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DUAL TECHNIQUES FOR MINIMAX*

WILLIAM W. HAGER AND DWAYNE L. PRESLER

Abstract. A dual formulation for a convex minimax problem is presented and the notion of reducibility
is introduced. For nonconvex problems, Rockafellar’s augmented Lagrangian is used to close the duality
gap. We show.how mathematical programming algorithms can be applied to the minimax problem and we
develop a special algorithm for reducible minimax problems.
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1. Introduction. A dual minimax problem is formulated and the concept of reduci-
bility is introduced. Since the dual problem may not solve the primal problem when
the cost lacks convexity, 3 develops augmented Lagrangian techniques to bridge the
duality gap. In particular, an analogue of Rockafellar’s augmented Lagrangian is
applied to the minimax problem. Abstractly, the minimax problem is a constrained
optimization problem with special structure. In 4 we show how mathematical program-
ming algorithms such as those in 18] can be embedded into an algorithm to solve the
minimax problem. Section 5 presents a special scheme for solving reducible minimax
problems. Other algorithms that have been proposed for minimax problems include
those in [3], [4], [8], [9], [11]-[14], [20], [21], [24], [26] and [34]. Most of these
algorithms are either "primal" in nature or the algorithm addresses problems where
the maximization phase of the minimax problem is restricted to a finite set. Our
methods, on the other hand, are dual methods derived from an augmented Lagrangian
and the maximization can be performed over an infinite set. Another approach to
minimax problems utilizes nonditterentiable optimization techniques. This family of
methods is described in [23] by Kiwiel and in [32] by Shor. As discussed later, perhaps
the algorithm [26] of Murray and Overton is the closest to the approach proposed in

4. Our algorithm for reducible minimax problems seems to be distinct from other
algorithms for the minimax problem.

2. Abstract dual. Given sets X and Y and given a real-valued function f defined
on X x Y, we consider the problem

(2.1) minimize maximumf(x, y).
xX y Y

In other words, if "X- R is the real-valued function defined by

(x) supremum {f(x, y): y Y},
we are concerned with the problem

(2.2) minimize { x): x X}.

To derive a dual to (2.1), let us write (2.2) in the form

minimize p
(2.3)

subject to (x) p _-< 0, x X, /9 R.
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DUAL TECHNIQUES FOR MINIMAX 661

The collection P of functionals that are nonnegative everywhere on Y is a cone. When
g is a functional defined on Y, we write g _-> 0 if g P. Similarly the relation g <-0
means that -g P. Since f(x, y) p is a real-valued function of y for each fixed x X,
and for each fixed p R, (2.3) can be expressed as follows:

(2.4) minimize{p: f(x, .)-pl(.)<-O,xX, pc R}

where l" Y- R is the function defined by l(y) 1 for every y Y. That is, I is identically
equal to one on Y.

Let Y be a normed vector space consisting of functionals defined on Y and suppose
that Y contains f(x, .) p 1(. for every x X and p R. The dual problem associated
with (2.4) involves the dual space Y*. Given a linear functional A Y*, let (A, p) denote
the value of h at p and write h _-> 0 if (h, p)_-> 0 for every p P Y. Then the dual to
(2.4) is

(2.5) maximize {I(A): A Y*, A -> 0}

where the dual functional is defined by

(2.6) I(A)= infimum {p +(A,f(x,. )-t91(" )): x X, p R}.

Since

p + (A,f(x,.) p 1(. )) (A,f(x,.))+ p(1 -(1, 1)),

it follows that 1() is -co unless (X, 1)= 1. Moreover, if (X, 1)= 1, then the dual
functional can be expressed

l(X) infimum {(A,/(x,. )): xeX}.

Now let us consider the standard question in duality theory: When does there exist a
solution to (2.5) and when is the maximum in (2.5) equal to the minimum in (2.2)?
Applying 17, Thm. A.1 ], we have the following.

THEOREM 2.1. Whenever p and x are feasible for (2.3) and X is feasible for (2.5),
we have l(X)-<p. Moreover, ifp* and x* are feasible for (2.3), A* is feasible for (2.5),
and l(X*)= p*, then p* and x* are optimal in (2.3), A* is optimal in (2.5), and the
complementary slackness condition (A*,f(x*, )} p* holds. On the other hand, suppose
that X is a convex subset of a vector space and for each fixed y Y, f(x, y) is a convex
function of x X. If there exists a ball B c y with center at the origin such that

(2.7) sup inf sup {f(x, y)- b(y)} <
chuB xX y Y

then (2.5) has a solution A* and

I(A*)-- inf supf(x, y).
xX y Y

For illustration, suppose that Y is the finite set {1,..., m} and let f(x) denote
the function f(x, i). In this case, both Y and Y* can be identified with R m, the space
of m-tuples of real numbers, and the functional (.,.) is the usual dot product in R".
Hence., the feasibility condition "h Y*, h => 0, and (h, 1)= 1" associated with the dual
problem (2.5) is equivalent to saying that h R", h => 0 for 1, , m, and h +. +
h, 1. Observe that in this finite-dimensional framework, assumption (2.7} is satisfied
trivially. If both X and the f are convex, then Theorem 2.1 tells us that there exists
an optimal solution A* to (2.5) and

1(I*) inf A*f(x)" x e X inf max {f(x)" 1,..., m}.
i=1 xX
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662 WILLIAM W. HAGER AND DWAYNE L. PRESLER

For a second illustration, let us consider the case where Y is a compact subset
of a normed vector space, Y is the space of continuous real-valued functions defined
on Y, and the norm for v is defined by

I111 =maximum {l(y)J" Y Y}.

Again (2.7) is satisfied trivially. Furthermore, if Y is an interval [a, b]c R, then Y* is
the space of functions with bounded variation on [a, b] and the complementary
slackness condition can be expressed using a Stieltjes integral"

(2.8) (f(x*, y) p dA *(y) O.

In the proof of [17, Lemma 5.2], we note that when a has bounded variation, the
inequality a g0 is equivalent to saying that A(y) is a nondecreasing function of y.
Hence, if p* and x* are feasible for (2.3) and a * is feasible for (2.5), thenf(x*, y) p*
0 for every y e Y and (2.8) implies that a*(. is constant on each subinteal of [a, b]
where f(x*,. < *.

In many applications, one discovers that a solution pair (p*, x*) for (2.3) has the
propey that f(x*,y)<p* except for y in a finite set {Yl,"" ",Ym} c In this case,
the complementary slackness condition (2.8) tells us that a*(.) is constant on each
open inteal (y, y+) and a*(y) g a*(yT). If this jump set is known in advance and
if we restrict our attention to a’s which are constant on each inteal (y, Yi+I), then
the dual functional can be expressed

where I I (y)- I (y) is the jump at y. Generally, the y are unknown and the dual
functional must be maximized over both the y and the I. To summarize, if Y is the
inteal [a, b], is the space of continuous real-valued functions defined on [a, b],
and there exists both a solution 0* and x* to (2.3) and a solution I* to (2.5) such
that O* 1(I*) and f(x*, y) O* for finitely many y, then the continuous dual problem
(2.5) can be replaced by the discrete dual

maximize 1(, ., I, y,. ., y)
(.9

subjectto10 and yeY fori=l,...,N, I=1,
i=l

where

l(,l, ", ’N, Y1,’" ", Y) inf A.of(x, y,)" x X
i=l

and where N is any integer greater than or equal to the number of y for which
f(x*, y)- p*. The optimal ai and yi in (2.9) correspond to the size and the location
of the jumps in a*. The discrete dual (2.9) will now be studied in a general setting.

