} to have stationary distribution

π(·) is for {Xn} to be reversible with respect to π(·), i.e. π(dx)P (x, dy) = π(dy)P (y, dx)
for x, y ∈ X. For A ⊆ B, letting P n(x,A) = P [Xn ∈ A|X0 = x] denote the n-step transition
probabilities for the chain, the following result motivates the use of MCMC.

Theorem 1. If a Markov chain on a state space X with countably generated σ-algebra
B is Harris ergodic (i.e., φ-irreducible, aperiodic, and Harris recurrent) and has stationary
distribution π(·), then for π-a.e. x ∈ X,

lim
n→∞

‖P n(x, ·)− π(·)‖ = 0,

where ‖ν1(·)− ν2(·)‖ denotes the total variation distance between the two probability mea-
sures ν1(·) and ν2(·). (cf. Roberts and Rosenthal, 2004).

In particular, limn→∞ P
n(x,A) = π(A) for every A ⊆ B.

Remark 1. Under the conditions of Theorem 1, if g : X→ R with π(|g|) <∞, then a SLLN
holds (as in the classical Monte Carlo case) as follows:

lim
n→∞

1

n

n∑
i=1

g(Xi) = π(g) w.p. 1.

Remark 2. Note that Theorem 1 says that the law of a well-behaved Markov chain will
converge to the stationary distribution π(·) as n increases, but it gives no information about
the rate at which the total variation distance converges to 0. There are important practical
benefits to using an MCMC algorithm for which this rate is (at least) geometrically fast.

Definition 1. Formally, the chain {Xn} is called geometrically ergodic if there exist a func-
tion M : X→ [0,∞) and a constant ρ ∈ [0, 1) such that for all x ∈ X and all n = 1, 2, . . .,

‖P n(x, ·)− π(·)‖ ≤M(x) ρn.
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Theorem 2. Under the assumptions of Theorem 1, if we assume in addition that {Xn} is
geometrically ergodic and g : X→ R with π(|g|2+δ) <∞ for some δ > 0, then the following
Markov chain CLT holds:

n−1/2
n∑
i=1

[g(Xi)− π(g)]
d−→ N(0, σ2).

It follows that σ2 = limn→∞E[(
∑n

i=1[g(Xi) − π(g)])2], and also σ2 = τ Varπ(g), where
τ =

∑
k∈Z Corr(X0, Xk), is the integrated autocorrelation time.

This result says that with a bit more than a finite second moment, if we use a geometrically
ergodic chain then we may compute valid asymptotic standard errors for our MCMC based
estimates. We will see a method for establishing the geometric ergodicity of a reversible
Markov chain based on the properties of its corresponding self-adjoint Markov operator later
in this report.

The remainder of this report is organized as follows. Section 2 contains an introduction
to the data augmentation algorithm and introduces the running example of the Bayesian
probit regression model studied by Albert and Chib (1993). The marginal augmentation (or
PX-DA) algorithm of Meng and Van Dyk (1999) is discussed in Section 3 and applied to
our running example. The theory and application of the Haar PX-DA algorithm of Liu and
Wu (1999) is discussed in Section 4. Finally, in Section 5 a brief overview of the relationship
between the spectral properties of Markov operators and the convergence properties of the
corresponding Markov chains is presented and used to compare the three algorithms studied.

2 The Data Augmentation Algorithm

2.1 Introduction

The approaches of Hobert (2011) and Khare and Hobert (2011) are followed throughout the
next three sections. Throughout the rest of this report, we assume that all Markov chains
on the target space are Harris ergodic.

Let (X,B, µ) and (Y,A, ν) be two probability spaces and assume that B and A are countably
generated. Suppose that fX : X→ [0,∞) is a density with respect to µ which is intractable
in the sense that expectations with respect to fX cannot be computed analytically. In such
situations it is often possible to find a joint density f : X×Y → [0,∞) with respect to µ× ν
that satisfies two properties:

1. The x-marginal is fX , that is
∫
Y
f(x, y) ν(dy) = fX(x).

2. Simulating from the associated conditional densities fX|Y (x|y) and fY |X(y|x) is straight-
forward.

The data augmentation (DA) algorithm is based on this joint density. To specify the Markov
chain underlying the DA algorithm, consider the function

k(x′|x) =

∫
Y

fX|Y (x′|y) fY |X(y|x) ν(dy).
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Proposition 1. (i.) k(x′|x) is a Markov transition density (Mtd).

(ii.) The Markov chain {Xn} induced by k is reversible with respect to fX .

