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What does “differentiable” mean?

These notes are intended as a supplement (not a textbook-replacement) for a class
at the level of Calculus 3, but can be used in a higher-level class as well. Instructors may
find some of the material useful as well. Students seeing this material for the first time
should not worry about all the relationships diagrammed on pp. 10 and 11, but these
diagrams may be useful for instructors and very interested students.

1 Differentiability at a point

In Calculus 1, we learn that a real-valued function f is called differentiable at a if

lim
x→a

f(x)− f(a)

x− a
(1)

exists. If the limit exists, we call it the derivative of f at a, denoted f ′(a). Thinking of
a as a point on the real line, we call the notions above differentiability at a point and the
derivative at a point.

One of the first things done in Calculus 1, after defining the derivative of f at a point
a, is to let a vary over all numbers for which the limit (1) exists, obtaining the function
f ′ (less precisely, “f ′(x)”) that we call the derivative of f .

Once we move into multivariable calculus (usually in Calculus 3), however, the defini-
tion of “differentiable at a point” becomes more complicated, and the usual definition—i.e.
the one you’ll find in most Calculus 3 textbooks—looks very different from the one-variable
definition and can appear unmotivated1. However, there is a unified definition of “differ-
entiable at a point” for a function of n variables that is equivalent to the usual definition
for n = 1, and also equivalent to usual definition for n > 1. The purpose of these notes
is to give that definition, see how it reduces to the usual one when n = 1, and to explore
the definition a bit.

First, we define some terms we will use. Throughout these notes, when we are talking
about functions on Rn and n is not specified to be 1, 2, or 3, we will use notation such as
x = (x1, x2, . . . xn) and a = (a1, a2, . . . , an) for points of Rn.2 For notational simplicity,
we will also implicitly identify points with their position vectors. Thus, for example,
x− a = (x1 − a1, x2 − a2, . . . , xn − an), and

(distance from x to a) = ‖x− a‖ =
√

(x1 − a1)2 + (x2 − a2)2 + · · ·+ (xn − an)2 .

1The textbook by Bona and Shabanov, Concepts in Calculus, currently being used in MAC 2313 at
UF, is an exception. The definition in Concepts of Calculus is the same as the definition in these notes.

2Students who are seeing the material for the first time should think “n = 1, 2, or 3” in all references
to n and Rn. After thoroughly understanding those cases, the student can re-read portions of these notes
to understand that there is no conceptual difference for larger n. The fundamental change occurs when
passing from n = 1 to n = 2.
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Definition 1.1 Let f be a real-valued function on Rn and let a be a point in Rn. Let g
also be a real-valued function on Rn.

• We call g an approximation3 of f near a if g is continuous at a, and g(a) = f(a).

• We call g a good approximation4 of f near a if g is approximation of f near a and

lim
x→a

f(x)− g(x)

‖x− a‖
= 0. (2)

(If f itself is continuous at a, then the first half of this definition is not needed:
condition (2) automatically implies that g is continuous at a and that g(a) = f(a);
i.e. that g is approximation of f near a. But if f is not continuous at a, then (2)
does not not imply that g is continuous at a.)

• We call g linear5, or a linear function, if g is a polynomial of degree at most 1 in
the coordinates on Rn. (A degree-zero polynomial is a constant function.)

Observe that, in the setting of Definition 1.1, if g is any approximation of f near
a, and f is continuous at a, then limx→a(f(x) − g(x)) = 0. The added feature of a
good approximation g of a continuous function f , near a, is that as x → a, the quantity
f(x)− g(x) approaches zero much faster than the distance from x to a does: even when
f(x)− g(x) is divided by the ever-smaller quantity ‖x−a‖, the quotient approaches zero
as x→ a.

Approximations g of f near a can be good without being linear, and can be linear
without being good. (An example of the latter type: writing c = f(a), the constant
function g defined by g(x) = c is a linear approximation of f near a, but usually is not a
good approximation.)

If g is a linear function on Rn then

g(x) = c+m1x1 +m2x2 + · · ·+mnxn (3)

for some real numbers c and m1, . . . ,mn. If, in addition, g is an approximation of f near
a, then

g(a) = f(a) = c+m1a1 +m2a2 + · · ·+mnan. (4)

Solving (4) for c, substituting into (3), and regrouping terms, we find

3Our definition of “approximation” is special to these notes. There is no standard definition of
“approximation”. In principle, any function on Rn can be considered an approximation of any other
function; the only question is how good the approximation is.