The generalized finite sequence space of Charnes, Cooper and Kortanek (see
[5]-[7]) is a natural setting for the discrete dual. Let A denote a vector space of
real-valued functions defined on Y where A e A if and only if a (y)= 0 for all but a
finite number of y in Y. Instead of writing A(y), we write ay and we consider ay the
yth component of A. Given a A, the collection of y in Y for which Ay 0 is the
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DUAL TECHNIQUES FOR MINIMAX 663

support of A. In [5] the space A is called a generalized finite sequence space. Given
A A, let us define the dual functional

The dual problem is

I(A) inf{ yAyf(x,y)’xX}.
y

(2.10) maximize ]I(A)" A A, A -> 0, Ay =1[.
yY

THEOREM 2.2. If A* is feasible for (2.10), x* X, and

(2.11) l(h*) sup {f(x*, y)" y6 Y},

then A* is optimal in (2.10), x* is optimal in (2.2), and f(x*, y)- l(h*) for each y in
the support of h *. Moreover, letting S denote the support of A *, we have

(2.12) min maxf(x, y) min maxf(x, y).
xX yS xX y Y

Proof. If the components of A are nonnegative and sum to 1 and if F Y is any
finite subset which contains the support of A, then the following relations hold for any
xX"

l(A)=inf{ Ayf(z,y)" zX}
<- 2 yf(X, y)

(2.13) <-(yrAy) max {f(x, y): yF}

max {f(x, y)" y F}

--<_ sup {f(x, y)" y Y}

,I,(x).

(The last equality is the definition of (x).) Hence, I(A)-<_ (x) whenever A is feasible
for (2.10) and xX. Since I(A*) =(x*) by (2.11), we conclude from (2.13) that A*
is optimal in (2.10) and x* is optimal in (2.2). If S is the support of A*, then (2.13)
also tells us that

(2.14) I(A*) <-- L A*yf(x*,Y)<--(x*)
yes

But l(A*)=(x*) and the inequalities in (2.14) are equalities. Since Ay*>0 and
f(x*, y) <- p(x*) for every y S and since the compoments of A* sum to one, it follows
from (2.14) that

(2.15) l(A*) (x*) =f(x*, y) for every y S.

Finally, let us consider (2.12). Relation (2.13) implies that

(2.16) l(A*) _<- max {f(x, y)" y S}

for every x in X. Taking the infimum over x X, (2.16) tells us that

(2.17) I(A*)-< inf maxf(x, y).
xeX yeS
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664 WILLIAM W. HAGER AND DWAYNE L. PRESLER

Combining (2.15) and (2.17), we have

(x*) maxf(x*, y) min maxf(x, y),
yes xeX yes

which completes the proof of (2.12).
For any S c y, we have the trivial relation

min maxf(x, y -< min maxf(x, y).
xeX yes xeX ye Y

Theorem 2.2 tells us that if the value of the dual problem (2.10) is equal to the value
of the primal problem (2.2), then there exists a finite set S c Y such that (2.12) holds.
Therefore, one strategy for solving the mimimax problem (2.1) is to start with a finite
set S and adjust it until (2.12) is satisfied. The simplified problem

minimize maximumf(x, y
xeX yes

is often easier to solve than the original problem (2.1). This idea is developed further
in 5. When there exists a finite set S satisfying (2.12), we say that the minimax
problem is reducible.

How often is a minimax problem reducible ? Let us consider the following example:

(2.18) minimize maximum fix2 + 2axy + y2.
xER yeR

Since the maximum is attained at y ax, the function is given by

(x) (+)x.
When a2 is nonnegative, P(x) achieves its minimum at x =0 and when x is O, the
maximizing value of y in (2.18) is y=O. On the other hand, suppose that S {0} and
let us consider the restricted minimax problem

minimize maximum fix + 2axy ye,
xeR y=0

which is equivalent to

minimize/X2.
xeR

For/3 _-> 0, the minimum is attained at x 0 while for/3 < 0, fix has no minimum. In
summary, for/3 < -a, has no minimum. For/3 . [-a, 0), no set S satisfies (2.12).
And for/3 _-> 0, the minimax problem is reducible with S {0}.

Now suppose that f:R2 R is an arbitrary twice continuously diiterentiable
function. We assume that there exists a solution x* to the minimax problem (2.1) and
there exists y* such that

f(x*, y*) maximum {f(x*, y): y R}

and

(2.19)
Oef(x*, y*) < O.
Oyz

Then for x in a neighborhood of x*, the implicit function theorem gives us a differenti-
able function y(. such that y(x*)= y* and

Of(x, y(x)) O.(.o) oy
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DUAL TECHNIQUES FOR MINIMAX 665

By (2.19), y(x) is a local maximizer of f(x,. for x near x*. Let us assume that y(x)
is the global maximizer off(x,. ). Since x* minimizes (x), we know that "(x*) >_- 0.
Applying the chain rule to (x)=f(x, y(x)) and utilizing (2.20), it can be shown that

02
(x*) oft ((O-f/Ox Oy)(x*, y*))=

x*, y*)- y,(2.21)
Ox2 Ox, (02f/oyZ)(x.,

If X is restricted to a neighborhood of x*, then (2.12) holds for $ {y*} provided

oZf(x*, y*) > O.(2.22)
Ox2

On the other hand, by (2.21), the inequality "(x*)_-> 0 only guarantees that

((Of/Ox Oy)(x*, y.))2
(2.23) O(x*, y*) >=

Ox2 (oZf/oyZ)(x*, y*)

In other words, relation (2.22) is sufficient for the minimax problem to be reducible
when X is a neighborhood of x* while the fact that x* minimizes only implies (2.23).

Returning to example (2.18), observe that the range of a and /3 for which the
minimax problem is reducible is larger than the range for which the minimax problem
is not reducible. Consequently, if a and/3 are chosen randomly and if the minimax
problem (2.18) has a solution, then the problem is probably reducible. The problem
(see 19]) of optimally coating a surface to minimize the maximum reflection associated
with incoming waves is an example of a very complicated nonconvex problem that is
reducible even though l()t*)<(x*). Based on these observations, we feel that
algorithms which search for a set S satisfying (2.12) will apply to a broad class of
problems.

Although a general minimax problem is not necessarily reducible, a convex
finite-dimensional minimax problem is always reducible. Dem’yanov and Malozemov
[13] establish this fact in the following setting: X is a closed convex subset of R", Y
is a compact subset of R’, f(x, y) is continuous and continuously diiterentiable with
respect to x on . x Y where " is an open set containing X,f(., y) is convex for each
y Y, and there exists a solution to (2.1). One can also establish (2.12) under weaker
assumptions using Clarke’s result 10, Thm. 2.1] and properties of subgradients found
in Rockafellar’s book [29]. The analysis of Charnes, Cooper and Kortanek [7] also
appears applicable. For completeness, we now derive (2.12) using Theorem 2.1 and
results from [29]. First, let us consider the case where Y is a finite set.

LEMMA 2.3. Suppose that Y is a finite set, X is a nonempty convex subset of R",
and f(., y) is convex for each y Y. If there exists a solution x* to the primal problem
(2.2), then there exists a solution A* to the dual problem (2.10) and l(A*)=(x*).
Moreover, A* can be chosen so that its support has at most n + 1 elements.

(It follows from Theorem 2.2 that under the hypotheses of Lemma 2.3, (2.12)
holds for some set S which has at most n + 1 elements.)

Proof By Theorem 2.1 and by the observations that follow the theorem, there
exists a solution A* to the dual problem (2.10) and l(A*)=(x*). Let rn denote the
number of elements in Y and assume for convenience that Y { 1, ., rn}. The equality
l(A*) (x*) combined with (2.13) tell us that

(2.24) l(A*)=minimum Y A*f(x)= Y A*f(x*)
xX i=1 i=1

where f(. denotes f(., i). Let Of(x) denote the collection of subgradients off at x.
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666 WILLIAM W. HAGER AND DWAYNE L. PRESLER

By [29, Thm. 27.4] and by (2.24), there exists gi 0f(x*).such that

(2.25) (i=l h*gi’x-x*) >=0 foreveryxeX.