Proof. First, the integrand defining k is the product of two conditional densities. Hence k
is nonnegative for each x ∈ X. Next, fix x ∈ X and apply Fubini’s theorem to obtain∫

X

k(x′|x)µ(dx′) =

∫
X

∫
Y

fX|Y (x′|y) fY |X(y|x) ν(dy)

 µ(dx′)

=

∫
Y

fY |X(y|x)

∫
X

fX|Y (x′|y)µ(dx′)

 ν(dy)

=

∫
Y

fY |X(y|x) ν(dy)

= 1.

To prove that {Xn} is reversible with respect to fX , let fY (y) =
∫
X
f(x, y)µ(dx) and note

that

k(x′|x) fX(x) = fX(x)

∫
Y

fX|Y (x′|y) fY |X(y|x) ν(dy) =

∫
Y

f(x′, y)f(x, y)

fY (y)
ν(dy),

which is symmetric in (x, x′). Hence for all (x, x′) ∈ X, we have k(x′|x) fX(x) = k(x|x′) fX(x′).

With the above result in hand, we may describe the dynamics of the DA Markov chain in
the following way. If the current state of the chain is Xn = x, then the density of the next
state, Xn+1, is k(·|x). Also, recalling a result from Section 1.2, Proposition 1 implies that
fX is an invariant density for the chain {Xn}. If the current state of the chain is Xn = x,
then we may simulate Xn+1 as follows.

One iteration of the DA algorithm:

1. Draw Y ∼ fY |X(·|x), and call the observed value y.

2. Draw Xn+1 ∼ fX|Y (·|y).

Note that the above procedure amounts to drawing (x, y) from the joint density f(x, y) using
a two variable Gibbs sampler and ignoring the y coordinate.
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2.2 Bayesian Probit Regression Example

We now present Albert and Chib’s (1993) widely used DA algorithm for Bayesian Probit
Regression.

Let Z1, . . . , Zn be independently distributed Bernoulli random variables with success proba-
bility P (Zi = 1) = Φ(xTi β) where Φ(·) denotes the standard normal CDF, xi ∈ Rp is a p× 1
vector of known covariates associated with Zi, and β ∈ Rp is a p × 1 vector of unknown
regression coefficients.

Letting z = (z1, . . . , zn)T denote the observed data, the likelihood is given by

P (Z1 = z1, . . . , Zn = zn|β) =
n∏
i=1

[
Φ(xTi β)

]zi [
1− Φ(xTi β)

]1−zi
.

To analyze this model within the Bayesian paradigm, consider putting a flat prior on the
vector of regression coefficients β, i.e. the prior density is π(β) ∝ 1. The resulting marginal
density is

m(z) =

∫
Rp

n∏
i=1

[
Φ(xTi β)

]zi [
1− Φ(xTi β)

]1−zi
dβ.

We assume throughout this report that the posterior is proper, i.e. that m(z) < ∞. The
posterior density is given by

π(β|z) =
1

m(z)

n∏
i=1

[
Φ(xTi β)

]zi [
1− Φ(xTi β)

]1−zi
.

This posterior is quite intractable: it involves a p-dimensional integral of a product of normal
distribution functions. Therefore it is a good candidate for MCMC based analysis.

Albert and Chib’s (1993) idea was to introduce missing data y = (y1, . . . , yn)T ∈ Rn to facil-
itate the computation of a DA algorithm for π(β|z). (Similar to the familiar EM algorithm).

Let φ(v;µ, σ2) denote the N(µ, σ2) density function evaluated at the point v ∈ R. Consider
the function

π(β, y|z) =
1

m(z)

n∏
i=1

{
IR+(yi) I{1}(zi) + IR−(yi) I{0}(zi)

}
φ(yi;x

T
i β, 1),

where IA(·) is the indicator function of the set A, R+ = (0,∞), and R− = (−∞, 0). Our
goal is to realize π(β, y|z) as a joint density in (β, y) whose β-marginal is π(β|z), and then
derive the conditionals of this joint density to produce a DA algorithm for π(β|z).
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Indeed, integrating y out of π(β, y|z) we obtain:

∫
Rn

π(β, y|z) dy =
1

m(z)

∫
Rn

n∏
i=1

{
IR+(yi) I{1}(zi) + IR−(yi) I{0}(zi)

}
φ(yi;x

T
i β, 1) dyn · · · dy2 dy1

=
1

m(z)

n∏
i=1

∫
R

{
IR+(yi) I{1}(zi) + IR−(yi) I{0}(zi)

}
φ(yi;x

T
i β, 1) dyi

=
1

m(z)

n∏
i=1

{
I{1}(zi)

∫ ∞
0

φ(yi;x
T
i β, 1) dyi + I{0}(zi)

∫ 0

−∞
φ(yi;x

T
i β, 1) dyi

}
=

1

m(z)

n∏
i=1

{
I{1}(zi)Φ(xTi β) + I{0}(zi)

[
1− Φ(xTi β

]}
=

1

m(z)

n∏
i=1

[
Φ(xTi β)

]zi [
1− Φ(xTi β

]1−zi
= π(β|z).

