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MAA 4212—Matrices, Power Series, and Functions of Matrices

Before the discussion gets serious, make sure you understand the difference between
a linear transformation (a function) and a matrix (a bunch of numbers arranged in a
rectangular array). A matrix can be used for many things, one of which is to represent
a linear transformation, but the matrix does not equal the linear transformation. In the
1× 1 case, the function T (x) = 3x is a linear transformation, which, once we have agreed
we’re talking about linear transformations, can be represented simply by the number 3,
a 1× 1 matrix. This representation distinguishes T from any other linear transformation
R→ R, but there is still a difference between the number 3 and the function x 7→ 3x.

Exercise.
1. In class we proved that “a linear transformation is its own derivative”. More precisely
(the statement in quotes is literal nonsense since the derivative of a function is a function
of twice as many variables), we proved that if T : V → W is a linear transformation
from one finite-dimensional normed vector space to another, then T is differentiable at
every point of V , and DT |p = T for all p ∈ V . Reconcile this fact with the following
statement: “The exponential function exp : R→ R is its own derivative.” Is it true that
D(exp) = exp? Is it true that D(exp)|p = exp? (No, and no; explain why neither of these
could possibly be true.) In terms of the “grown-up” derivative D, what is the correct
version of “The exponential function exp : R→ R is its own derivative”?

Recall that, for any n ∈ N, all norms on Rn (or any n-dimensional vector space)
are equivalent, and therefore determine the same open sets. Unless otherwise specified,
whenever we say that a subset of Rn is open, we mean “open with respect to some (hence
any) norm.”

Exercise.
2. Let V,W be finite-dimensional vector spaces, and let U ⊂ V be open. Prove in detail
the following fact that was stated in class:

For any function F : U → W , and p ∈ V , the answer to the question “Is F
is differentiable at p?” is the same regardless of what norms are used on V
and W , and that, in the differentiable case, the linear map DF |p is the same
regardless of what norms are used on V and W .

For the rest of these notes, let Mn×n denote the set of n× n matrices whose entries
are real numbers. Recall that, under matrix addition, and multiplication of a matrix by a
scalar (= real number), Mn×n becomes a vector space, whose zero element is the matrix
all of whose entries are 0. The dimension of Mn×n is n2, the number of entries. Be careful
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when reading the rest of these notes that you do not confuse the vector space Mn×n (which
is isomorphic to Rn2

) with the smaller1 space Rn.

We define the operator norm on Mn×n by

‖A‖op = sup

{
‖Av‖2
‖v‖2

: 0 6= v ∈ Rn

}
= sup{‖Av‖2 : v ∈ Rn, ‖v‖2 = 1},

where ‖ ‖2 is the Euclidean norm on Rn. (We treat elements of Rn as column vectors,
so Av defined by matrix multiplication.) Said another way, ‖A‖op is the operator norm
of the linear map En → En defined by v 7→ Av. The fact that ‖ ‖op is, indeed, a norm
on Mn×n, can be proven directly or can be derived as a consequence of problem B1(a) in
Homework Assignment 7.)

Exercises.
3. Let A,B ∈ Mn×n. Prove that ‖AB‖op ≤ ‖A‖op‖B‖op. (You may either prove this
directly, or derive it as a consequence of problem B1(b) in Homework Assignment 7.)

4. For A ∈ Mn×n, define LA : Mn×n → Mn×n and RA : Mn×n → Mn×n by LA(B) =
AB, RA(B) = BA (the “L” and “R” stand for “left” and “right”). Check that, for all
A, the maps LA and RA are linear, and find the directional derivatives

(DBLA)(C), (DBRA)(C).

Make sure you understand that A is not “the matrix of LA” (or the matrix of RA).
Given a linear transformation T of an m-dimensional vector space V to itself, and a basis
{vj}, one defines the matrix of T with respect to that basis using the coefficients that are
needed to express T (vi), for each i, as a linear combination of the {vj}. For V = Mn×n, the
dimension is n2. Were we to choose a basis for V (the most obvious one being {ei,j}ni,j=1,
where ei,j is the matrix whose (i, j)th entry is 1 and whose other entries are all 0), the
matrices of LA and RA with respect to that basis would be n2 × n2 matrices, not n × n
matrices, and the matrices of LA and RA would be different from each other. You should
work out these matrices by hand for the 2× 2 case to make sure you understand this.

We will define various functions Mn×n → Mn×n and consider their differentiability
properties. In view of Exercise 2, these properties do not depend on which norm we use
on Mn×n, so we are free to use whatever norm we find the most convenient. The “sub-
multiplicativity” of the operator norm (the inequality in Exercise 3) makes this norm the
most convenient one for our purposes here (you’ll start to see why in Exercise 6 below).2

1Except when n = 1.
2Another commonly used norm on Mn×n, the “Euclidean norm” (‖A‖euc = (

∑
i,j A2

ij)1/2)—also
known as the Frobenius norm—is much less convenient for these purposes.
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The fact that products and sums of n× n matrices are again n× n matrices enables
us to make sense out of polynomials and power series whose variables are matrices. For
example, if p(x) = x3 + 4x+ 4, we can define an analogous function p̃ : Mn×n →Mn×n by

p̃(A) = A3 + 4A+ 4I,

where I is the n × n identity matrix, and where A3 = AAA. More generally, given any
power series

∑∞
k=0 ckx

k—polynomials are the special case in which ck = 0 for all but
finitely many k—we can consider the power series

∑∞
k=0 ckA

k, where A is a Mn×n-valued
variable, and where we treat “A0” in such a sum as I (the identity matrix again)3. If
the real-valued power series

∑∞
k=0 ckx

k has radius of convergence ρ > 0, thereby defining
a function f : (−ρ, ρ) → R, and A ∈ Mn×n is any matrix for which the corresponding
matrix-valued power series converges, it is customary to denote the value of the matrix-
valued series by f(A) (i.e. not to bother with the tilde used in the polynomial example
above).