Define the set P {i [ 1, m ]" A * > 0}. Since A* => 0 and A 1" +" + A*,, 1, it follows
from [29, Thm. 17.1] that there exists nonnegative scalars /xi for i P such that the
support of/x has at most n + 1 elements,

E /zigi= E X*g, and E /x,=l.
iP i=1 iP

Hence, (2.25) yields

(2.26) ( " lzigi’x-x*l>--O fr every

Again by [29, Thm. 27.4] and by (2.26), we have

(2.27) Y /z(x*)=minimum Y /z(x).
iP xX iP

The identity I(A*)= (x*) combined with Theorem 2.2 imply that f(x*)= (x*) for
every i P. Since the/xi sum to one, it follows from (2.27) that

(x*) minimum Y /x./(x) l(/z).
xX iP

By Theorem 2.2,/x is a solution to the dual problem. [3
TIqEOREM 2.4. Suppose that Y is a nonempty compact subset of a normed space, X

is a nonempty compact, convex subset of R", and f is a real-valued function defined on
x Y where f( is a relatively open set containing X. Iff(., y) is convex and lower

semicontinuousfor each y in Y andf(x, is continuousfor each x in f(, then there exists
a solution x* to (2.2), there exists a solution A* to (2.10), and I(A*)= (x*). Moreover,
A* can be chosen so that its support has at most n + 1 elements.

Proof. Let {Yl, Y2,’" "} be a dense subset of Y and define v. X R by
N (x) maximum {f(x, yi)" 1,. ., N}.

Since f(., y) is lower semicontinuous, v is lower semicontinuous. Thus the compact-
ness of X guarantees the existence of xN X such that

N(XV) minimumN(X).
xcX

In addition, the compactness of X implies that a subsequence of the xv converges to
some x* X. By [29, Thm. 10.8] and the assumption that f(x,. is continuous and
{Yl, y2," "} is a dense subset of Y, v converges to uniformly on X. Consequently,
we have

(x*) minimum {(x): x X}.

Referring to Lemma 2.3, there exists a set yV c {Yl," ", Yv} where yV has at most
n + 1 elements and there exists a corresponding set of nonnegative scalars {h" y yv}
which sum to one and which satisfy the relation

(2.28) minimum NxaX yY
hf(x, y) (xU).
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DUAL TECHNIQUES FOR MINIMAX 667

Since the sets yS and the scalars h lie in compact sets, we can extract convergent
subsequences. Assume for convenience that xs converges to x*, h s converges to A*
and yS converges to Y*. For any x X,

(2.29) lim r, hf(x, y)- , h*yf(X, y)
N-cx y y y*

since f(x, is continuous. Minimizing the left side of (2.29) over x X yields

lim I(A s) __< y A*yf(X, y)
N-oo y y*

for every x X. Since l(A s) is equal to (xs) and since q(xs) approaches (x*) as
N tends to infinity, we conclude that

(2.30) c(x*) <-_ Y A *y f(x, y)
y Y*

for every x X. Minimizing the right side of (2.30) over x in X yields the relation
(x*)_-<l(A *) and by (2.13), A* is a solution to the dual problem (2.10).

In Theorem 2.4, we can replace the assumption that X is compact with the
assumption that X is closed, however, the existence of x* is lost.

COROLLARY 2.5. Suppose that Y is a nonempty compact subset of a normed space,
X is a nonemp!y closed, convex subset of R and f is a real-valued function defined on
ff x Y where X is a relatively open set containing X. Iff(., y) is convex and lower
semicontinuousfor each y in Y andf(x, is continuousfor each x in f(, then there exists
a solution A* to (2.10), and

l(A*) inf q(x).

Moreover, A* can be chosen so that its support has at most n + 1 elements.

Proof. Given an integer N, define the set

x x: IIxll N)

where I1" is any norm for R n. We assume that N is large enough that Xs is. nonempty.
By Theorem 2.4, there exists A s A such that

s (A s) minimum q(x)
x_X

where s is defined by

s(A) minimum Z Ayf(x, y)
x.X ye Y

and where the support yS of A s has at most n+l elements. From (2.10), the
components of A s are nonnegative and sum to one. Since yS and the components
of A s lie in compact sets, there exists a subsequence of the A s which converges to
some A*. Let Y* denote the support of A* and assume for convenience that the entire
sequence (; s} converges to A*. For each x X, the continuity of f(x,. implies that

(2.31) lim y Af(x, y)- ,*yf(x, y).
Noo y y y*

We minimize the left side of (2.31) over x Xs to obtain

(2.32) lim IS(As)_-< Y A*yf(x,y).
N-oo y y*

Minimizing the right side of (2.32) over x X yields

I(A*) >_- lim s (A
N-oo
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668 WILLIAM W. HAGER AND DWAYNE L. PRESLER

and since (xN) is equal to IN(A N), we have

I(A*) -_> lim (xN) inf (x).
N-cx3 X

Finally, (2.13) tells us that A* is a solution to the dual problem (2.10).

3. Augmented Lagrangians. A nonconvex problem often has a duality gap and
the value of the dual problem is strictly less than the value of the primal problem. A
strategy for bridging this gap emanates from work of Arrow and Solow [1], Hestenes
[22], and Powell [28]. The basic idea is to augment the ordinary Lagrangian with a
penalty term. To introduce this penalized dual approach, we first consider a finite-
dimensional mathematical program with equality constraints"

minimize f(x)
(3.1)

subject to h (x) 0, x R"

where f: R" - R and h: R - R m. (Mathematical programs in a Hilbert space setting
are studied in [16] and [27].) The ordinary Lagrangian corresponding to (3.1) is
I(A, x) =f(x) + rh (x). Letting r be a positive scalar and letting[. [denote the Euclidean
norm, the augmented Lagrangian corresponding to the penalty term rlh(x)l2 is

(3.2) L(A, x)=f(x)+ A Th(x)+ rlh(x)l2.

To illustrate the type of results that can be proved about the augmented Lagrangian,
we state the following theorem which is extracted from Bertsekas [2]. In stating this
theorem, our convention is that the gradient X7 is a row vector and the gradient Vh of
the vector valued function h is a m x n matrix with ith row Vh for 1 to m. Also,
we let 72 denote the Hessian matrix of second partial derivatives and the phrase "x*
is a local minimizer for (3.1)" means that h (x*) 0 and f(x* -<_f(x) whenever h (x) 0
and x is near x*.

THEOREM 3.1. Suppose that x* is a local minimizerfor (3.1), bothfand h are twice

continuously differentiable in a neighborhood ofx*, and the rows of Vh(x*) are linearly
independent. If A A* is the solution to the equation

(3.3) 7f(x*)+ A TVh(x*)=0

and g7l(A *, x*) is positive definite in the null space of Vh(x*), then there exists a

parameter s and a neighborhood N ofx* such that the problem

minimize {L(/x, x): x e N}

has a unique minimizer x.. whenever r >= s and ]A*-/z] =< r/ s. Moreover, there exists a
constant c, independent of r and Ix, such that

(3.4) [X.,r- X* + IA,r- A "1 <- c]/z A "1/r
where A.,r :=/z + 2rh(x.,,).

Now let us consider the inequality constrained problem

minimize f(x)
(3.5)

subject to g(x) _-< 0, x R

where g: R"- R 1. Rockafellar’s augmented Lagrangian (see [30]) is obtained by
converting the inequality constraints to equality constraints using slack variables,
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DUAL TECHNIQUES FOR MINIMAX 669

forming the augmented Lagrangian corresponding to these equality constraints, and
minimizing over the slack variables to obtain

1 2(3.6) L(A, x) =f(x) + Y (Aigi(x) + rgi(x)2) --r ’ A
i I+

where the sets I/ and I_ are defined by

I+ {i [1, 1]: 2rg(x) + h _-> 0} and I_ {i 1, I]: 2rg(x) + h < 0}.

Thus the part of the Lagrangian (3.6) corresponding to indices i I/ resembles the
equality Lagrangian (3.2) while the part of the Lagrangian corresponding to indices
i I_ is locally independent of x. Theorem 3.1 also applies to inequality constrained
problems since an inequality can be converted to an equality using Valentine’s device
(see [2] and [33]).

Augmented Lagrangians are now applied to the minimax problem (2.1). Let us
consider the case where the set Y connected with the maximization is the integers
{1, 2,...} and at some solution x* to (2.2), we have

f(x*,i)>--_f(x*,i+l)

for each i. We assume that f(x*, i) (x*) for 1,. ., N while f(x*, i) < (x*) for
i> N. Recall from 2 that the set S-{1,..., N} is usually the support of a dual
multiplier h*. If a good estimate for x* is known, then S is known and, at least locally,
x* is a solution to the equality constrained problem

(3.7) minimize { p: f(x) p 1, x X, p R}

where 1 denotes the vector in RV with every component equal to 1 and f(x) denotes
the vector-valued function with ith component f(x) equal to f(x, i) for 1,. ., N.
The corresponding augmented Lagrangian is

(3.8) L(h,x,p)=p+hr(f(x)-pl)+r[f(x)-pl[2.

