MAA 4211, Fall 2013—Assignment 7’s non-book problems

B1. Let d; and dy be equivalent metrics on a set E. Prove the following directly from the
definitions of “compact” and “sequentially compact”.

(a) (E,d;) is compact if and only if (E, dy) is compact.
(b) (E,d;) is sequentially compact if and only if (F, dy) is sequentially compact.

(By “directly from the definitions” I mean: prove both (a) and (b) without using any
theorems of the form “Compactness [or sequential compactness| implies, or is implied by,
some other property of metric spaces.”)

B2. Let (E,d) be a metric space, let {p,}>2; be a Cauchy sequence in F, and assume
this sequence has a convergent subsequence {p,, }32,. Let p = lim; o pn,. Show that the
original sequence {p,}> ;| also converges to p.

(Note (F,d) is not assumed to have any properties other than being a metric space;
e.g. we are not assuming (F, d) is complete or sequentially compact. The hypotheses say
only that this particular Cauchy sequence {p, }°; has a convergent subsequence, not that
every sequence has a convergent subsequence, and not that every Cauchy sequence has a
convergent subsequence.)

B3. Recall from class that /*(R) is the normed vector space (R;°, || ||~), where Ry® is
the set of bounded infinite sequences in R (an element @ € Ry° is an infinite sequence
{an}°_; in R whose range is a bounded set in R), and where [|d@||o = sup{|a;| | i € N}.
As with any normed vector space, when we speak of metric-space properties of ¢>*(R),
the metric is assumed to be the one associated with the given norm (unless otherwise
specified); thus the £ metric on Ry® is the function d : Ry° x Ry® — R given by
d(a,b) = sup{|a; — b;| | i € N}.

Since a sequence in ¢*(R) is a sequence of sequences, to avoid confusion in this
problem we will use a superscript rather than a subscript to label the terms of a sequence
in £>°(R); we will write such a sequence as {@™}>° ;. Thus the n'" term in such a sequence

is a real-valued sequence @™ = {a{™}32, = {a{™,a{”, a”, .. }.

(a) Let {@™}>2, be a Cauchy sequence in /*(R). Show that for all i € N, the

real-valued sequence {agn) > | (the sequence of “i*® components” of the @™) is a Cauchy
sequence in R. Note that in {al(-n)},iozl, the index 1 is fixed; it is n that varies: {agn)}ile =
{aV,a® P )

[

(b) Let {@™}° | be as in part (a). Since R is complete, for all i € N there exists
¢; € R such that lim,,_, az(»n) = ¢;. Let & be the sequence {¢;}3°, € R®—mno subscript
“b”, yet. Show that the sequence ¢ is, in fact, bounded. (So {¢;}2, € Ry° after all.)

(c) Let {@™}2, and ¢ be as in part (b). Show that {@™}°2, converges in /*°(R) to
¢. (Note: unlike for sequences in R™, this CANNOT be deduced just from the fact that
{a{™}22, converges to ¢; for all i; see part (e) below.) Thus ¢°(R) is complete.

Just FYI: A complete normed vector space is called a Banach space.



Notation for the remaining parts of this problem. For n € N, let & ¢ Ry
be the sequence whose n'® term is 1 and all of whose other terms are zero (e.g. € =
{0,0,1,0,0,0,0,...}).

(d) Show that for all i € N, {egn)}j;o:l converges in R to 0.

(e) Let 0 be the zero element of Rg® (the sequence {0,0,0,0...}). Compute d(&™, 0)
for all n, and use this to show that {¢™ 1%, does not converge in £>°(R) to 0, even though
the i*i-component sequence {egn) }° | converges to the i*® of 0 for all i.

(f) Compute d(&™, &™) for all m,n € N,m # n. Use your answer to show that
no subsequence of {¢M™}>  can be Cauchy. Use this to deduce that no subsequence of
{eM}> | can converge.

Note: since any sequence is trivially a subsequence of itself, the last conclusion implies
that {0}, does not converge in /*(R) to anything, so, in particular, it does not
converge to 0. But I still want you to do part (e) by the method indicated in part (e).)