4The definition of the term “good approximation” used in these notes is also not universal; however,
many authors use it exactly way we are using it here.

5The term “linear function”, as we are using it here, does not mean the same thing as “linear trans-
formation”, as used in a linear algebra course.
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g(x) = f(a) +m1(x1 − a1) +m2(x2 − a2) + · · ·+mn(xn − an)

= f(a) + m·(x− a), (5)

where m = (m1,m2, . . .mn) and “·” is the usual dot-product on Rn.

Lemma 1.2 Let f be a real-valued function on Rn and let a ∈ Rn. Then f has
at most one good linear approximation near a.

Proof: If g and h are linear approximations of f near a, then g(x) = f(a) + m·(x− a)
and h(x) = f(a) + w·(x − a) for some vectors m,w ∈ Rn. If both g and h are good
approximations of f near a, then

lim
x→a

h(x)− g(x)

‖x− a‖
= lim

x→a

(f(x)− g(x))− (f(x)− h(x))

‖x− a‖

= lim
x→a

(
f(x)− g(x)

‖x− a‖
− f(x)− h(x)

‖x− a‖

)
= lim

x→a

f(x)− g(x)

‖x− a‖
− lim

x→a

f(x)− h(x)

‖x− a‖
(6)

= 0− 0

= 0.

Here, in passing from the second line to the third, we have used the fact that “The limit
of a difference exists and is the difference of the limits, provided that both of the limits
whose difference is being taken exist.” In the application above, both limits on the right-
hand side of (6) exist by hypothesis because we assumed that both g and h are good
approximations of f near a, and the definition of “good approximation” says that these
limits are zero (hence exist). Therefore if both g and h are good linear approximations of
f near a, and the vectors m and w are as above, then

0 = lim
x→a

h(x)− g(x)

‖x− a‖

= lim
x→a

f(a) + w·(x− a)− (f(a) + m·(x− a))

‖x− a‖

= lim
x→a

(w −m)·(x− a)

‖x− a‖

= lim
x→a

(w −m)· x− a

‖x− a‖
.

Restating the result of this calculation in one line:

lim
x→a

(w −m)· x− a

‖x− a‖
= 0. (7)
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Recall that (7) means that if x approaches a along any path whatsoever, then the
limit taken along this path must be 0. If w −m 6= 0, we can let x approach a along the
ray (half-line) through a that extends in the direction of w−m. For every x on this ray,
other than a itself, we have

x− a

‖x− a‖
=

w −m

‖w −m‖
,

so

(w −m)· x− a

‖x− a‖
=

(w −m)·(w −m)

‖w −m‖
=
‖w −m‖2

‖w −m‖
= ‖w −m‖ .

Therefore, if we approach a along this straight line from one side of a, the quantity
(w−m)· x−a

‖x−a‖ is constant it is always equal to ‖w−m‖), and its limit is ‖w−m‖, which

is not zero. So, under the assumption that w −m 6= 0, the limit (7) cannot be zero, a
contradiction. Hence w −m = 0, so w = m and the functions h and g are identical.
Thus, any two good linear approximations of f near a are identical; i.e. there is at most
one such approximation.

Now we’re ready to define what “differentiable at a” means.

Definition 1.3 A real-valued function f on Rn is differentiable at a if f has a good linear
approximation near a (i.e. if a good linear approximation of f near a exists).

So, a corollary of Lemma 1.2 is: if f is differentiable at a, then f has exactly one
good linear approximation near a; there is exactly one vector m such that the function g
defined by g(x) = f(a) + m·(x− a) is a good approximation of f near a.

A good linear approximation of f near a is also called a linearization of f at a.
Since a function f , differentiable at a, has exactly one such approximation near a, we can
unambiguously refer to this approximation as the linearization of f at a.