In practice, the support set S for the minimax problem is not known, and we
must use the inequality constrained formulation

minimize { p:f(x) <- p 1, x X, p R}.

Since this formulation is equivalent to

(3.9) minimize { p: f(x) + z p 1, z >_- 0, x X, p R, z R },

the analogue of Rockafellar’s augmented Lagrangian is

(3.10) L(A, x, p)=minimum {p+ h (f(x)+ z-pl)+ rlf(x)+ z-pl[: z->0, z Ru}.
Since the extremand in (3.10) is a strictly convex function of z, there exists a unique
z which attains the minimum, and by (3.6), the augmented Lagrangian (3.10) can be
expressed:

1
h 2L(A,x,p)=p+ E {Ai(f(x) p)+r(f(x) P)2}+--iei_iri I+

where

I+={i[1, N]:2r(f(x)-p)+A>-O} and I_={i[1, N]:2r(f(x)-p)+Ai<O}.

When using an augmented Lagrangian to solve the constrained optimization
problem (3.9), we minimize L(A,x, p) over x in X and p in R to obtain the dual
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670 WILLIAM W. HAGER AND DWAYNE L. PRESLER

functional L(A). Then the dual functional is maximized over A to obtain a solution
A* to the dual problem

maximize {L(A): A RN}.
As we will show shortly, the minimum of L(A, x, p) over/9 can be computed explicitly.
Let L(A, x) denote the partly minimized functional defined by

(3.11) L(A,x)=minimum{L(A,x,p): peR}.

LEMMA 3.2. There exists a unique p, which attains the minimum in (3.11).
Proof. Defining the parameter

pl maximum {f(x) + Ai/2r: 1,. ., N},
observe that L(A, x, p)=p plus a constant (independent of/9) for /9=> pl. Thus the
minimum of L(A, x,. occurs on the interval [-oo, pl]. By [17, Cor. A6], the derivative
of L(A, x, p) with respect to p is a Lipschitz continuous function of p on bounded
intervals. Since the second derivative of L(A, x, is at least 2r on (-oo, Pl], we conclude
that L(A, x,. is strictly convex on (-oo, p] and there exists a unique minimum.

To compute the minimum for L(A, x,. ), we define the parameters

pi=f(x)+Xi/2r

for i= 1,. ., N and we reindex the components of f and A so that

Pl >= P2 PN.

Since L(&, x,.) is strictly convex on (-, pl], the derivative of L(&, x, .) is mono-
tone increasing (with slope at least 2r). For p between &+ and &, the derivative of
L(&, x,. is given by

d
(3.12)

dp
L(&, x, p) 1 + 2rip -- ( + 2rf(x)).

With the convention that pN+ is -, there exists an interval [&+,&] where the
derivative changes sign. Since L(A, x,. is a quadratic on this interval, the minimizer
p* of the quadratic is easily evaluated:

p,=-I +=1 (A + 2rf(x)).
2rj

Since the computer time to sort f(x)+ A/2r into decreasing order is proportional to
N log2 N (see [25]) while the time to evaluate the derivative (3.12) for p--p through
p p is proportional to N, the computer time required to minimize L(A, x,.) is
proportional to N log2 N.

4. General minimax problems. Now let us return to the minimax problem

(4.1) minimize maximumf(x, y)
xX y Y

where f is a real-valued function defined on X Y. As demonstrated in the proof of
Theorem 2.4, one method to solve the minimax problem is to introduce a set YS Y
with N elements and to consider the approximation

minimize maximumf(x, y).
xX Ye yN

If x X has the property that

maximumf(x, y)= minimum maximumf(x, y)
Y yN xX Y yN
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DUAL TECHNIQUES FOR MINIMAX 671

where Ylc Y2c y3c.., and the union of yV over N is a dense subset of Y, then
under the hypotheses of Theorem 2.4, every convergent subsequence of {xN}
approaches a solution to (4.1). Moreover, defining ,V:X--> R by

s(x) maximumf(x, y),
Y yN

Dem’yanov and Malozemov [13] show that if xv is an extreme point of q then
every convergent subsequence of {xv} approaches an extreme point of the function

(x) maximumf(x, y).
yY

Their assumptions are that X R, Y Rm, Y is compact, X is closed and convex,
and f(x, y) is continuous and continuously ditterentiable with respect to x on x Y
where X is an open set containing X.

The principal difficulty involved with primal algorithms for minimax problems is
that the function is almost always nonditterentiable at its minimum. Ways to
circumvent this lack of smoothness are developed in the algorithms of Dem’yanov
12] and others. Unlike the primal function, the dual function is usually smooth at the

solution to the dual problem. Nonetheless, as we now show, the dual problem can be
ill conditioned and algorithms for solving the dual problem must deal with this
conditioning. In describing the ill conditioning associated with the dual problem, we
assume for simplicity that X is R ". The dual functional corresponding to YS is

(4.2) I(A) infimum l(h, x)
xX

where the Lagrangian l: RNx R’ R is defined by

I(A, x)= g Ayf(x, y).
Y

Suppose that x--x* attains the minimum in (4.2) when A A*, that f(x, y) is twice
continuously ditterentiable with respect to x for every y Y and that the Hessian

2(4.3) g AyVf(x* y)
y

is positive definite. Since x* attains the minimum in (4.2) when A A*, the gradient
of the Lagrangian with respect to x is zero at x x*: VI(A*, x*) 0. Since the Hessian
(4.3) is nonsingular, the implicit function theorem tells us that for A near A*, there
exists an x(A) that satisfies the equation

(4.4) VI(A, x(A)) 0,

and by the second order sufficiency condition, x(A) is a local minimizer for l(A,.).
Let us assume that x(,) is also a global minimizer for l(,X,. ). By the chain rule and
(4.4), we have

1 Ox0--2- (A) =f(x(A ), y) + VxI(A, x(A ))v(x(A), A =f(x(A ), y).(4.5)
OAy

Differentiating (4.4) with respect to ,z yields

Ox
(A -V2I(A, x(A ))-lVxf(X(A), z)T,
OAz

and differentiating (4.5) with respect to Az gives us

021
(A) -Vff(x(A), y)Vxl(A, x(A))-lVxf(X(A), z)T.
aAy OAz
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672 WILLIAM W. HAGER AND DWAYNE L. PRESLER

Hence, the Hessian of the dual functional has the form

0Zl
(A) -GF-1Gr

0A z

where F is the n x n matrix given by

F ;u AyVxf(X(A )’ y)
y

and G is the N n matrix whose yth row is 7ff(x(A), y) for y Y.
Remember that if A is feasible in the dual problem, then the components of

sum to one. If P is a (N-1) N matrix whose rows are a basis in RN for the space
orthogonal to the vector with every component equal to one, then the convergence
speed of steepest ascent applied to the dual functional is related to the distribution of
eigenvalues for the Hessian of evaluated in the row space of P. The Hessian of !(Prx)
with respect to /x is given by -(PG)F-I(pG) r. Since PG is (N-1)xn while the
Hessian of with respect to /x is (N-1)x (N-1), we conclude that the Hessian is
singular whenever N- 1 is greater than n, or equivalently, whenever N is greater than
n+l.

Now consider the strategy of Theorem 2.4 where we introduce a set YN c y for
which

lim inf {lY z[: z yr} 0
Noo

for every y Y. By its structure, the Hessian of l(h) is singular whenever the support
of h has more than n + 1 elements. The convergence speed of numerical schemes (like
steepest ascent) for solving the dual problem is governed by the ratio between the
absolute largest eigenvalue and the absolute smallest eigenvalue of the Hessian, and
as the ratio tends to infinity, the convergence speed approaches zero. If the support
of h has more than n + elements, then the smallest eigenvalue is zero, the ratio is
infinity, and convergence is slow. In other words, asymptotically, it is impractical to
maximize the dual functional using say steepest descent (or almost any standard
algorithm) when N is large.