In the standard notation of linear models, let X ∈ Rn×p denote the n× p matrix whose ith
row is xTi , let β̂(y) = (XTX)−1XTy ∈ Rp denote the usual least squares estimator of β for
fixed y, and let P = X(XTX)−1XT ∈ Rn×n denote the projection onto the column space of
X. It follows that

π(β|y, z) =
n∏
i=1

φ(yi;x
T
i β, 1) = (2π)−n/2 exp

{
−y

T (I − P )y

2

}
exp

{
−1

2
(β − β̂(y))T XTX ((β − β̂(y))

}
,

i.e. β| y, z ∼ Np(β̂(y), (XTX)−1).

Finally, let TN(µ, σ2, v) denote a N(µ, σ2) distribution that is truncated to be positive if
v = 1 and negative if v = 0. It is clear looking at the form of the complete data posterior
density π(β, y|z) that Yi|β, z ∼ TN(xTi β, 1, zi) independently. Note that the TN(µ, σ2, v)
family of distributions may be easily simulated using a simple rejection sampler.

We may now implement a DA algorithm for π(β|z) as follows. Given the current state
Xn = β, we simulate the next state, Xn+1 by performing the following two steps:

One iteration of the DA algorithm for π(β|z):

1. Draw Y1, . . . , Yn independently such that Yi ∼ TN(xTi β, 1, zi), and call the observed
value y = (y1, . . . , yn)T .

2. Draw Xn+1 ∼ Np(β̂(y), (XTX)−1).

Roy and Hobert (2007) showed that this particular DA algorithm is geometrically ergodic
by establishing a geometric drift condition (cf. Hobert 2011).
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3 The Marginal Augmentation / PX-DA Algorithm

3.1 Sandwich Algorithms

We have seen thus far that one iteration of the DA algorithm based on f(x, y) can be
simulated using the two-step procedure described above, which entails drawing from the
two conditional densities defined by f(x, y). Khare and Hobert (2011) showed that this
simulation can also be accomplished using a three-step procedure in which the first and third
steps are draws from fY |X(y|x) and fX|Y (x|y) respectively, and the middle step involves a
single move according to a Markov chain on the space Y that has invariant density fY (y).

Suppose that R(y, dy′) is any Markov transition function on Y that is reversible with respect
to fY (y)ν(dy), i.e. R(y, dy′)fY (y)ν(dy) = R(y′, dy)fY (y′)ν(dy′). Consider a new Mtd given
by

k∗(x′|x) =

∫
Y

∫
Y

fX|Y (x′|y′)R(y, dy′)fY |X(y|x)ν(dy).

It is straightforward to show using the same technique in the proof of Proposition 1 that
k∗(x′|x)fX(x) is symmetric in (x, x′), so the Markov chain defined by k∗, denoted by {X∗n},
is reversible with respect to fX . The form of k∗ suggests that if the current state is X∗n = x,
then X∗n+1 can be simulated using the following three steps:

One iteration of the Sandwich algorithm:

1. Draw Y ∼ fY |X(·|x), and call the observed value y.

2. Draw Y ′ ∼ R(y, .), and call the observed value y′.

3. Draw X∗n+1 ∼ fX|Y (·|y′).

Note that the draw from R(y, ·) is ”sandwiched” between the draws from the two conditional
densities. The reasoning behind this extra step is that it is often possible to construct
a sandwich algorithm that converges much faster than the original DA algorithm while
requiring roughly the same computational effort per iteration. It turns out that this low-
dimensional perturbation on the Y space can lead to a major improvement in mixing. The
next subsection provides a general recipe for building the function R.
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3.2 Basic Theory of Marginal Augmentation / PX-DA

A powerful method to speed up the DA algorithm was developed independently by Liu and
Wu (1999), who referred to it as “PX-DA”, and Meng and Van Dyk (1999), who referred
to it as “marginal augmentation”. The basic idea is to introduce a low-dimensional pa-
rameter into the joint density f(x, y) that is not identifiable in the target fX . This allows
for the construction of an entire class of possible DA algorithms, indexed by this “working
parameter.”

For simplicity, we assume for the rest of this report that X and Y are Euclidean spaces and
f(x, y) is a density with respect to Lebesgue measure. Let G ⊂ Rd, let {tg : Y → Y}g∈G be
a class of one-to-one differentiable functions indexed by g ∈ G, and let Jg(z) denote the
Jacobian of the transformation z = t−1g (y). Now fix a “working prior” density on G, call it

w(g) and define a joint density on X×Y×G by f (w)(x, y, g) = f(x, tg(y)) |Jg(y)|w(g). Then∫
Y

∫
G

f (w)(x, y, g) dg dy =

∫
Y

∫
G

f(x, tg(y)) |Jg(y)|w(g) dg dy

=

∫
Y

f(x, tg(y)) |Jg(y)| dy =

∫
Y

f(x, z)dz = fX(x).