The case n = 1
For n = 1, “vectors in Rn” and “points in Rn” are just real numbers, so we will

dispense with boldface-notation and subscripts.
Suppose that a real-valued function f on R is differentiable at a, as defined in Def-

inition 1.3 rather than as in Calculus 1. Then f has a linearization at a: there is a
real number m such that the function g defined by g(x) = f(a) + m(x − a) is a good
approximation of f near a. According to (2), this means that

lim
x→a

f(x)− g(x)

|x− a|
= 0. (8)

But since f(x)−g(x)
|x−a| = ±f(x)−g(x)

x−a
for all x 6= a, (8) is equivalent to the statement that

lim
x→a

f(x)− g(x)

x− a
= 0.
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Therefore

0 = lim
x→a

f(x)− g(x)

x− a

= lim
x→a

f(x)− f(a)−m(x− a)

x− a

= lim
x→a

(
f(x)− f(a)

x− a
−m

)
. (9)

Note that f(x)−f(a)
x−a

=
(

f(x)−f(a)
x−a

−m
)

+ m. Since the limit on the right-hand side of (9)

exists, and so does the limit as x→ a of m (a constant function of x),

lim
x→a

f(x)− f(a)

x− a
= lim

x→a

(
f(x)− f(a)

x− a
−m

)
+ lim

x→a
m

= 0 +m

= m. (10)

In other words, the limit in (1) exists—so f is differentiable at a, as this terminology is
defined in Calculus 1—and f ′(a) = m. The linearization g of f at a can therefore be
rewritten as

g(x) = f(a) + f ′(a)(x− a). (11)

Note that the graph of g—the graph of the equation y = f(a) + f ′(a)(x − a)—is
exactly the straight line tangent to the graph of y = f(x) at (a, f(a)). This is the source
of the terminology “linear approximation” and “linearization”. (Although we use the
same terminology for functions of more than one variable, only for functions of a single
variable is the graph of the linearization a line.) Our “good linear approximation” is
exactly the tangent-line approximation.

Conversely, let us assume from the start that our function f is differentiable at a as de-
fined in Calculus 1, rather than as defined in Definition 1.3. Define
g(x) = f(a) + f ′(a)(x − a). Then g is a linear approximation of x near a, but is the
approximation good? Well, we have

lim
x→a

f(x)− g(x)

x− a
= lim

x→a

f(x)− f(a)− f ′(a)(x− a)

x− a

= lim
x→a

(
f(x)− f(a)

x− a
− f ′(a)

)
(12)

= lim
x→a

f(x)− f(a)

x− a
− lim

x→a
f ′(a) (13)

= f ′(a)− f ′(a)

= 0.
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(In passing from (12) to (13), we have again used the fact that “The limit of a
difference exists and is the difference of the limits, provided that both of the limits whose
difference is being taken exist.”) So limx→a

f(x)−g(x)
x−a

= 0, implying that limx→a
f(x)−g(x)
|x−a| =

0—which is exactly the n = 1 case of the definition of “good approximation”. Therefore
f is differentiable at a, as this terminology is defined in Definition 1.3.

Thus, the two definitions of “differentiable at a point” are entirely equivalent for
functions of a single variable (i.e., in the case n = 1).

The case n = 2
For this case we will write (x, y) instead of (x1, x2), and (a, b) instead of (a1, a2).
Suppose that f is differentiable at (a, b). Then f has a good linear approximation g

near (a, b), and from equation (5), there are numbers m1,m2 such that

g(x, y) = f(a, b) +m1(x− a) +m2(y − b).

Because g is a good approximation of f near (a, b), we have

lim
(x,y)→(a,b)

f(x, y)− f(a, b)−m1(x− a)−m2(y − b)√
(x− a)2 + (y − b)2

= 0. (14)

Recall that (14) means that if (x, y) approaches (a, b) along any path whatsoever, then
the limit taken along this path must be 0. We consider two special straight-line paths,
one parallel to the x-axis and one parallel to the y-axis.

On the path parallel to the x-axis, we have y ≡ b and x 6= a. The expression whose
limit is taken in (14) then simplifies to f(x,b)−f(a,b)−m1(x−a)

|x−a| , and, on this path, the condition

“(x, y)→ (a, b)” simplifies to “x→ a”. Therefore equation (14) implies that

lim
x→a

f(x, b)− f(a, b)−m1(x− a)

|x− a|
= 0,

which in turn implies that, if we erase the absolute-value symbols in the denominator, the
limit is still zero:

lim
x→a

f(x, b)− f(a, b)−m1(x− a)

x− a
= 0.

Then, by the same reasoning that in the n = 1 case led us to (9), and then to (10), we
find that

lim
x→a

f(x, b)− f(a, b)

x− a
= m1. (15)

But the left-hand side of (15) is exactly the definition of ∂f
∂x

(a, b) (also denoted fx(a, b)).
Therefore we conclude that this partial derivative exists, and has the value m1.