The augmented Lagrangian is subject to similar instabilities. For the inequality
constrained problem (3.5) and the augmented Lagrangian (3.6), Rockafellar shows in
an appropriate setting (see [31]) that

02L
,)

02L
,)

1 02L
,)(4.6) 0-+(A -Vg+(x*)F-’Vg+(x*) r, 0--_(h -rr I’

Oh+0--_
(h =0

where L(h)=inf{L(h,x): xR"}, h and g denote the components of h and g
corresponding to indices i I+, and

Fr=V2f(x*)+ 2 (A*iV2gi(x*)+2rVgi(x*)rVgi(x*)).
i I+

Hence, the Hessian (4.6) is singular when the number of elements in I+ is greater than

Recall that the minimax problem corresponding to YU can be written as the
inequality constrained problem

minimize p
(4.7)

subject toxeX, peR, f(x,y)<=p for everyyeYU.
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DUAL TECHNIQUES FOR MINIMAX 673

Thus the yth component of g in (3.5) is identified withf(x, y) p. Since the independent
variables in (4.7) are x and p, the primal problem (4.7) is formulated in R n/l when
X c R and the Hessian

is singular when the number of elements in L is greater than n + 1. Observe that the
augmented Lagrangian is better conditioned than the ordinary Lagrangian, since the
part of the Hessian corresponding to the second partial derivative with respect to A_

is a multiple of the identity matrix which is perfectly conditioned. Nonetheless, as N
grows, the Hessian can still become singular.

Now let us develop an algorilhm to solve the minimax problem. Given x X, let
y(x), y2(x),"" denote the local maxima of f(x,.) on Y. Our algorithm for solving
the minimax problem has two phases. In both phases, we utitize the inquality formula-
tion (4.7). However, in phase one, yN is a fixed set {y,..., YN} contained in Y and
N is "large." In phase two, yN has the form {yl(x),’’ ", yc(x)} and N is "small." If
f(x,. has a finite number of local maxima on Y, then the phase two problem

minimize p
(4.8)

subject toxX, pR, f(x, yi(x))-</9 fori=l,...,N

is usually equivalent to (4.1) for N sufficiently large. Since (4.8) involves tracking the
peaks yi(. ), solving (4.8) is more difficult than solving (4.7). Hence, phase two should
only be activated when the algorithm applied to (4.8) converges rapidly. For many
mathematical programming algorithms, rapid convergence only occurs in a neighbor-
hood of an optimum. For this reason, it is more efficient to apply an unsophisticated
algorithm to the ill conditioned problem (4.7) generating a starting guess for a fast
algorithm that solves (4.8).

Let us now show in detail how an algorithm such as [18, Algorithm 5.2] or any
other algorithm with similar structure can be used to solve either (4.7) or (4.8). Each
iteration of Algorithm 5.2 has the following steps: A restoration step where the equality
and binding inequality constraints are partially satisfied, a multiplier update where an
improved approximation to the optimal dual multipliers is generated, an unconstrained
minimization step where the augmented Lagrangian is minimized using (for example)
several preconditioned conjugate gradient iterations, and an adjustment to the penalty
when a minimizer of the augmented Lagrangian has essentially been computed. This
algorithm monitors the convergence of the iterations to a Kuhn-Tucker point and
typically, both the restoration step and the multiplier update are only activated in a
neighborhood of an optimum. In other words, unless the iterations are in a neighbor-
hood of an optimum, Algorithm 5.2 is essentially a preconditioned conjugate gradient
method applied to an augmented Lagrangian. In [18] we show that Algorithm 5.2 is
globally convergent while the iterations are locally quadratically convergent. When
applying Algorithm 5.2 to either (4.7) or (4.8), the following four issues must be
considered:

(1) The initialization of phase one and phase two. That is, given a guess for a
solution to (4.1), what is the corresponding starting guess for the multip.liers? Given
an approximation to a solution to (4.7), what is the starting guess to (4.8)?

(2) The addition and deletion of constraints. After each iteration of an algorithm
applied to either (4.7) or (4.8), we must delete "unnecessary" elements from yN and
we must add "significant" elements to yN. The augmented Lagrangian will help to
determine which elements to delete and which elements to add.
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674 WILLIAM W. HAGER AND DWAYNE L. PRESLER

(3) The elimination ofp. We introduced the parameter p to convert the minimax
problem into an inequality constrained mathematical program. When applying a
mathematical programming algorithm to either (4.7) or (4.8), we would like to eliminate
the artificial variable p so that the iterations are expressed in terms of x and A.

(4) The computation of the gradient of the augmented Lagrangian. When using the
conjugate gradient method or any other gradient-based scheme to minimize the aug-
mented Lagrangian, we need a formula for the gradient of the augmented Lagrangian
with respect to x. Clarke’s result 10, Thm. 2.1] can be used to compute this gradient.

To begin, let us consider the initialization of phase one. If xl is the starting guess
in phase one, then in the absence of better information, let yN be the maximizers of
f(Xl," on Y. In other words, r/ yN if and only if

f(x, 7 maximumf(x, y).
yY

In the absence ofbetter information, the starting guess A for the multipliers correspond-
ing to the constraint f(x, y) <= p is A ly 1/N for each y yS. The x starting guess for
phase two is simply the final iteration Xk of phase one. To initialize the phase two
multipliers, we collapse the components of the phase one multipliers around the nearest
peak. That is, in phase one we generate a multiplier Ak with support yN. Given an
element y in yN, the index v(y) of the nearest peak is

v(y) arg min {lly-y,(x)ll: i= 1, 2,’-.}.

When more than one index achieves the minimum, let u(y) be any one of them. Then
the ith component of A, the starting guess for phase two, is the sum of the phase one
multiplier components that correspond to elements of YN closest to Yi(Xk):

A li E Aky"
YY
v(y)=i

Moreover, the starting set yV for phase two consists of those yi(.) for which hi is
positive.

To reduce the computing time associated with algorithms to solve (4.7) or (4.8),
we wish to keep N as small as possible. After each complete iteration of 18, Algorithm
5.2], we will drop those constraints that appear to be nonbinding and we will add
constraints where the inequality f(x, y)<-p seems to be violated significantly. Let us
now explain more precisely when to delete or add constraints. Given a finite set S c Y
and a multiplier h with support in S, the augmented Lagrangian introduced in 3 is

(4.9) L(h, S, x)= minimum {L(h, S, x, p): p R}

where

21
y’, Ay.L(A, S, x, p) p +

Y
E
S+

{hy(f(x, y) p) + r(f(x, y) p)2}-rr yeS_
As usual, the limits for the summations above are

(4.10)
S+ (y S: 2r(f(x, y) p) + Ay --> 0}

S_= {y 6 S: 2r(f(x, y)-p)+ Ay < O}.

and

PROPOSITION 4.1. Forfixed r, A, S, and x, suppose that p p* attains the minimum
in (4.9), and let S+ be the corresponding set given in (4.10). Then we have

1 2L(A, S, x) L(A+, S+, X)-rr E
yeS_
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DUAL TECHNIQUES FOR MINIMAX 675

where A+ denotes the vectorformedfrom A by extracting those components Ay corresponding
to y S+.

Proof. The identity

d
,)=

d
,)O=-pL(A, S, x, R -pL(A+, S+, x, R

implies that p* also minimizes L(A+, S+, x, .).
Since L(A, S, x) just differs from L(A+, S+, x) by a constant, Proposition 4.1 implies

that, at least locally, the constraints f(x, y) <- p corresponding to y S_ can be dropped.
Consequently, our rule for deleting elements from yN can be stated:

CONSTRAINT DELETION
Let/k and Xk denote the approximations generated by one complete iteration of say 18, Algorithm
5.2]. Delete from yN those elements corresponding to y Y.