We have shown that the x-marginal of f (w)(x, y, g) is fX(x). Hence we may define a joint
density on X × Y having x-marginal fX(x) by f (w)(x, y) =

∫
G
f (w)(x, y, g) dg. Thus if it is

easy to sample from f
(w)
X|Y (x|y) and f

(w)
Y |X(y|x), then we have a new DA algorithm that can

be compared with the one based on f(x, y).

The problem is that in real examples, it will often be impossible to sample directly from
(or even compute) these conditionals. However, it is possible to develop indirect methods

of drawing from f
(w)
X|Y and f

(w)
Y |X , that use only draws from fX|Y , fY |X , w(g), and one other

density. First consider f
(w)
Y |X(y|x).

f
(w)
Y |X(y|x) =

∫
G
f (w)(x, y, g) dg

fX(x)

=

∫
G

f(x, tg(y))

fx(x)
|Jg(y)|w(g) dg

=

∫
G

fY |X(tg(y)|x) |Jg(y)|w(g) dg.

Draw Y ′ ∼ fY |X(·|x) and G ∼ w(·) and suppose Y ′ and G are independent. Then this last
integrand can be expressed as the joint density of (G, Y ) where Y = t−1g (Y ′). Hence Y has

density f
(w)
Y |X(·|x).
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Next consider f
(w)
X|Y (x|y).Write f

(w)
X|Y (x|y) =

∫
G
f
(w)
X,G|Y (x, g|y) dg =

∫
G
f
(w)
X|Y,G(x|y, g) f

(w)
G|Y (g|y) dg.

Thus using the two-step technique in Section 2.1, we may simulate from f
(w)
X|Y (x|y) as follows.

First, draw G ∼ f
(w)
G|Y (·|y) and call the result g. Then draw X ∼ f

(w)
X|Y,G(·|y, g).

It suffices to show we can draw from f
(w)
G|Y and f

(w)
X|Y,G. First,

f
(w)
X|Y,G(x|y, g) =

f (w)(x, y, g)∫
X
f (w)(x, y, g) dx

=
f(x, tg(y))|Jg(y)|w(g)

fY (tg(y))|Jg(y)|w(g)
= fX|Y (x|tg(y)),

i.e. drawing from f
(w)
X|Y,G(·|y, g) is equivalent to drawing from fX|Y (·|tg(y)), which we are

assuming is straightforward.

Next,

f
(w)
G|Y (g|y) =

∫
X
f (w)(x, y, g) dx∫

G

∫
X
f (w)(x, y, g) dx dg

∝
∫
X

f (w)(x, y, g) dx = fY (tg(y))|Jg(y)|w(g).

It appears that sampling from f
(w)
G|Y would be quite challenging. Fortunately in most appli-

cations G is low-dimensional, making it possible to sample from f
(w)
G|Y despite the fact that

fY is intractable.

To summarize,

• To draw from f
(w)
Y |X(·|x), first draw Y ′ and G independently from fY |X(·|x) and w(·),

respectively, and then take Y = t−1g (Y ′).

• To draw from f
(w)
X|Y (·|y), draw G ∼ f

(w)
G|Y (·|y) and call the result g, then draw X ∼

fX|Y (·|tg(y)).

Finally, we may use the Sandwich structure of Section 3.1 to simulate the PX-DA Markov
chain. Indeed, if the current state of the chain is Xn = x, then we can simulate Xn+1 as
follows.

One iteration of the PX-DA algorithm:

1. Draw Y ∼ fY |X(·|x), and call the observed value y.

2. Draw G ∼ w(·), call the result g, then draw G′ ∼ f
(w)
G|Y (·|t−1g (y)), call the result g′, and

finally set y′ = tg′(t
−1
g (y)).

3. Draw Xn+1 ∼ fX|Y (·|y′).
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3.3 Application to Bayesian Probit Regression

Recall that in this example π(β|z) plays the role of fX(x) and π(β, y|z) plays the role of
f(x, y). Let G = R+ and take tg(y) to be the transformation that translates y ∈ Y by a fixed
element g ∈ G. That is, tg(y) = gy = (gy1, . . . , gyn). Suppose the working prior density w is
given by

w(g;α, λ) =
2λα

Γ(α)
g2α−1 e−g

2λ IR+(g), where α, λ ∈ R+.