Completely analogously, by approaching (a, b) along the straight line parallel to the
y-axis, we conclude ∂f

∂y
(a, b) (also denoted fy(a, b)) exists, and has the value m2. Thus

(m1,m2) = (fx(a, b), fy(a, b)) (16)
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Definition 1.4 Let f be a real-valued function on R2 that is differentable at the point
(a, b). The gradient of f at (a, b), denoted (grad f)|(a,b) or ∇f |(a,b), is defined to be the

vector (fx(a, b), fy(a, b)). 6

Thus if f is differentiable at a = (a, b), the linearization g of f at a can be written as

g(x) = f(a) + (grad f)|a ·(x− a), (17)

or equivalently as

g(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b). (18)

Thus, using variables x, y, z on R3, the graph of g is the graph of the equation

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b). (19)

This graph is a plane—specifically, the plane tangent to the graph of z = f(x, y) at the
point (a, b, f(a, b)) (this is the definition of “tangent plane”). The good linear approxima-
tion of f near (a, b) is exactly the tangent-plane approximation defined in any Calculus
3 textbook. Geometrically, the tangent plane can be characterized as the best planar
approximation to the (generally curved) surface z = f(x, y) near the point (a, b, f(a, b));
differentiability of f at (a, b) can be characterized geometrically as the condition that this
surface has a good planar approximation near (a, b).

The case n > 2
The case n > 2 is essentially no different from the case n = 2; there are just more

variables, making our formulas longer unless we use vector notation. The same argument
used in the n = 2 case shows that, if f is differentiable at a, then all the first partial
derivatives of f exist at a. Therefore we can define the gradient of f at a completely
analogously to the dimension-two definition:

6Note to instructors. Care should be taken not to give students the impression that the gradient
is defined as long as fx(a, b) and fy(a, b) exist. While that’s all that’s needed to define the vector
fx(a, b)i + fy(a, b)j, this vector is not called the gradient unless f is differentiable at (a, b). The vector
fx(a, b)i + fy(a, b)j has no useful properties unless all directional derivatives of f at (a, b) exist, and the
generalized-directional-derivative map u 7→ (Duf)(a, b) := d

dtf((a, b) + tu)|t=0 is linear in u. It would be
unwise to call a vector “the gradient of f at (a, b)” if its existence or value varied under rotation of the
coordinate axes. This is why, at a higher level of sophistication, the gradient is defined in a coordinate-
independent way determined solely by an inner product—not by equation (20)—and only at points of
differentiability: if f : Rn → R is differentiable at a, then (grad f)|a is the unique vector m ∈ Rn such
that df |a(u) = m · u for all u ∈ Rn. (Here the differential df |a is viewed as a linear map Rn → R.)
Equivalently, if f : Rn → R is differentiable at a, then (grad f)|a is the unique vector m ∈ Rn such that
all the directional derivatives of f at a are given by Duf(a) = m · u.

For similar reasons, one should take care not to define “the linearization of f at a” (or “the tangent plane
approximation at a”, in dimension two) if it is not stated that f is differentiable at a, even if all the first
partials of f at a exist. In the non-differentiable case, there may infinitely many such “linearizations”,
none of them a good approximation to f near a; or there may be a unique such “linearization” that
still is not a good approximation. “Pseudo-linearization” would be a better term in these cases; these
approximations are not true linearizations.
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(grad f)|a = (fx1(a), fx2(a), . . . , fxn(a)) (20)

(where, of course, fxi
means ∂f

∂xi
). If f is differentiable at a, then the linearization of f

at a—i.e. the good linear approximation of f near a—is given by (17), regardless of the
dimension n. For n = 3, choosing non-subscripted names for coordinates, we can write
(17) as

g(x, y, z) = f(a, b, c) + fx(a, b, c)(x− a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c). (21)

For n ≥ 3 there is a slight difference in terminology, and a greater difference in
visualizability. The graph of an n-variable real-valued function lives in Rn+1 (n variables
for the domain, plus one for the range). Already for n = 3, we cannot graph functions
as meaningfully as we can for n ≤ 2. The graph of the function g in (21) is a three-
dimensional set in R4, so we do not use the term “tangent plane” for it (by definition,
planes are two-dimensional). Similarly, we do not have terminology analagous to “tangent-
line approximation” and “tangent-plane approximate” for n ≥ 3. Instead, we usually just
use the term “linear approximation” or “linearization”. However, the graph of (21) or,
more generally, (17), is still an “n-dimensional flat object in Rn+1,” and it is the best
“n-dimensional flat-object approximation” of the graph of f (which is usually a curved
n-dimensional object) near the point (a, f(a)) = (a1, . . . , an, f(a1, . . . , an)) in Rn+1.

