## Partial Fractions and Laplace Transform Problems

The general method for using the Laplace transform to solve a linear differential equation $L[y]=g$ (with some initial conditions) is to (1) transform both sides of the equation, (2) solve for $Y(s)$, then (3) invert the transform to find $y(t)$. The most difficult part is generally step (3), which often involves rewriting $Y(s)$ using partial fractions in such a way that the result is a linear combination of terms that appear on the Laplace transform table. The examples presented in the textbook (Nagle \& Saff) usually involve combining fractions between steps (1) and (2). While this approach is not wrong, often it results in more work than necessary, partly because a common denominator in $Y(s)$ can have very high degree, and partly because the whole purpose of partial fractions is to un-combine fractions and rip apart common denominators. Below is an example of how to do a problem without first combining fractions. To shorten this and other examples, it helps to know three frequently used simple partial fraction identities (which can easily be re-derived if you forget them):

1. $\frac{1}{(x+a)(x+b)}=\frac{1}{b-a}\left(\frac{1}{x+a}-\frac{1}{x+b}\right)$
2. $\frac{1}{x^{2}-a^{2}}=\frac{1}{(x-a)(x+a)}=\frac{1}{2 a}\left(\frac{1}{x-a}-\frac{1}{x+a}\right) \quad$ (this follows from previous line)
3. $\frac{x}{x^{2}-a^{2}}=\frac{x}{(x-a)(x+a)}=\frac{1}{2}\left(\frac{1}{x-a}+\frac{1}{x+a}\right)$

Example. Use Laplace transforms to solve the initial-value problem

$$
y^{\prime \prime}-4 y=4 t-8 e^{-2 t}, y(0)=0, y^{\prime}(0)=5 .
$$

Method. Laplace-transforming this IVP gives $s^{2} Y-5-4 Y=4 / s^{2}-8 /(s+2)$, so

$$
\left(s^{2}-4\right) Y=5+\frac{4}{s^{2}}-\frac{8}{s+2}
$$

and hence

$$
\begin{equation*}
Y=\frac{5}{s^{2}-4}+\frac{4}{s^{2}\left(s^{2}-4\right)}-\frac{8}{\left(s^{2}-4\right)(s+2)} \tag{1}
\end{equation*}
$$

One way to proceed is as in the textbook: combine fractions en route to equation (1), getting a 5th degree denominator, then set the resulting fraction equal to something of the form $A / s+B / s^{2}+C /(s-2)+D /(s+2)+E /(s+2)^{2}$, then multiply out, then solve for $A, B, C, D, E$. The alternative I'm suggesting is to break expression (1) into three sub-expressions, and proceed as follows. Note that our basic identities easily handle two of these three sub-expressions, and for the third sub-expression we only have to deal with a cubic denominator instead of a 5 th degree denominator.

$$
\begin{aligned}
\frac{5}{s^{2}-4}=5 \frac{1}{s^{2}-4} & =\frac{5}{4}\left(\frac{1}{s-2}-\frac{1}{s+2}\right) \quad \text { using identity } 2 . \\
\frac{4}{s^{2}\left(s^{2}-4\right)}=4 \frac{1}{s^{2}\left(s^{2}-4\right)} & =\frac{1}{s^{2}-4}-\frac{1}{s^{2}} \quad \text { using identity } 1 \text { with } x=s^{2} \\
& =\frac{1}{4}\left(\frac{1}{s-2}-\frac{1}{s+2}\right)-\frac{1}{s^{2}} \quad \text { using identity } 2 .
\end{aligned}
$$

$$
\frac{8}{\left(s^{2}-4\right)(s+2)}=\frac{8}{((s-2)(s+2))(s+2)}=\frac{8}{(s-2)(s+2)^{2}}=\frac{A}{s-2}+\frac{B}{s+2}+\frac{C}{(s+2)^{2}} .
$$

Multiplying out,

$$
8=A(s+2)^{2}+B(s-2)(s+2)+C(s-2)
$$

Now use your favorite method to find $A, B, C$. (My favorite is to expand out the righthand side and collect like powers of $s$, getting $8=A\left(s^{2}+4 s+4\right)+B\left(s^{2}-4\right)+C(s-2)=$ $s^{2}(A+B)+s(4 A+C)+(4 A-4 B-2 C)$, and then equate coefficients of equal powers of $s$ on the two sides of this equation, getting the simultaneous equations $A+B=0,4 A+C=$ $0,4 A-4 B-2 C=8$, which I then solve.) When done correctly, you wind up with $A=1 / 2, B=-1 / 2, C=-2$, so

$$
\frac{8}{\left(s^{2}-4\right)(s+2)}=\frac{1 / 2}{s-2}-\frac{1 / 2}{s+2}-\frac{2}{(s+2)^{2}} .
$$

Inserting these partial-fractions decompositions for our three sub-expressions into equation (1) and combining only terms with identical denominators,

$$
Y=\frac{1}{s-2}-\frac{1}{s+2}+2 \frac{1}{(s+2)^{2}}-\frac{1}{s^{2}}
$$

and hence, using the Laplace transform table,

$$
y(t)=e^{2 t}-e^{-2 t}+2 t e^{-2 t}-t
$$