Note that if U ∼ Gamma(α, λ), where λ is a rate parameter, then G =
√
U ∼ w(g;α, λ),

i.e. w is the density of the square root of a Gamma random variable. Using the conditional
densities we computed in Section 2.2, it is easy to show that

π(y|z) =
exp

{
−yT (I−P )y

2

}
|XTX| 12 m(z)(2π)

m−p
2

n∏
i=1

{
IR+(yi) I{1}(zi) + IR−(yi) I{0}(zi)

}
.

Hence,

f
(w)
G|Y (g|y) ∝ π(tg(y)|z)|Jg(z)|w(g)

∝
[
exp

{
−1

2
(gy)T (I − P )(gy)

}]
(gn)

[
g2α−1exp{−g2λ}IR+(g)

]
= exp

{
−g2

[
yT (I − P )y

2
+ λ

]}
gn+2α−1IR+(g).

Observe that f
(w)
G|Y (g|y) has the same form as w(g;α, λ), so we may simulate f

(w)
G|Y (g|y) by

drawing from a gamma density and taking its square root. We now have all the information
we need to write down a PX-DA algorithm for this example. If the current state of the
PX-DA Markov chain is Xn = β, then we simulate the next state, Xn+1, by performing the
following three-step procedure:

One iteration of the PX-DA algorithm for π(β|z):

1. Draw Y1, . . . , Yn independently such that Yi ∼ TN(xTi β, 1, zi), and call the result y =
(y1, . . . , yn)T .

2. Draw U ∼ Gamma(α, λ), call the result u, and set ỹ = y√
u
.

Draw V ∼ Gamma
(
m
2

+ α, ỹ
T (I−P )ỹ

2
+ λ
)
, call the result v, and set y′ =

√
vỹ.

3. Draw Xn+1 ∼ Np(β̂(y′), (XTX)−1).
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4 The Haar PX-DA Algorithm

4.1 Some Group Theory

In this section, following the treatment of Eaton(1989), we present the background in group
theory needed to understand the Haar PX-DA algorithm.

Definition 2. A group is a set G equipped with a binary operation ∗ : G×G→ G such that

(i). g1, g2 ∈ G implies g1 ∗ g2 ∈ G.

(ii). (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3) for g1, g2, g3 ∈ G.

(iii). There exists an element e ∈ G such that e ∗ g = g ∗ e = g for g ∈ G.

(iv). For each g ∈ G, there exists a unique element g−1 ∈ G such that g ∗ g−1 = g−1 ∗ g = e.

We often omit ∗ and write g1g2 to mean g1 ∗ g2. The element e ∈ G is called the identity
and g−1 is called the inverse of g. If the set G is a locally compact topological space whose
topology has a countable base and the functions (g1, g2) 7→ g1g2 and g 7→ g−1 are both
continuous, then G is called a topological group.

Definition 3. Let G be a group and let Y be a set. A function F : G× Y → Y satisfying

(i). F (e, y) = y, y ∈ Y,

(ii). F (g1g2, y) = F (g1, F (g2, y)), g1, g2 ∈ G, y ∈ Y,

specifies G acting on the left of Y. If G is a topological group and Y is a topological space,
we say the group G acts topologically on the left of Y if G acts on the left of Y and if the
action of G, F : G× Y → Y is continuous.

Definition 4. Let G be a topological group. Let K(G) denote the real vector space of all
continuous functions with compact support defined on G.

• A function χ : G → R+ is called a multiplier if χ is continuous, and χ(g1g2) =
χ(g1)χ(g2) for g1, g2 ∈ G.

• A measure m on K(G) is left invariant if for all f ∈ K(G), (and hence for all m-
integrable f),

∫
G
f(g−1x)m(dx) =

∫
G
f(x)m(dx) for g ∈ G.

• A measure m on K(G) is relatively left invariant with multiplier χ if for each g ∈ G,∫
G
f(g−1x)m(dx) = χ(g)

∫
G
f(x)m(dx).

Theorem 3. On a topological group G, there exists a left invariant measure νl, called the
left Haar measure on G such that for every g ∈ G,∫

G

f(x) νl(dx) =

∫
G

f(g−1x) νl(dx).

The right Haar measure is defined analogously. When the left Haar measure is the same as
the right Haar measure, the group G is said to be unimodular. In most applications, this
measure is improper, that is,

∫
G
νl(dg) =∞.

11



4.2 Haar PX-DA

Liu and Wu (1999) showed that if the set G from section 3 is given the structure of a
topological group, then it is possible to construct a valid PX-DA-like algorithm with an
improper Haar density in place of the working prior density w. Furthermore, it is possible
to show using the results of the next section that this Haar PX-DA algorithm is better than
any PX-DA algorithm based on a proper w.