You may have noticed that, while we have given a definition of the terminology “f
is differentiable at a” (for a real-valued function f on Rn) that applies for all n, have
talked about partial derivatives for n > 1, and you have learned (or will soon learn) about
directional derivatives for n > 1, we have not defined the terminology “the derivative of
a differentiable function f at a” for n > 1. This omission is intentional! A definition of
“the derivative of f at a” that applies for all n is best postponed until you have had (or
are taking) a course in linear algebra.7

2 Differentiability on a set

To avoid the distracting the student with longer hypotheses, so far we have assumed our
functions f to be defined on all of Rn. However, so large a domain of f is not needed for
the concept of “differentiability at a point a” to be meaningful. All that is needed is that
f be defined on a neighborhood of a, defined below.

A set U in Rn is called open if for every point a of U , there is some r > 0 such that
every point of Rn within a distance r of a is contained in U . To say this more succinctly,
for a ∈ Rn and r > 0, we define the open ball of radius r centered at a, denoted Br(a),
to be the set of points in Rn a distance less than r from a. Then the definition of “open
set” above simply says: a set U in Rn is open if for every a ∈ U , there is some r > 0 such

7Note to instructors. There is a natural temptation to tell students that for n > 1, (grad f)|a is
the generalization of “the derivative of f at a”. For students who take no calculus beyond Calculus 3,
this may do no harm. But students who go on to take advanced differential calculus, as presented in
Dieudonné’s Foundations of Modern Analysis and many less ambitious texts, will have more to unlearn.
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that Br(a) is entirely contained in U . It is not hard to show that “the open ball of radius
r centered at a” is itself an open set, so the terminology “open ball” is not misleading (an
open ball is a ball that is open). In this definition, it does not matter how small r is, as
long as r is positive. Typically, mathematicians use the Greek letter ε or δ, rather than
r, for a positive quantity that may potentially be very small.

A neighbhorhood of a point a is simply an open set that contains a. A statement of
the form “X is true on a neighborhood of a” means that there is some neighborhood of
a at every point of which X is true. This is equivalent to saying that there is some r > 0
(we don’t care how small) such that X is true at every point q a distance less than r from
a.

All that is needed for the concept of “good approximation of f near a” to make sense
is that f be defined on a neighborhood of a. We generalize Definition 1.1 and Lemma 1.2
by replacing their first sentences with “Let a ∈ Rn and let f be a real-valued function
defined on a neighborhood of a.” Similarly, we extend Definition 1.3 by starting it with,
“A real-valued function f defined on a neighborhood of a in Rn is differentiable if . . . .”

These generalizations allow us to define what “differentiable on a set” means for cer-
tain sets U in Rn. What we intend “differentiable on U” to mean is that f is differentiable
at every point of U—but for this to make sense, f must be defined on a neighbhorhood
of each point of U . This is no problem if U is an open set contained in the domain of f .
So, we make the following definition:

Definition 2.1 Let U be an open subset of Rn, and let f be a real-valued function
defined on U . We say that f is differentiable on U if f is differentiable at a for every
point a in U .

3 Properties related to differentiability; tests for dif-

ferentiability

We saw in Section 1, when examining the case n = 2, that differentiability of f at (a, b) im-
plies the existence of the first partials fx(a, b), fy(a, b). The converse is false. Existence
of the first partials at (a, b) does not imply differentiability of f at (a, b). Differentia-
bility at a point is a stronger condition than existence of the first partials at
that point.

Furthermore, in our derivation of the fact that “differentiability of f at (a, b) implies
the existence of fx(a, b) and fy(a, b),” had we approached (a, b) along a straight line in
an arbitrary direction rather than only lines that were parallel to the coordinate axes,
we would have found that differentiability of f at (a, b) implies the existence of every
directional derivative of f at (a, b). The converse of this implication is also false: even if the
directional derivative of f at (a, b) exists for every direction, f need not be differentiable
at (a, b). Differentiability at a point is a stronger condition than existence of
all directional derivatives at that point. This is true for all n > 1.