Now consider the addition of constraints. Again, the augmented Lagrangian helps
us decide when the N in (4.8) must be increased. Suppose that r/ is not an element
of S and f(x, q)< p* where p p* attains the minimum in (4.9). Letting Sn denote
SU {r/}, we now show that L(A, Sn, x) is locally equal to L(A, S, x) iff is continuous
and An is zero. By the definition of the augmented Lagrangian, we have the inequality
L(A, Sn, x) -> L(A, S, x) whenever An --0. Since L(A, Sn, x, p*) L(A, S, x, p*), it follows
that L(A, Sn, x)= L(A, S, x) whenever An =0. Since the inequality f(x, 7)< p* is pre-
served for small perturbations in x when f is continuous, we conclude that L(A, Sn, x)
is locally equal to L(A, S, x). Conversely, suppose that f(x, 7) > P* and An =0. Since
L(A, Sn, x, p) _-> L(A, S, x, p) for every p when An 0 and since L(A, Sn, x, p*) >
L(A, S, x,p*), it follows from the uniqueness result Lemma 3.2 that L(A, Sn, x)>
L(A, S, x). To summarize, if f(x, /) > p*, then L(A, Sn, x) is larger than L(A, S, x) and
the gap between the value of the primal problem (4.1) and the value ofthe dual problem

maximize minimium L(A, S, x)
A,S xX

may be reduced by inserting r/into S. These observations lead us to the following rule
for adding constraints in phase one:

CONSTRAINT ADDITION IN PHASE ONE
Let Ak and xk denote the approximations generated by one complete iteration of say 18, Algorithm
5.2] and let p p* minimize L(Ak, YN, xk, p) over p. Insert Yi(Xk) into Yu if f(Xk, yi(Xk))> p*
and the distance between y(Xk) and YU is greater than some fixed predetermined constant A.

Since phase one approximates the solution to the minimax problem, the local
maximizer yi(Xk) appearing in the constraint addition step of phase one does not need
to be computed very accurately. The positive parameter A introduced above prevents
points in yS from clustering together. As the number of points in yN increases, the
time to evaluate L increases and the Hessian of L becomes ill conditioned. Since it
helps to keep the number of points in YN small, we exclude those local maxima which
are already near elements of Y. In numerical experiments, the convergence speed is
not very sensitive to the choice of A. In phase two, the elements of Y are local
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676 WILLIAM W. HAGER AND DWAYNE L. PRESLER

maxima instead of fixed elements in Y. Hence, the analogous rule for adding constraints
in phase two can be stated:

CONSTRAINT ADDITION IN PHASE TWO
Let Ak and Xk denote the approximations generated by one complete iteration of say 18, Algorithm
5.2] and let p= p* minimize L(Ak, Y Xk, p) over p. Insert Yi(" into yrV if f(Xk, yi(Xk))> P*.

Up to here, we have explained how to initialize a mathematical programming
algorithm to solve either (4.7) or (4.8) and we have explained how to add or delete
constraints at the end of each iteration in the algorithm. Now let us consider the details
of an interation. In formulation (4.7) and (4.8), a parameter p is introduced and the
number ofindependent variables is increased by one. For many algorithms, the artificial
variable p can be eliminated and the iterations can be expressed in terms of x and A.
For notational convenience, we assume X is R n. Let Xk be the kth approximation to
a solution to the minimax problem and suppose that after deleting and adding con-
straints at the end of iteration k, we have yN {Yl," ", YN}. In [18, Algorithm 5.2],
we estimate the multipliers corresponding to the constraints of (4.7) or (4.8) by
computing the least squares solution A to the system of equations

N N

(4.11) 2 A, 1, A,Vf(Xk, Yi) O.
i=1 i=1

Computing the least squares solution to this system of n + 1 equations in N unknowns
is equivalent to computing the pseudoinverse of a (n / 1) x N matrix. As an alternative
to this procedure, we suggest the following: Solve the first equation in (4.11) for A1 in
terms of A2 through AN and substitute into the second relation to obtain n equations
in N- 1 unknowns:

N

E A,(Vxf(Xk, y,)- V,f(xg, y,))= --V,,f(xk, y,).
i=2

The least squares solution to this system gives us an estimate for A2 through AN while
A is determined from the relation A 1- A2 A AN.

The procedure outlined above to estimate the multipliers is quite effective in phase
two. On the other hand, in phase one a simpler strategy involving the gradient
approximation to the multipliers (see [2]) is often just as effective. Let Ak be the
kth approximation to the multipliers and let Xk be the corresponding approximation
to a minimizer of the augmented Lagrangian L(Ak, yN,.). Set A k+l,i=Aki/
2r(f(Xk, Yk)--Pk) for i6 y+S and set A k+I. =0 for i Y if this rule generates a Ak+
with the property that (Ak+l, Xk) is a better approximation to a Kuhn-Tucker point
for (4.7) than (Ak, Xk). Otherwise, set Ak+ Ak. Here Pk denotes the minimizer in (4.9)
corresponding to A Ak, S Y, and x Xk. A technique for measuring the distance
to a Kuhn-Tucker point is developed in [18].

In 18, Algorithm 5.2], the restoration step is essentially a Newton iteration applied
to the system of N equations

(4.12) f(x, y)= p for i= 1 to N

where the starting guess is Xk and the corresponding Pk generated the previous iteration.
Since the N equations (4.12) are equivalent to the N-1 equations

(4.13) f(x, y,) -f(x, Yl) 0 for 2 to N,
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DUAL TECHNIQUES FOR MINIMAX 677

an alternative procedure is to apply one Newton iteration to the system (4.13). Observe
that this Newton iteration involves computing the pseudoinverse of the same matrix
used in the multiplier estimate.

In the minimization step of 18, Algorithm 5.2], we use a preconditioned conjugate
gradient method to minimize L(Ak, yN, X) over x. (Here, Ak denotes the multiplier
associated with iteration k.) Near the optimum, the preconditioner is chosen to project
the gradients into the null space ofthe binding constraints. Therefore, near the optimum,
the preconditioner projects the gradients into the null space of the (N- 1) x n matrix
with rows

Vxf(Xk, y,) Vxf(Xk, Yl) for i= 2 to N.

Far from the optimum, the preconditioner is chosen to mitigate the ill conditioning
due to penalty terms in the augmented Lagrangian. At the start of iteration k+ 1, the
inequalities f(x, yi)<= p are viewed as equalities and it follows from (4.9) that for x
near Xk

N N

)_
r

2 f(x, yi)L(hk, V,x)= 2 hk,f(x,y,)+r X f(x, Y, --i=1 i=1

The identity

f(x, f(x, f(x, f(x,
i=1 i=l j=l

combined with the preconditioning theory developed in 18, 4], tells us that a natural
preconditioner for the minimax problem is the matrix H (I + BrB)-, where B is
the N x n matrix with ith row

N

2V/(Xk, Yi
j=l

Observe that the rows of B are linearly dependent since their sum is zero. Let V denote
the matrix I-vv where

1 1+
+

Since the first row of V is a multiple of 1, the first row of VB is zero. Let W be the
matrix obtained by deleting the first row of VB. Since V is ohogonal, we have

BrB (VB) rVB
Applying the Woodbury formula [15, p. 3], the preconditioner H can be written

H (I+rWrW)-= I- Wr(r-lI+ r)-
When using any gradient technique to minimize L(I, Y.), we must compute

the gradient of the augmented Lagrangian with respect of x. By [10, Thm. 2.1] this
gradient can be expressed

V L(I, S, x)= (, + 2r(f(x, y)- p*))Vxf(X, y)
yeS+

where p* attains the minimum in (4.9). This formula for the gradient is also valid
when the elements of S depend on x (as in (4.8)) provided these elements are local
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678 WILLIAM W. HAGER AND DWAYNE L. PRESLER

extreme points of f(x,. on Y and (for example) Vxf(x, y) is a continuous function
of x and y.

Comparing our approach to the minimax problem to the approach of Murray and
Overton [26], some similarities are that we both reformulate the minimax problem as
a mathematical program with an extra unknown and we both estimate simultaneously
the primal solution and the Lagrange multipliers. Some differences in our methods are
the following: (i) In [26] Y is finite. (ii) We utilize an augmented Lagrangian while
[26] considers the ordinary Lagrangian. (iii) Our strategy for adding and deleting
constraints is different from [26]--our strategy ties in with the augmented Lagrangian.
(iv) With our approach, nonlinear constraints contained in X can be incorporated in
the augmented Lagrangian just as easily as the constraints f(x, y)-<-p.