To this end, suppose G is a topological group. In keeping with the notation of Section 3,
we assume that the transformation tg(y) represents G acting topologically on the left of Y.
Further, we assume that Lebesgue measure on Y is relatively left invariant with multiplier
χ, i.e. for any g ∈ G,

∫
Y
h(y) dy = χ(g)

∫
Y
h(tg(y)) dy for every integrable h : Y → R.

Finally, assume that the function q : Y → R defined by

q(y) =

∫
G

fY (tg(y))χ(g) νl(g) dg

is strictly positive for all y ∈ Y and finite for almost all y ∈ Y.

We will again take advantage of the sandwich methodology of Section 3.1 to state the Haar
PX-DA algorithm. Note that in this case we have used a group action to construct the
function R in the “sandwich step.” If the current state of the chain is X∗n = x, we simulate
X∗n+1 as follows.

One iteration of the Haar PX-DA algorithm:

1. Draw Y ∼ fY |X(·|x), and call the observed value y.

2. Draw G from the density proportional to fY (tg(y))χ(g) νl(g), call the result g, and set
y′ = tg(y).

3. Draw X∗n+1 ∼ fX|Y (·|y′).

Note that Step 2 of the Haar PX-DA algorithm involves only one draw from a density on G,
whereas the regular PX-DA algorithm calls for two such draws in Step 2. Hence the Haar
PX-DA algorithm is not a PX-DA algorithm, but it is much simpler from a computational
standpoint.

For completeness, we note that the Mtd of the Haar PX-DA algorithm is given by

kH(x′|x) =

∫
Y

∫
Y

fX|Y (x′|y′) lH(y′|y) fY |X(y|x) dy dy′,

where lH(y′|y) denotes the Mtd of the Markov chain on Y that is simulated at Step 2. Hobert
and Marchev (2008) show that kH(x′|x) is reversible with respect to fX , which proves that
fX is an invariant density for the Markov chain {X∗n}.

12



4.3 Application to Bayesian Probit Regression

Take G = R+, an infinite unimodular abelian group with the group operation given by
multiplication, identity element e = 1, and inverses specified by g−1 = 1

g
, g ∈ R+. With

Y = Rn
+ and tg(y) = gy = g(y1, . . . , yn), it is clear that for any y ∈ Y and any g1, g2 ∈ G, we

have te(y) = y and tg1g2(y) = g1g2y = g1(g2y) = tg1(tg2(y)). Hence, G acts topologically on
the left of Y. Further, for any g ∈ G and any integrable h : Y → R, we have∫

Y

h(tg(y)) dy =

∫
Rn
+

h(gy) dy = g−n
∫
Rn
+

h(y) dy.

which shows that Lebesgue measure on Y is relatively left invariant with multiplier χ(g) = gn.

For any g′ ∈ G and any integrable h : Y → R, we have∫ ∞
0

h(g′ g)
1

g
dg =

∫ ∞
0

h(g)
1

g
dg,

which shows dg
g

is a left Haar measure for G. Then

π(tg(y)|z)χ(g) νl(g) ∝ gn−1exp

{
−g2

[
yT (I − P )y

2

]}
IR+(g),

and so

q(y) ∝
∫ ∞
0

gn−1exp

{
−g2

[
yT (I − P )y

2

]}
dg =

2
n
2
−1 Γ(n

2
)

[yT (I − P )y]
n
2

,

recognizing the integrand as the kernel of a Γ(n
2
, y

T (I−P )y
2

) distribution. Hence q(y) is strictly
positive for all y ∈ Y and finite for almost all y ∈ Y.

We may now state the Haar PX-DA algorithm for this example. Given the current state,
X∗n = β, we simulate the next state, X∗n+1, as follows.

One iteration of the Haar PX-DA algorithm for π(β|z):

1. Draw Y1, . . . , Yn independently such that Yi ∼ TN(xTi β, 1, zi), and call the result y =
(y1, . . . , yn)T .

2. Draw V ∼ Gamma
(
n
2
, y

T (I−P )y
2

)
, call the result v, and set y′ =

√
v y.

3. Draw X∗n+1 ∼ Np(β̂(y′), (XTX)−1).

13



5 A Theoretical Comparison of the DA, PX-DA, and Haar PX-
DA Algorithms

5.1 Theory of Self-adjoint Markov Operators

Spectral theory is a useful tool to analyze reversible Markov chains. In this section we present
the ideas needed to facilitate a comparison between the three DA algorithms discussed in
this report.

Let (X,B, µ) be a probability space and suppose fX : X → [0,∞) is a density with respect
to µ. Define

L2(fX) =

h : X→ R : h is measurable and

∫
X

h2(x) fX(x)µ(dx) <∞

 ,

and let

L2
0(fX) =

h ∈ L2(fX) :

∫
X

h(x) fX(x)µ(dx) = 0

 .