Returning to the general-n case, if all n first partial derivatives of f not only exist
at a point a, but are continuous there, then it can be shown that f is differentiable at
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a. A seemingly logical name for this continuity condition on the first partials would be
“continuous partial differentiability at a”; alternatively, we could say that f is continu-
ously partial-differentiable at a. However, because “continuous partial differentiability of
f at a” implies “differentiability of f at a”—no “partial”—nobody uses the long, awk-
ward terms “continuous partial differentiability” or “continuously partial-differentiable”.
Instead, we simply use the terms “continuous differentiability” and “continuously differen-
tiable.” Note that “continuously differentiable” would be poor terminology were it not for
the fact that “continuous partial-differentiability” implies differentiability: by standard
rules of English, it would be misleading to call a function “continuously differentiable” if
it isn’t differentiable.

“Continuous differentiability at a implies differentiability at a” is another non-reversible
implication, and the same is true for continuous differentiability and differentiability on an
open set U . Continuous differentiability at a point a, or on an open set U , is a stronger
condition than differentiability at a, or on U .

There are several properties you’ve learned that are related to differentiability at
a point a. Some of them imply differentiability at a, and some of them are implied by
differentiability at a. But, for n > 1, none of them is equivalent to differentiability at a.
Using the mathematician’s notation “A⇒ B” for “A implies B,” we give the implication-
relations among many of these properties in the diagram below.

8>>>>><>>>>>:

f is
continuously
differentiable

on a
neighborhood

of a

9>>>>>=>>>>>;
⇒

8>>><>>>:
f is

differentiable
on a

neighborhood
of a

9>>>=>>>;

⇓ ⇓

8>><>>:
f is

continuously
differentiable

at a

9>>=>>; ⇒

8<: f is
differentiable

at a

9=; ⇒

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(i) the
directional
derivative
Duf(a)

exists for
every unit

vector
u ∈ Rn,

and (ii) there
is a vector
m ∈ Rn

such that
Duf(a)
= m · u
for all u,

and
(iii) f is

continuous
at a

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

⇒

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

(i) the
directional
derivative
Duf(a)

exists for
every unit

vector
u ∈ Rn,

and (ii) there
is a vector
m ∈ Rn

such that
Duf(a)
= m · u
for all u

9>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>;

⇒

8>>>>>>>>><>>>>>>>>>:

the
directional
derivative
Duf(a)

exists for
every unit

vector
u ∈ Rn

9>>>>>>>>>=>>>>>>>>>;
⇒

8>>>><>>>>:
all the
first

partials
∂f
∂xi

(a)

exist

9>>>>=>>>>;

⇓8<: f is
continuous

at a

9=;
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For n > 1, not a single one of these implications is reversible. (For n = 1, all the
arrows to the right of “f is differentiable at a” are reversible, but none of the others are.)
Furthermore, the only condition, or set of conditions, to the right of “f is differentiable
at a” in this diagram, that implies “f is continuous at a”, is the one directly to the right
(where the continuity implication is trivial, since continuity is explicitly assumed). In
other words, for multivariable functions, differentiability at a point implies continuity at
that point, just as for single-variable functions. But, among the conditions considered
above (or any conditions known to the author of these notes), no differentiability-related
condition weaker than differentiability at a, implies continuity at a, other than by explic-
itly assuming continuity to begin with.

An additional true, non-reversible, implication not shown in the diagram is “{f is
continuously differentiable on a neighborhood of a} ⇒ {f is continuous on a neighborhood
of a}.” We can display this relation in another diagram if we omit “{f is continuously
differentiable at a}”. We do this in the diagram below, most of which is identical to the
previous diagram.

