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ABSTRACT

For the past twenty years, conjugate gradient techniques have been used with
great success to find the unconstrained minimum of a real valued function. They

have several attractive features to which their popularity can be attributed; the

values of the function and its first derivatives are used, but the second derivatives
are not necessary. There is no matrix to store. The sequences generated by these

iterative techniques show rapid convergence.

The convergence properties of the basic Fletcher-Reeves (FR) version of the
algorithm with restart are well known. We will concemn ourselves with the rate of
convergence of this algorithm and simplifications which decrease the computational
complexity, yet still preserve the desirable convergence rate. We will see that the
basic algorithm with restart is ‘‘n-step’’ quadratically convergent under certain con-
ditions, including a condition on the convexity of the Hessian of the function, as
shown by A. I. Cohen [SIAM J. Num. Anal. 9 (1972)]. Even without the time
consuming exact line searches, the algorithm can be implemented to retain this

desirable convergence rate.

The main result of this work involves a particular simplification of the line
search based on quadratic interpolation which is easier to implement than others
previously suggested in the literature. In the main theorem, which is based upon
work by M. L. Lenard [Math. Prog. 10 (1976)], local n-step quadratic convergence

for this algorithm is proven under certain conditions, and several standard variants



iv

of the algorithm are examined. Results from the numerical testing provide insight
into the behavior of the algorithm when applied to problems which violate the con-
ditions of the rate-of-convergence theorem. Even when the convexity condition is

violated, the algorithm exhibits super-linear convergence.
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Chapter 1
THE CONJUGATE GRADIENT METHOD

For the past twenty years, conjugate gradient techniques have been used with
great success to find the unconstrained minimum of a real valued function. They
have several attractive features to which their popularity can be attributed; the
values of the function and its first derivatives are used, but the second derivatives
are not necessary. There is no matrix to store. The sequences generated by these

iterative techniques show rapid convergence.

1.1. History of the Algorithm

The method of conjugate gradients was first presented in 1952 by Hestenes
and Stiefel [12] as a technique for solving systems of linear equations. It was then
applied to unconstrained minimization in 1964 by Fletcher and Reeves [8], which
led to different implementations by Polak and Ribiere [16] and Daniel [4], among
others. These algorithms are presently used extensively in constrained minimization
solvers such as multiplier methods, where sequences of unconstrained minimizations
of the augmented Lagrangian function are performed. As these unconstrained
minimizations are the most time consuming part of this type of constrained optimi-
zation solver, an efficient simplification of the conjugate gradient method which
retains a desirable convergence rate is attractive. For examples, see Bertsekas [1]

and Hager [9, 10].

The convergence properties of the basic algorithm are well known. Our work
will focus upon the rate of convergence and simplifications in the algorithm which

decrease the computational complexity, yet preserve the desirable convergence rate.



We will see that the basic algorithm with restart has local ‘“‘n-step’’ quadratic con-
vergence under certain conditions, and that, even without the time consuming exact
line searches, the algorithm can be implemented to retain this rate. We will present
a simplification of the algorithm which is easier to implement than others previously
discussed in the literature, and prove that this variation is n-step quadratically con-
vergent. It is-also-of interest to-note that the locally n-step quadratically convergent
algorithm we present can be converted into a globally quadratically convergent

algorithm by following the procedure presented by Hager in [11].

1.2. Basic Notation and Definitions

We will use the following notation.

- R" := Euclidean n-space

- || || := Euclidean norm

- Vf := column vector gradient of f

- H(x) := Hessian matrix V2f (x)

- CE(R™) := space of all k times continuously differentiable functions from R” to R
- Bg(o) = {x:]|x —a| <3}

- superscript T denotes vector or matrix transpose

- let s :R—R, then 5(§)=0 (£) implies r, ¢ <oo s.t. YEEB,(0) |s (€)|<c |E]

The conjugate gradient method is a variant of the method of steepest descent.

The basic algorithm proceeds as follows.