() Use part (f) to deduce that the closed unit ball B1(0) C ¢=°(R) is not sequentially
compact.

Remark. Thus, by parts (c) and (g) this ball is a closed, bounded subset
of a complete normed vector space, yet is not sequentially compact, hence is
not compact (or totally bounded). The Heine-Borel Theorem (closed, bounded
subsets of R"™—with metric given by any norm—are compact) does not extend
to infinite-dimensional vector spaces.

B4. Let (E,d) be a metric space, and let U C Y C E. Assume that Y is closed in E and
that U is closed in Y (i.e. that U is closed as a subset of the subspace (Y, d|y«y)). Prove
that U is closed as a subset of (E,d).

B5. Let (E,d) be a metric space, S C E. Call S disconnected if S is not connected.
Prove that S is disconnected if and only if S = AJB for some nonempty sets A, B C S
for which A B =0 = AN B. (Here A and B denote the closures of A and B in E, not
in the subspace S.)

B6. Let (E,d) be a metric space, S C E a nonempty subset, and p € E. The distance
from p to S, written dist(p, S), is defined to be inf{d(p,q) | ¢ € S}.

(a) Prove that dist(p, S) = 0 if and only if p € S.
(b) For (E,d) = E?, give an example of each of the following.

(i) A subset S and a point p ¢ S for which the infimum defining dist(p, S) is
not achieved.

(ii) A subset S and a point p ¢ S for which the infimum defining dist(p, S) is
achieved. (Note that “The infimum defining dist(p, S) is achieved” is equivalent to “There
is a point ¢ € S that, among all points in .S, minimizes distance to p.”)



(c) Using B5, prove that S is disconnected if and only if S = A[JB for some nonempty
sets A, B C S for which every point of each set is a positive distance from the other set
(i.e. dist(p, B) > 0 Vp € A and dist(p, A) > 0 Vp € B).

Motivation for part (c): Recall that, heuristically, we wanted “S is not connected” to
mean that S cannot be partitioned into two nonempty disjoint subsets that “don’t touch
each other”. There is no official definition of one subset of a metric space touching, or
not touching, another. However, were we (not unreasonably) to define “A does not touch
B” to mean “every point of A is a positive distance from B”, then the characterization
of disconnectedness in this problem would turn the heuristic characterization of “not
connected” into a precise one that agrees with the mathematical definition.

B7. Let (E,d) be a metric space.
(a) Let p € E. Show that the singleton set {p} is connected.
(b) Let p € E, and let F, = {S C E | S is connected and p € S} C P(E). Let

¢, =Js

SEF,

Prove that C, is connected.
(Do not re-invent the wheel to prove this. You should need no more than a couple
of sentences, if you apply a couple of facts already proven.)

The set C, defined above is called the connected component of p in E (or in (E,d)).
We will use the notation “Cj,” with this meaning for the rest of this problem. A subset
C C E is called a connected component of E it C'= C,, for some p € E.

(c) For p € E, prove that C), is the largest connected set containing p, in the following
sense: if S C E is connected and p € S, then S C C,,.

(d) Define a relation ~ on E by declaring p ~ ¢ if and only if ¢ € C,. Prove that
~ is an equivalence relation, and that the equivalence classes are exactly the connected
components of F.

Recall that, for any equivalence relation on a set .S, the equivalence classes partition
S into pairwise disjoint subsets. (For the relation above, “pairwise disjointness” means
that for any p,q € E, either C, = C, or C, " C; = 0.) Thus a metric space is always the
disjoint union of its connected components.

(e) (E,d) is called totally disconnected if the only nonempty connected subsets of E
are the singleton sets. Prove that Q, with its usual metric, is totally disconnected.

Note: in Assignment 4, Problem B1, you proved that Q is not connected (but “con-
nected” was not in our mathematical vocabulary at the time). Now you are proving
something much stronger.

(f) Prove that every connected component of (E,d) is a closed subset of E. (Here
(E,d) is a general metric space again, not totally disconnected.)

(g) Use part (f) to prove that if (£, d) has only finitely many connected components,
then each connected component is both open and closed.