Exercises.
5. (a) Define s : Mn×n → Mn×n by s(A) = A2. Compute the directional derivatives
(DAs)(B) (warning: remember that matrix multiplication is non-commutative), and prove
that s is differentiable. Generalize to higher exponents.

(b) Let p : R → R be any polynomial function. Prove that the associated function
p : Mn×n →Mn×n is differentiable.

6. (a) Show that for A ∈Mn×n and k ∈ N, ‖Ak‖op ≤ (‖A‖op)k.

(b) Suppose the real-valued series
∑
ckx

k has positive radius of convergence ρ. Prove
that for any n the associated matrix-valued series has radius of convergence at least ρ
(i.e. that

∑
ckA

k converges if ‖A‖op < ρ). (I’m not using our usual “R” for radius of
convergence because I’ve already used “R” in “RA”.)

(c) Prove that if ‖A‖op < 1, then (i)
∑∞

k=0(−1)kAk converges to some matrix f(A)
(hence the power series defines the function f : (B1(0) ⊂ Mn×n) → Mn×n);
(ii) (I + A)f(A) = I; and therefore (iii) I + A is invertible and (I + A)−1 equals the
infinite series in (i).

7. (a) For A ∈Mn×n, define

exp(A) = eA =
∞∑

k=0

1

k!
Ak.

Prove that this series converges for all A.

3We define A0 = I if det(A) 6= 0; if det(A) = 0 we do not define A0, just as we do not define 00 in
the 1× 1 case. Just as in the 1× 1 case, treating A0 as I in “

∑∞
k=0 ckAk” is a definition of the notation

“
∑∞

k=0 ckAk”, not a definition of A0.
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(b) Prove that if A and B commute (i.e. if AB = BA), then eA+B = eAeB (hint:
Homework Assignment 6 problem B2(d)).

(c) Compute (DAexp)(B) (for arbitrary A and B). As a check, see what your answer
reduces to in the 1-dimensional case.

(d) Let n = 2, and let J =

(
0 −1
1 0

)
. Check that J2 = −I. Using this fact to simplify

your work, compute etJ and exI+yJ , where t, x, y ∈ R. Then say something deep (and has
something to do with what you just showed).

(e) Let y, a, b, c ∈ R, and let A =

(
0 y
0 0

)
, B =

 0 a b
0 0 c
0 0 0

. Let At, Bt denote the

transposes of A,B respectively. Compute eA, eAt
, eB, eBt

. Speculate about how much
computation is involved in exponentiating strictly upper-triangular and strictly lower-
triangular n× n matrices for general n.

(f) Demonstrate that the assumption “if A and B commute” in part (b) cannot be re-
moved, by finding non-commuting 2 × 2 matrices A,B for which eA+B 6= eAeB. (Hint:
there is a reason I placed this problem after part (e).)

(g) Define C =

 0 a b
−a 0 c
−b −c 0

. Check that C3 = −∆2C, where ∆ =
√
a2 + b2 + c2 .

Using this to simplify your work, compute eC . In your computation, you should see some
familiar-looking series of real numbers coming up. Replace these familiar series by the
functions they converge to, so that your final answer has no infinite series left in it.

(h) Using part (e) above and exercise 6(b) as your guide, name at least two conditions on
a nonzero matrix A either of which guarantees that the series

∞∑
k=1

(−1)k−1

k
Ak

converges. When it converges, call the sum log(I +A), since that’s what it reduces to in
the 1×1 case. For the specific matrix A in part (e), compute log(I+A), exp(log(I+A)),
and log(eA).

8. Let Gn ⊂ Mn×n denote the subset of invertible matrices, and let ι : Gn → Gn denote
the inversion map (ι(A) = A−1).

(a) Use the fact det(A) is a polynomial in the entries of A to show that the deter-
minant function det : Mn×n → R is continuous, hence that det−1(0) is a closed subset of
Mn×n, hence that Gn is an open subset of Mn×n. (Therefore the notion of “differentiable
function on Gn” is defined.)

(a) Prove that (DI ι)(B) = −B.
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(b) More generally, if A ∈ Gn, prove that

(DAι)(B) = −A−1BA−1.

(Hint: (A+ tB)−1 = A−1(I + tBA−1)−1, plus problem 6c.) How does this fact fit in with
the one-dimensional case?

(c) Prove that ι is differentiable.

Definition. The Hessian of a function f : Rn → Rm at a point a ∈ Rn is the
function Haf : Rn ×Rn → Rm defined by

(Haf)(v,w) = Da(x 7→ (Dxf)(v))(w),

provided all these directional second derivatives exist. (If the formula above is confusing,
this is what it says: Fix a vector v. The directional derivative (Dxf)(v) is then a function
of the base point x. Take the directional derivative of this new function in the direction
w, at the point a. The result is defined to be Haf(v,w). If we were to restrict v,w
to be the standard basis unit vectors, the Hessian would just be the collection of second
partials.)

(d) Prove that HAι exists for all A ∈ Gn, and compute (HAι)(B,C). As a check on
your answer, see what your formula reduces to when n = 1.

5