(1.1) Basic Conjugate Gradient Algorithm

Given arbitrary x,eR":



L. g =Vf(x)

2. dy=-g

3. fork=0,1,23,...
i X =X +oyd,

where o, = argmin f (x; + od
 'where oy = _%.U___i_(_k_____ﬂ__.___ -

ii. gy = Vf (X,y); check stopping criterion
i dgyy = =8y + Brdy
where B, depends upon the specific method used.

There are four main variations of the conjugate gradient method. They differ

from each other in the choice of Br. In the Fletcher-Reeves (FR) method:

T,
—8k+1 8k+1

B =
nggk
In the Hestenes-Steifel (HS) method:

B, = (8k+1 — 8) 81
= .
(8+1 — 8)7dy

In the Polak-Ribiere (PR) method:

_ (en - 278k
nggk

B

In the Daniel (D) method:

841 Hydy
B = ——
d; "Hp,,d;

where H, ., = H(x;,)).



The algorithm was originally developed for the quadratic case:
minimize f (x) over xe R

where
1 T T
f(x)=3-x Qx-b'x
and Q _1s a ;ymmet_nc bositive definite n-dimensional matrix. In this case, the algo-
rithm reduces to:

(1.2) Reduced Conjugate Gradient Algorithm

Fork=1,2,3,...

I g =Qx-b

—old
2. Xp4 =X +oydg, where o, = B
o Xpp1 = X+ oy dg, x =
dfQd,
T
2:+1Qd;
3. diy1 = — 841 +Bidy, where By = ——
dfQd,

Note that each of the formulas for B, reduces to this simplified form when applied
to the quadratic problem above. In fact, the method was originally extended to

nonquadratics by reversing this process; the B, term was generalized.

The convergence properties of the conjugate gradient method are well known.
We refer the reader to Luenberger [15, Chapter 8] for proofs of the following
theorems, and a more in-depth treatment of the theory.

(1.3) DEFINITION. Given a symmetric matrix Q, two vectors d; and d, are called
Q-conjugate iff d{Qd, = 0.



(1.4) THEOREM. (Conjugate Directions) Let Q be a symmetric positive definite n-
dimensional matrix, beR", b0, and let {d; }"al be a set of non-zero Q-conjugate
vectors; for any xo€R", the sequence {X, } generated according to

1. g =Qx;-b

........ A

2. X);_;l =_Xk I‘ akak, Vvhere o =
d7Qd;

converges to the unique solution x" of Qx=b after at most n steps; ie., for some
i<n, X; =x", which is also the unique minimum of the quadratic, ?lz-xTQx—bTx.
(1.5) THEOREM. (Conjugate Gradients) Each of the conjugate gradient methods

described above is a conjugate direction method. If it does not terminate at Xk,

then:
1. span {gy, - - .g&]} = span {g5,Qg0 - - .Q¥ gy}
2. span {dp, - - - ,d; } = span {g0,Qgp, - - - Q¥ g}
3. Vi<k-1,d{Qd; =0

4 o gre
Pt dfQd,

g;cr+lgk+1
5. Bk = _T_
&k 8k

When extending the theory to non-quadratic functions, f, we no longer have a

direct formula for oy, at any step; therefore, we perform the line search
min f (x; +od;),
>0

setting o, equal to the minimizer. This is often the most costly step in the



algorithm. We also lose the guaranteed n-step termination from Theorem 1.4.
Thus we can continue on finding new search directions, d;, and stop when some
criterion is satisfied. However, since Q-conjugacy of the direction vectors is depen-

dent upon

dy = —Vf (xp),

another modification ensuring convergence is to restart after every r 2n steps by
setting

d, =-Vf(x,,)
for every integer m. This means that every r-th step will be a steepest descent step,
and thus we have global convergence. Every r-th step will decrease the function

value, and all of the intermediate steps will be designed not to increase the func-

tional value, ie.,

V&, f Xeep) S F(xp)

In what follows, we will assume that restart does occur for some r 2n unless

specifically stated otherwise.



Chapter 2
N-STEP QUADRATIC CONVERGENCE

The first rigorous proofs of convergence rates for conjugate gradient algo-

rithms were those of Powell [18] and Broyden et al. [2], in the early 1970’s. These

ever, they didn’t make use of the following quadratic termination property.

(QTP) The iterations will terminate in <n steps if applied to

a convex quadratic function for any starting point.