8>>>>><>>>>>:

f is
continuously
differentiable

on a
neighborhood

of a

9>>>>>=>>>>>;
⇒

8>>><>>>:
f is

differentiable
on a

neighborhood
of a

9>>>=>>>;

⇓

⇓ 8<: f is
differentiable

at a

9=; ⇒

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(i) the
directional
derivative
Duf(a)

exists for
every unit

vector
u ∈ Rn,

and (ii) there
is a vector
m ∈ Rn

such that
Duf(a)
= m · u
for all u,

and
(iii) f is

continuous
at a

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

⇒

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

(i) the
directional
derivative
Duf(a)

exists for
every unit

vector
u ∈ Rn,

and (ii) there
is a vector
m ∈ Rn

such that
Duf(a)
= m · u
for all u

9>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>;

⇒

8>>>>>>>>><>>>>>>>>>:

the
directional
derivative
Duf(a)

exists for
every unit

vector
u ∈ Rn

9>>>>>>>>>=>>>>>>>>>;
⇒

8>>>><>>>>:
all the
first

partials
∂f
∂xi

(a)

exist

9>>>>=>>>>;

⇓
8>>><>>>:

f is
continuous

on a
neighborhood

of a

9>>>=>>>; ⇒

8<: f is
continuous

at a

9=;

How can we use the properties in these diagrams to test for differentiability? As a
practical matter, the most useful tests are the “continuity test” and the “continuous first
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partials” test, and they’re usually all that’s needed. For simplicity, we will state these
tests as they apply to differentiability at a point; we leave the student to figure out the
corresponding tests for differentiability on an open set (which may be all of Rn). Below,
we assume that f is defined on a neighborhood of a point a in Rn.

Continuity test. Is f continuous at a? If “no”, then f is not differentiable
at a. If “yes”, the test is inconclusive; try the “continuous first partials” test.

Continuous first partials test.

1. Do all n first partial derivatives of f exist at a? If “no”, then f is not
differentiable at a. If “yes”, go to Step 2.

2. Are all n first partial derivatives of f continuous at a? If “yes”, then f
is differentiable at a. If “no”, the test is inconclusive.

Fortunately, the “continuous first partials” test for differentiability is almost always
conclusive, in the sense that for most functions f we commonly work with, at each point
a in the domain of f , either some first partial of f doesn’t exist at a (implying f is
not differentiable at a), or all first partials exist and are continuous at a (implying f is
differentiable at a). Functions that are differentiable at a point, or on a set, but are not
continuously differentiable there, are rarely encountered—except in examples designed
specifically to show that differentiability (either at a point or on an open set) does not
guarantee continuous differentiability.

In the relatively rare cases that the “continuous first partials” test is inconclusive, you
have more work to do, but don’t lose hope. The existence of all the first partial derivatives
of f at a singles out a candidate for the linearization of f at a. In the case n = 2, if f
is differentiable at (a, b), then the linearization of f at (a, b) must be the function g in
equation (18). For general n, if f is differentiable at a, then the linearization of f at a
must be the function gcand defined by

gcand(x) = f(a) + fx1(a)(x1 − a1) + fx2(a)(x2 − a2) + · · ·+ fxn(a)(xn − an). (22)

We can therefore test for differentiability at a by examining

lim
x→a

f(x)− gcand(x)

‖x− a‖
. (23)

If this limit is zero, then f is differentiable at a. If this limit fails to exist, or exists but
is nonzero, then f is not differentiable at a. As a practical matter, since it can be tricky
to determine the existence or value of a multivariable limit of “0/0” type such as the one
above (there is no multivariable l’Hôpital’s Rule!), this final test for differentiability can
take some time to carry out. Unfortunately, there are no completely general, practical tools
for such limits. But fortunately, for many garden-variety functions f , such as homogeneous
rational functions (polynomials divided by polynomials, where all terms in the numerator
have the same degree, and all terms in the denominator have the same degree), if we reach
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the stage of having to analyze the limit in (23) there are some standard tools that the
student has learned (not addressed in these notes) that often lead to a definitive answer.

A remark for the curious student. You may be wondering why we did not write
equation (22) more simply as equation (17). The reason is that equation (20), despite
looking convenient and understandable whenever all the first partial derivatives fxi

(a)
exist, is not a correct definition if f is not differentiable at a. The gradient of f at a is not
defined unless f is differentiable at a, even if all first partial derivatives of f exist at a.
The reason for this is given in a footnote earlier in these notes (footnote 6) addressed to
instructors. Understanding the explanation requires more mathematical experience than
most Calculus 3 students have, but if you have understood everything else in these notes,
and are interested enough to ask, “Why do these notes say that existence of all the first
partials isn’t enough to define the gradient?” your instructor may be willing to explain
the answer.
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