Then L2
0(fX) is a Hilbert space, with inner product given by 〈g, h〉 =

∫
X
h(x) g(x) fX(x)µ(dx)

and corresponding norm given by ‖g‖ =
√
〈g, g〉.

Let P (x, dx′) denote a generic Mtf on X that is reversible with respect to fX(x)µ(dx) and
denote the Markov chain driven by P as {Xn}. We may express the convergence properties
of {Xn} in terms of a related operator that is now defined. Let P : L2

0(fX)→ L2
0(fX) denote

the operator that maps g ∈ L2
0(fX) to

(Pg)(x) = E [g(Xn+1)|Xn = x] =

∫
X

g(x′)P (x, dx′).

The operator norm of P is defined as ‖P‖ = supg∈L2
0,1(fX) ‖Pg‖, where L2

0,1(fX) is the subset

of L2
0(fX) that contains the functions g satisfying ‖g‖ = 1.

Proposition 2. (i). If g ∈ L2
0(fX), then Pg is indeed an element of L2

0(fX).

(ii). The operator P is self adjoint with respect to the inner product on L2
0(fX).

(iii). ‖P‖ ∈ [0, 1].

(iv). The Markov chain {Xn} is geometrically ergodic if and only if ‖P‖ < 1.
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Proof. (i). To show Pg is square integrable with respect to fX , we compute

∫
X

[(Pg)(x)]2 fX(x)µ(dx) =

∫
X

∫
X

g(x′)P (x, dx′)

2

fX(x)µ(dx) (1)

≤
∫
X

∫
X

g2(x′)P (x, dx′)

 fX(x)µ(dx) (2)

=

∫
X

g2(x′)

∫
X

P (x′, dx) fX(x)

 µ(dx′) (3)

=

∫
X

g2(x′) fX(x′)µ(dx′) <∞, (4)

where (2) is Jensen’s Inequality, (3) is Fubini’s theorem, and (4) follows from the
invariance of fX .

Similarly, to show Pg has mean zero, we compute∫
X

(Pg)(x) fX(x)µ(dx) =

∫
X

∫
X

g(x′)P (x, dx′)

 fX(x)µ(dx)

=

∫
X

g(x′)

∫
X

P (x′, dx) fX(x)

 µ(dx′) =

∫
X

g(x′) fX(x′)µ(dx′) = 0.

(ii). Let g, h ∈ L2
0(fX). Using the fact that P (x, dx′) is reversible with respect to fX , we

compute

〈Pg, h〉 =

∫
X

(Pg)(x)h(x) fX(x)µ(dx) =

∫
X

∫
X

g(x′)P (x, dx′)

 h(x) fX(x)µ(dx)

=

∫
X

∫
X

g(x′)h(x)P (x, dx′) fX(x)µ(dx) =

∫
X

g(x′)

∫
X

h(x)P (x′, dx)

 fX(x′)µ(dx′)

=

∫
X

g(x′) (Ph)(x′) fX(x′)µ(dx′) = 〈g, Ph〉.

(iii). Since ‖·‖ is a norm, we must have ‖P‖ ≥ 0. Further, ‖Pg‖2 =
∫
X

[(Pg)(x)]2 fX(x)µ(dx)
and the above calculations imply that ‖Pg‖2 ≤ ‖g‖2 = 1.

(iv). For a proof of (iv), see Roberts and Rosenthal, 1997.
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Remark 3. Loosely speaking, the closer ‖P‖ is to 0, the faster {Xn} converges to its
stationary distribution. Because of this, Monte Carlo Markov chains are sometimes ordered
according to their operator norms. In particular, if there are two different chains available
that are both reversible with respect to the target, we prefer the one with the smaller operator
norm.

5.2 Comparison Results

Recall that the Mtd of the PX-DA algorithm is given by

kw(x′|x) =

∫
Y

f
(w)
X|Y (x′|y) f

(w)
Y |X(y|x) ν(dy) =

∫
Y

∫
Y

fX|Y (x′|y′) lw(y′|y) fY |X(y|x) ν(dy) ν(dy′),

where we have used the sandwich representation of Section 3.2, and lw(y′|y denotes the Mtd of
the Markov chain in Step 2 of the algorithm with state space Y. Liu and Wu’s (1999) Theorem
1 implies that fY is an invariant density for lw, i.e.

∫
Y
lw(y′|y) fY (y) = fY (y′). Further, since

kw is the Mtd of a DA algorithm, we have by Proposition 1 that kw is reversible with respect
to fX , and hence that fX is invariant for kw.