Most experts believed that these methods should also converge ‘‘very fast’’ for
sufficiently smooth non-quadratic functions, as they can be approximated arbitrarily
closely by quadratics in a neighborhood of the minimum. So we would expect to
find a bound of the form:

%4 =" |

Il —x* |2

where x* is the minimizer of the function. We will refer to methods which satisfy
such a bound as being ‘‘n-step’’ quadratically convergent. We will present proofs
for this type of bound for all of the methods, and show that even when the line

search is approximated, this convergence can be retained.

2.1. Exact Line Search

Many initial attempts at proving n-step quadratic convergence were incorrect.
Daniel [4, 5, 6] attempted a proof for his own version of the algorithm in 1969; the
proof contained several errors. Polyak [17] also attempted a proof for the (PR)



algorithm in 1969 with no success. Finally, in 1974, after an initial attempt in his
dissertation, Cohen [3] provided a proof of this type of Bound for the three methods
(D), (PR) and (FR). The assumption of restart discussed in Chapter 1 was used in
his proof of this result. We present Cohen’s proof and extend it to include the (HS)
method.

2.1.1. Cohen’s Proof for FR, PR and D

We consider the following minimization problem (MP).

minimize f (x)

where:
(AS1) f eC*R)
(AS2) J0<m <M <o 51. ¥ x,y eR”, my'y <yTH(x)y<MyTy.

The algorithm with restart can be stated as follows.

(2.1) Basic Conjugate Gradient Algorithm with Restart

Given arbitrary x,e R”:
1. g=Vf(xp
2. do =-8

3. fork=0 ton-1do
i. xk+1 = xk + akdk

where o, = argmoin F(xp + adg)
o2

ii. gy = Vf (Xx49); check stopping criterion



fil.  dpyg =—geyg + Brdy
where B, is chosen to be 0 if k = n-1, otherwise the

appropriate method-dependent formula is used.

4. if convergence has not been reached:

i xpex, S
0. 8o € &n

ni. dy < d,

iv. goto 3.

This algorithm will be denoted x;,; = Wy (X, dy). “For notational convenience,
we will usually suppress the second argument, usually writing Xe+1 = ¥r (Xp),
where the dependence on d, is understood. We consider the following theorem as

stated and proved by Cohen [3]:

(2.2) THEOREM. Suppose that the conjugate gradient method (PR), (FR) or (D) is
used to solve the minimization problem (MP), where we reinitialize every r2n

steps; then dc R s.t.

*
X —X

limsup %4 n 2" < ¢ < oo 1)
ke lxg, —x" |

The main idea behind Cohen’s proof is to compare the conjugate gradient
method to Newton’s method. Newton’s method, which we will denote

X1 = P(X), is, for a function f,
D(xe) = x — Hx ) VS (%)

Newton’s method converges locally quadratically to the root x* of Vf(x)=0, for



10

the set of functions satisfying (AS1) with H(x) invertible. Therefore, if we assume
(AS1) and (AS2), we have

lox) - x* | =odlx-x"|?. )

PROOF OF THEOREM 2.2: The proof will be completed in two steps. For
more detail, see [3].

STEP 1: At each point x,,, define the quadratic:
Fir®) = £ 04, )+ V5 (01 Tx =34 )+ 2 (5= % TH, (=33,
where H,, = H(x,,). Let
x,?, =X x,g=‘1’f(x,9,); R ¢ =‘I’f(x,{,‘,'1),

where ‘I’f is the conjugate gradient method applied to £, e With of = oy,

d,g =d, and g,g = g(Xi-). Then the conjugate gradient algorithm satisfies (1) if
| o i i ai = 2 dfe || = O (lIxe, — x* %) 3
fori=0,1,...,j(k)-1, where j(k) is the integer <n s.t.
X = a(fyy) = argmin f, (x)
and
i = a(f,).