5. Reducible minimax problems. So far we have viewed the minimax problem as
an optimization problem with inequality constraints and we have applied a constrained
optimization algorithm. Now let us develop an algorithm that is specially tailored to
reducible minimax problems. That is, we assume that there exists a finite set y*c Y
and a x* in X such that

min max f(x, y) maxf(x*, y) maxf(x*, y) d(x*),
xX y Y* y Y* y Y

and we search for the set Y*. It is also assumed that there exists a real number r and
a multiplier A* with support in Y* such that L(A*, Y*) (x*) where L(., denotes
the dual functional defined by

L(A, S) inf {L(A, S, x): x X}.

Given an approximation Yk {Ykl,"" ", YkN} to Y* and given an approximation }t. k to
h*, the rules for computing Yk+l and hk+l are the following:

PEAK CHASING ALGORITHM
(a) If Xk minimizes L(Ak, Yk, X) over xX, then set Ak+,i=Aki+2r(f(xk, Yki)--pk) for

iS+ and Ak+,i=0 for iS_ where Pk attains the minimum in (4.9) corresponding to
and S Yk.

(b) If Xk+ minimizes L(Xk+, Yk,’) over X and if Z {z,..., zN} denotes a collection
of local maxima for f(Xk+,’) on Y where zi is the closest local maximizer to Yki, then we set

Yk+l flYk +(1 -)Z where

fl arg max L(hk+l, aYk +(1--a)Zk).

Step (a) is the usual gradient step for an augmented Lagrangian (see [2]). Since
this algorithm is linearly convergent, the parameter/3 of step (b) can be imprecise. In
practice, we find that the maximizer of the interpolating quadratic that agrees with
L(Ak+I, aZk+(1--a)Yk) at a=0, at a=, and at a= 1 works well. To show that the
peak chasing algorithm is locally convergent, we verify that each iteration increases
the value of the dual functional. That is, L(Ak+I, Yk+I) -> L(Ak, Yk) with equality only
possible at Ak A* and at Yk Y*. In order to show that step (a) is an ascent step,
let us first consider the equality constrained problem

minimize f(x)
(5.1)

subject to h (x) O, xR"
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DUAL TECHNIQUES FOR MINIMAX 679

where f is quadratic: f(x)- xrAx + arx and h is linear: h(x)= Bx-b. Here A is an
n x n matrix, B is an rn x n matrix, and a and b are vectors in R" and Rm, respectively.
The augmented Lagrangian corresponding to (5.1) is

L(A, x)=f(x)+

LEMMA 5.1. Suppose that the rows of B are linearly independent and A is positive
definite in the null space of B. Then there exist positive parameters cr and s such that
A + rBrB >-_ ceI for every r >-s. If A e R and z minimizes L(A,. over R, then we have

(5.2) L(A + 2rh(z), y) >= L(A, z)+1/2rlh(z)l2 + ly

for every r 3 s and for every y R".
(If M and M are symmetric matrices of the same dimension, then the notation

M1 > Ma means that M1- M2 is positive definite.)
Proof. In 16, Lemma 2.6] we determine a parameter s < oe with the property that

A+rBrB is positive definite for r>-s. Let /x denote ,X+2rh(z). Expanding the
Lagrangian in a Taylor series, we have

2 )2(5.3) L(/x, y)= L(/x, z)+ V,L(/x, z)(y-z)+V,L(/x, )(y-z

where : lies on the line segment connecting y and z. The relation/x A + 2rh(z) implies
that

(5.4) L(m z) L(A, z) + 2rlh(z)l2

and

(5.5) VxL(/x, z)(y z) VL(A, z)(y z) + 2rh(z) rV h(z)(y z).

(Note that VL(, z) is not equal to the gradient of the right side of (5.4) since/x is
treated as a constant when computing VL(, z).) If z minimizes L(A, ), then VL(A, z)
is zero and by (5.5), we have

(5.6) V,L(/z, z)(y z) 2rh(z) rVh(z)(y z).

By the definition off and h, it follows that Vh B and V 2xL 2(A + rB rB). Combining
(5.3), (5.4), and (5.6) gives us

L(/x, y) L(A, z)+ 2rlh (z)l + 2rh(z) rB(y z)+ (y z)r(A + rB rB)(y z).

Utilizing the inequality

ab <= a2+b2

where we identify a with [h(z)l and b with [B(y-z)[ yields

(5.7) L(/z, y) -_> L(A, z)+1/2rlh(z)!2 + (y z)r(A +rBrB)(y z).

Hence, (5.2) holds for r_-> 3s.
For a general f and h, the same argument employed in the proof of Lemma 5.1

can also be applied to a neighborhood of a local optimum. Removing the restriction
that f is quadratic and h is linear, we have the following.
THEOREM 5.2. Suppose that x* and A* satisfy the hypotheses of Theorem 3.1. Then

there exists a neighborhood Nx ofx*, a neighborhood Nx of/*, and positive parameters
a and s such that

(5.8) Vl(h,x)+2rVh(x)rVh(x)> aI
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680 WILLIAM W. HAGER AND DWAYNE L. PRESLER

whenever r >- s, A Na, and x Nx. Moreover’, for s sufficiently large, a parameter c can
be chosen so that L(A, has a unique local minimizerx(A inside N, whenever A A *[ <- cr
and r >= s. And ifA and tz lie in N;, y N, with ly x*l <= c[x A *l/ r and r >= s, then we
have

(5.9) L(/x, y) L(A, z)+1/2( rlh( z)] +(c 1 *I)[Y- z])
where z x(A ),/x A + 2rh(z), and 6 is a constant that is independent of A and y.

Proof. By [16, Lemma 2.6], V2L(A*, x*) is positive definite for r sufficiently large,
and by [16, Lemma 6.5], there exists a neighborhood of (A*, x*) where (5.8) holds for
a sufficiently small and r sufficiently large. The statement concerning the existence of
a locally unique minimizer x(A) .for L(A,.) is established (for example) in [2]. To
prove (5.9), we expand L in a Taylor series giving us the following analogue of (5.7):

(5.10) L(/z,y)=>L(A, z)+krlh(z)l+k(y-z)VL(m )(y-z)-rlVh(z)(y-z)l

where lies between y and z. Utilizing the inequality

Ix[+ -<- CIx yl + lyl) + -<- 5Ix yl- +-lyl
where x is identified with Vh(z)(y-z) and y is identified with Vh()(y-z), the last
two terms in (5.10) satisfy the relation

1/2(y- z)’VL(/z, )(y z)-r]Vh(z)(y- z)l2

(5.11) >= 1/2(y- z)TVl(/x, )(y-z)+rlVh()(y-z)]2

’rl(Vh() Th(z))(y z)l2

+ r(y z)r ., h()V_h() (y ).

By (5.8), we have

(5.12) 1/2(y z) TVl(/x, )(y z)+rlVh()(y z)l >= 1/2aly z[
provided r is sufficiently large,/x e N, and : e N. By Theorem 3.1, ]z-x* is bound
by a constant times IA -A*l/r and by assumption, lY- x*l is bound by a constant times
IA- A’l/r. Since h(x*) is zero, there exists a constant 6 such that

(5.13)
(m )rl(Vh(:)- Vh(z))(y z)12+ r(y- z) r ,E1"= h,()Vhi() (y z)

-<_ a]A x*[ ly z[
for A near A*. Combining (5.10)-(5.13), the proof is complete.

Theorem 5.2 implies that if A is near A*, then for/z A +2rh(x(A)), L(/x, x(/x))
is equal to L(A, x(A)) only if h(x(A))=0. Since x(A) minimizes L(A,. over N,, we
conclude that if L(/x, x(/x))= L(A, x(A)), then x x(A) is a solution to the problem:
minimize f(x) subject to x N and h(x) 0. Therefore, x(A x*, the local minimizer
corresponding to A*. Theorem 5.2 also applies to problems of the form

(5.14)
minimize f(x)

subject to h (x) 0, xX

where X is a convex set. The proof of Theorem 5.2 in this more general setting involves
an analogue of Theorem 3.1 that applied to (5.14). See Bertsekas [2] for the extension
of Theorem 3.1 to problems with the constraint x X. Furthermore, referring, to the
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DUAL TECHNIQUES FOR MINIMAX 681

proof of Lemma 5.1, the constraint x X alters the treatment of the term VxL(A, z)(y
z). When X is R n, VxL(A, z) is zero and the term VxL(A, z)(y-z) can be dropped.
But for an arbitrary convex set, the corresponding relation is

VxL(A, z)(y z) >-_ O.

