
MAA 4212, Spring 2014—Assignment 2’s non-book problems

Exercises on the Mean Value Theorem

All of the exercises below make use of the Mean Value Theorem (MVT) or its corol-
laries, in one form or another, but some require you to use other theorems in addition.
You may assume that the trigonometric and inverse trigonometric functions have the
derivatives you learned in Calculus I-II-III.

B1. Let a, b ∈ R, a < b, and assume that f, g : [a, b) → R are continuous, and are
differentiable on (a, b). Assume also that f(a) = g(a) and that f ′(x) > g′(x) for all
x ∈ (a, b). Prove that f(x) > g(x) for all x ∈ (a, b).

B2. Prove that
(a)

x

1 + x2
< tan−1 x < x for all x > 0,

and
(b) x < sin−1 x <

x√
1− x2

for 0 < x < 1.

(Here “tan−1” and “sin−1” are the inverse tangent and inverse sine functions, also known
as “arctan” and “arcsin” respectively.)

B3. Prove that, for all x > 0,

(a) sin x < x,

(b) cos x > 1− x2

2
, and

(c) x− x3

3!
< sinx < x− x3

3!
+
x5

5!
.

(Warning: if you try to use Taylor’s Theorem, don’t forget that numbers of the form
“sin c” or “cos c” can be negative as well as positive!)

B4. In class we proved (or will soon prove) that if U ⊂ R is an open interval, f : U → R
is differentiable, and f ′(x) > 0 for all x ∈ U , then f is strictly increasing (i.e. x1 < x2
implies f(x1) < f(x2)). In this problem we show that the requirement “f ′(x) > 0 for all
x ∈ U” can be somewhat relaxed without affecting the conclusion. Parts (a), (b), (c),
and (e) draw successively stronger conclusions, by using successively weaker hypotheses.
Each problem-part is intended to help you to the next part, with the exception that part
(d) is independent of parts (a), (b), and (c).

(a) Let a, b ∈ R, a < b. Assume that f : [a, b] → R is continuous, is differentiable
on the open interval (a, b), and that f ′(x) > 0 for all x ∈ (a, b). Prove that f is strictly
increasing on the closed interval [a, b].
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(b) Let a, b ∈ R, a < b. Assume that f : [a, b]→ R is continuous, is differentiable on
the open interval (a, b), that f ′(x) ≥ 0 for all x ∈ (a, b), and that f ′(x) = 0 for at most
finitely many x ∈ (a, b). Prove that f is strictly increasing on the closed interval [a, b].

(c) Let a, b ∈ R, a < b. Assume that f : (a, b) → R is differentiable and that
f ′(x) ≥ 0 for all x ∈ (a, b). Let Z(f ′) = {x ∈ (a, b) | f ′(x) = 0} (the zero-set of f ′), and
assume that Z(f ′) has no cluster points in the open interval (a, b). Prove that f is strictly
increasing on (a, b).

(d) Let a, b ∈ R, a < b. Assume that f : [a, b] → R is continuous, and is strictly
increasing on the open interval (a, b). Prove that f is strictly increasing on the closed
interval [a, b]. (Note that no differentiability is assumed; this problem-part is independent
of the previous parts, and is intended as a lemma to help you get from part (c) of this
problem to part (e).)

(e) Hypotheses as in part (c). Prove that f is strictly increasing on the closed interval
[a, b].

(f) Define f : R→ R by f(x) = x− sinx. Prove that f is strictly increasing.

B5. Let X and Y be metric spaces. A function f : X → Y is called Lipschitz continuous
at p0 ∈ X if there exist K, δ > 0 such that

dY (f(p), f(p0)) ≤ KdX(p, p0) (1)

for all p ∈ Bδ(p0). We call f Lipschitz continuous (or just Lipschitz)—with no “at p0”—if
there exists K > 0 such that

dY (f(p), f(q)) ≤ KdX(p, q) (2)

for all p, q ∈ X. We call f locally Lipschitz if for all p0 ∈ X, there exists δ > 0 such that
the restriction of f to Bδ(p0) is Lipschitz continuous.

(Note that “locally Lipschitz” is stronger than “Lipschitz continuous at every point;”
for the latter, there would be a K(q) that works in (2) for each q ∈ X and all p suffi-
ciently close to q, but there might not be a single K that works simultaneously for all p, q
sufficiently close to a given p0. Somewhat more logical terminology for “locally Lipschitz”
might be “locally uniformly Lipschitz”, and a similar comment applies to “Lipschitz func-
tion” [with no “locally”]. Some mathematicians do insert the word “uniformly” in these
cases, but most do not.)

(a) Prove that if f : X → Y is Lipschitz continuous at p0 ∈ X, then f is continuous
at p0.

(Note: the converse is false. For example, the function [0,∞) → R defined by
x 7→

√
x is not Lipschitz continuous at 0.]

For the remainder of this problem, let U ⊂ R be an open interval, and f : U → R a
function.
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(b) Let x0 ∈ U . Prove that if f is differentiable at x0, then f is Lipschitz continuous
at x0.

(c) Prove that if f is differentiable, and the function f ′ : U → R is bounded, then f
is Lipschitz continuous.

(d) Prove that if f is differentiable, and the function f ′ : U → R is continuous, then
f is locally Lipschitz.
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