More generally, let l : Y × Y → [0,∞) be any Mtd that has fY (y) as an invariant density.
Let kl : X× X→ [0,∞) be defined as follows.

kl(x
′|x) =

∫
Y

∫
Y

fX|Y (x′|y′) lw(y′|y) fY |X(y|x) ν(dy) ν(dy′).

Then kl is an Mtd that defines a Markov chain on X with invariant density fX . Before stating
the main result, we require some definitions.

Definition 5. If there exists a joint pdf f ∗(x, y) (with respect to µ×ν) with
∫
Y
f ∗(x, y) ν(dy) =

fX(x) such that

kl(x
′|x) =

∫
Y

f ∗X|Y (x′|y) f ∗Y |X(y|x) ν(dy),

then we say that kl is representable.

Note that if kl is representable, then it is also reversible with respect to fX(x), and also that
kw as above is representable with f (w)(x, y) playing the role of f ∗(x, y).

Definition 6. Let {Xn} denote the Markov chain underlying the original DA algorithm
based on f(x, y). Suppose g ∈ L2(fX) and let ḡn = 1

n

∑n−1
i=0 g(Xi). If ḡn satisfies a CLT,

then let κ2g denote the corresponding asymptotic variance. If there is no CLT for ḡn then
set κ2g =∞. Now let {X∗n} denote the Markov chain associated with kl(x

′|x), and define κ∗2g
analogously using ḡ∗n = 1

n

∑n−1
i=0 g(X∗i ) in place of ḡn. If κ∗2g ≤ κ2g for every g ∈ L2(fX), we

say that kl is more efficient than k.
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Theorem 4. (Hobert and Marchev 2008)

(i). If kl is reversible with respect to fX , then kl is more efficient than k.

(ii). If kl is representable, then ‖Kl‖ ≤ ‖K‖, where Kl and K are the operators on L2
0(fX)

associated with kl and k respectively.

With regards to the PX-DA algorithm, since kw is representable, both the results from
Theorem 4 apply and we may conclude that every PX-DA algorithm is better than the
corresponding DA algorithm in terms of both convergence rate and ARE. In particular,
‖Kw‖ ≤ ‖K‖, where Kw is the operator corresponding to kw. Further, by a result from the
previous subsection, a reversible Markov chain is geometrically ergodic if and only if the
norm of the corresponding operator is strictly less than 1. Therefore, if we can prove that
the DA Markov chain {Xn} is geometrically ergodic then it follows that ‖Kw‖ ≤ ‖K‖ < 1,
which implies that {X∗n} is also geometrically ergodic. Hobert and Marchev (2008) provide
simple sufficient conditions for kl to be reversible with respect to fX and a simple sufficient
condition on l(y′|y) for representability of kl.

With regards to the Haar PX-DA algorithm, in the notation of Section 4.2, Hobert and
Marchev (2008) show that lH(y′|y) is reversible with respect to fY and that kH is repre-
sentable. Hence the comparison results are applicable and imply that the Haar PX-DA
algorithm is better than the DA algorithm in terms of both convergence rate and ARE. In
particular, ‖KH‖ ≤ ‖K‖, where KH is the operator corresponding to kH .

The real question is how Haar PX-DA compares to PX-DA. Hobert and Marchev (2008)
show that, for any fixed proper pdf w(·), kH can be re-expressed as

kH(x′|x) =

∫
Y

∫
Y

f
(w)
X|Y (x′|y′) l(w)(y′|y) f

(w)
Y |X(y|x) ν(dy) ν(dy′),

where l(w)(y′|y) is an Mtd on Y that is reversible with respect to f
(w)
Y =

∫
X
f (w)(x, y)µ(dx).

Since the PX-DA algorithm is driven by f (w)(x, y), and is itself a DA algorithm, we see that
kH is related to kw in exactly the same way that kl is related to k. In view of the above
results, since kH is representable, we may conclude that Haar PX-DA is better than every
PX-DA algorithm in terms of both convergence rate and ARE. In particular, ‖KH‖ ≤ ‖KW‖.

5.3 Conclusion of Bayesian Probit Regression Example

In Section 3.3, we constructed a family of PX-DA algorithms for this example, one for
each (α, λ) ∈ R+ × R+. Using the results of the previous subsection, we may conclude that
every member of this family is better than the original DA algorithm based on f(x, y).
Furthermore, the same comparison result implies that the Haar PX-DA algorithm is better
than every member of this family of PX-DA algorithms.

Recall that the original DA algorithm for this problem is geometrically ergodic. Appealing
to the fact that ‖KH‖ ≤ ‖Kl‖ ≤ ‖K‖ < 1, we see that the PX-DA algorithms and the Haar
PX-DA algorithm for this problem are all geometrically ergodic as well.
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