This inequality has the right direction so that the term VL(A, z)(y-z) can still be
dropped without affecting (5.7).

Although Theorem 5.2 is established for an equality constraint, it also applies to
the inequality constraint g(x) <- 0 provided A * is positive whenever gi(x*) is zero. This
follows from [31, Thm. 5.1] where Rockafellar proves that near A*, minimizing L(A,.
is equivalent to minimizing the augmented Lagrangian corresponding to an equality
constraint h(x)=0rathe components hi of h are the components gi of g for which

A* > 0. Hence, by Theorem 5.2, step (a) of the peak chasing algorithm is an ascent
step under appropriate assumptions. That is, L(Ak+, Yk)>=L(Ak, Yk) with equality
only possible when the Xk which locally minimizes L(Ak, Yk, on X is a local minimizer
for the problem

minimize maximumf(x, y).
xeX ye Y

Now consider step (b) of the peak chasing algorithm. As noted above, in a
neighborhood of an optimum, the augmented Lagrangian corresponding to an
inequality constrained problem is the same as the augmented Lagrangian corresponding
to an equality constrained problem. For this reason, we focus attention on the aug-
mented Lagrangian

L(A, S, x)= E Ayf(X, y)+ r E f(x, y)2__ f(x, y)
yeS yeS

which corresponds to the equality constrained problem

minimize p

subject toxeX, peR, f(x,y)=p for everyyeS.

And we establish the following property for the dual functional:
LEMMA 5.3. Let A be a fixed vector in RN with nonnegative components, let So

{Yl,"" ", YN} and let S1 {z,. ., ZN} be subsets of Y, and suppose that for i=0 and
for i= 1, xi minimizes L(A, Si, x) over x in X. Then we have

(5.15)

where

N

L(A, S1)-> L(A, So)+ E (Ai+2r(f(xl, yi)-Pl))(f(xl, zi)-f(xl, Yi))
i=1

1 N. f(xl, Yi)-/91 " i=1

Proof. Let Q: Rs - R be the quadratic defined by

PiQ(p) 2 Aip,+rp2 V
i=1

The Hessian of Q is

1
11 T)VQ =2r, I

N
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682 WILLIAM W. HAGER AND DWAYNE L. PRESLER

which is positive semidefinite by Gerschgorin’s theorem. Hence, Q is a convex function
which satisfies the standard inequality [29, p. 242]:

(5.16)
N

Q(p)-Q(q)>=VQ(q)(p-q)= Z (A,+2r(q,-p))(p,-q,)
i=1

where

1 N

fl-----
Since Xo minimizes L(A, So, x) over xX, it follows that L(A, So)=<L(A, So, xl), or
equivalently,

(5.17) L(A, S1)-L(A, So)--> L(A, S, x)-L(A, So, Xl).

Applying (5.16) to the right side of (5.17) where p =f(x, z) and q =f(xl, y) yields
(5.15). 1--]

Lemma 5.3 can be used to show that under appropriate assumptions, step (b) of
the peak chasing algorithm is an ascent step. Let S denote CSl+ (1-c)So. Suppose
that for a between zero and one, the minimum of L(A, S, x) over x X is attained
at a point labeled x which is a continuous function of a. Let A* maximize L(A, So)
over A. Typically the components of A* are positive. By Theorem 3.1, the vector o
with components

/Xo, A, + 2r(f(xo, y,) po), flo f(xo, y,)
i=1

satisfies the inequality 1o-A*l =< clA- A*l/r for some constant c. Hence, the com-
ponents of/Xo are positive for r sufficiently large. Letting , be the vector defined by

1
Z f(xo,, Yi),/z, A, + 2r(f(x y,) p,), P - ,=1

it follows that the components of/ are positive for a sufficiently small. If zi is a
local maximizer of f(xo,’), then we expect that f(xo,’) is locally concave near zi.
Assuming that f(z,.) is concave for a near zero on the line segment connecting y
and zi, we have

(5.18) f(x,, az+(1-a)y,)>-af(x,z,)+(1-a)f(x,,yi).

Combining (5.15) and (5.18) gives us

(5.9 (,s >- (, So + 2 .(f(x, -f(x,y
i=1

Hence, for c sutficiently small, L(I, S) is strictly .larger than L(A, So) unless the yi

are equal to the . Now let us state a more precise convergence result.
TOREM 5.4. We make the following assumptions:

I. X is R, Y is a convex, compac subset ofa vector space, andf x, y) is a concave

function ofyfor eachfixed x. There exists x* in X, afinite set Y* {y* ., y*}
contained in Y, and a muliplier A* with support equal to Y* such that

L(A *, Y* maximumf(x*, y maximumf(x*, y).
y Y* y Y
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DUAL TECHNIQUES FOR MINIMAX 683

II. The Hessian V 2xf(x, y) exists and depends continuously on x near x* and on y
near y* for each between 1 and N. Moreover, the mathematical program

minimize p

subject to x R", f(x, y* p O for --1, N

satisfies the assumptions of Theorem 3.1 at the optimum x x* and p f(x, Y’i)
and if N is the neighborhood ofx* introduced in Theorem 3.1, then we have

L(A, S) inf {L(A, S, x): x N}

for 3, and S in some neighborhood W of (A*, Y*).
III. Forx N there exist local maxima yi(x) off(x,. on Ysuch thatyi(x) approaches

y* as x approaches x* for 1, ., N. Furthermore, yi(x) is the locally unique
maximizer off(x,. for x near x* and for x near x*, we have

maximum f(x, y,(x))= maximumf(x, y).
l<=i<=N y Y

IV. L(A, S) < L(A*, Y*) whenever (A, S) W, A # A*, and S Y*.
Under assumptions I-IV andfor r large enough, thepeak chasing algorithm converges

to A* and Y* starting from any point sufficiently close to A* and Y*.
Proof. We just sketch the proof. For A near A* and for S near Y*, assumption

II implies that there exists x(A, S) which minimizes L(A, S, x) over x in a neighborhood
of x* and x(A, S) depends continuously on A and S. By Theorem 5.2, step (a) of the
peak chasing algorithm is an ascent step for r sufficiently large. Since step (b) of the
peak chasing algorithm does not decrease the value of the dual functional, assumption
IV implies that if the iterations start near A* and Y*, then the iterations remain near
A* and Y*. Since Ak, Yk, and Xk lie in compact sets, we can extract subsequences
converging to limits A00, Y00, and x00, respectively. For convenience, these subsequences
are also denoted Ak, Yk, and Xk. Since Xk minimizes L(Ak, Yk, x) over x X, we conclude
that x00 minimizes L(A00, Y00, x) over x X. Since L(Ak, Yk) is bound above by
L(A*, Y*), the difference L(Ak+I, Yk+I)--L(Ak, Yk) approaches zero as k increases.
Hence, Theorem 5.2 implies that f(x., y00)-p00 is zero for each i. Also, it follows
from (5.19) that the elements of Y are local maxima of f(x00,.) on Y. Combining
these relations, we conclude that

L(A00, I/’oo) maximumf(x00, y) maximumf(x00, y).
Y Ym Y Y

The first equality in (5.20) implies through duality that x00 is the solution to the discrete
minimax problem

minimize p

subject to x e R", f(x, Y00i) <- p for 1,. ., N.

And the second equality in (5.20) implies that x00 is a solution to the continuous
minimax problem

minimize maximumf(x, y).
xR y Y

By assumption IV, A* and Y* are locally unique maxima of L. Consequently, A00 A*,
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684 WILLIAM W. HAGER AND DWAYNE L. PRESLER

Y Y*, and xo x*. It then follows from the ascent property that the original
sequence (not just the extracted subsequence) converges to h*, Y*, and x*.

Acknowledgment. We wish to thank the referee for a suggestion that led to a
shorter proof for Lemma 3.2 and a more direct treatment of the algorithm to minimize
L(A, x, p) over p.
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