PROOF OF STEP 1: First note that j(k) exists because f 1S quadratic with
positive definite H(x, ), and the algorithm will reach the minimum of such func-

tions in <n steps. Since V k, f(x;41) < £ (x;), we know that

F &) = FT) S F(x) — £ (x5).
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Expanding in a Taylor series gives
F&) - F &) =VFE)To —x") + (5 — x)THM)(x, —x°)
= (x;, — x )THM)(x, — x*),

because Vf (x*) =0, where 1 = x; + Mx" —x;) and Le (0, 1). Using (AS2), we

. seethat o o - -

mlx -x"I2<fx) - fF*) <M x —x* |2
Thus
Ml Xy =X 2 S 1F Kee) = FEON S N fF ) = F &) <M x, —x* |2,

which in turn implies

M
I xpe — %" || < \/;{"Xk -x"|.

Using the triangle inequality repeatedly yields

r DN Sn_[.(k»
M 2
1 Xgsn — X" I < - I Xer sy = x* Il
|2
< 2] I
— oy =X |
m | Xhr + (k)
Thus to prove (1), it suffices to show
Xk sjey — X Il = Ol %, = x* 2. 4)
Now,
1Xersjay = X I < WXgpajry — Fe) | + 1l alfi) = x* ). ()

Note that:
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o(f i) = %, — (H(x,, ) IVS (Xir)-
This is just Newton’s method applied to f at x,. Thus;
lalfir) = x* | = 10, - x* | = O (I x,, —x° |2.
Plugging this into (5) yields:
. e xS0t =X P F X =l
So we have reduced the problem to showing:
I X +j@y — ¢ | = %4 ey = X6 = O (I % — x* 2.

Since x;, = x2, we have:
. Jk)>1 . .
IXesjoey = PN < 1Y [Kersing = Xerwi) = &5 —xi01])
i=0
Jjk)-1 P i
<Y (owsides —apdi)ll
i=0
Jjk)1 i ai
< Y logydey — apdi .
i=0
But by (3), each of these terms is equivalent to O (|| x;, — x* [|%). Thus, (3) implies

(1), and the proof of step 1 is complete.

STEP 2; It remains to show that (3) holds for the various conjugate gradient
algorithms. We will use the fact that with reinitialization, these algorithms do con-
verge to stationary points of f. The following lemmas are needed and hold for all
values of k #r given (AS1) and (AS2). Lemmas 2.7, 2.10, 2.11 and 2.12 below
are the only lemmas actually cited in the proof of Step 2. However, each lemma
builds upon the previous ones, and we will need to see this relationship more

clearly when we extend the proof of the theorem to method HS. For proofs of



these lemmas, see [3].
(2.3) LEMMA. a) gld, =-gfg,

b) gE+1dk =0

T 1

&c 8k A~
c) o4 = ——— where H, = |H(x, +Ea, d,)dE.
k dEdek__ki[(kgkk)g

(2.4) LEMMA. a) |l d, 112 = ll g II? + B2 di |12

b) llgcll<ld.l

Il g I2 < | g I?
difH d, — ml d|?

1
&) loyll = <Ll

M
d) lgeall < l:l'*'?n"jl"dk ll.

T ~
H.d
(2.5 LEMMA. (PR) B, = X1 k%k
dfH,d,
+g.)TH, d
FR) B, =1+ (841 T%k) kO
d;H,d;
T
gr+1Hpdg
@) Be=—F——0.
dy Hy 1 d;

(2.6) LEMMA. (PR) and (D) |B,| < [1+%J%

2
FR) 1Bl < [HM-J-
m

13



14

(27) LEMMA. a) gl <M x, —x"|
M 2
b) lldeall 52[“‘;{' I dg |l

It should be noted that these lemmas also hold for the conjugate gradient method

operating on f;, with X¢, X;41, 8, dg, O, By, ... replaced by x,, xi*L, g, di.,

ot BL., ..., respectively. Also note that
Hj = A}, =H,
since V3f,, is constant.

PROOF OF STEP 2:  We start with the following assertion;

(2.8) CLAIM. Let {x;} be the sequence produced when one of the three conjugate

gradient methods is used to solve the minimization problem (MP). Then
d, -0
and
et sidgrsi = i | = O (ll di 1) ©)
fori=0,1,,..,jk)-1, where, V k, the convergence variable dy, is setto — g, .

Note that if this claim 1is true, then since, by Lemma 2.7a,
I & Il <MlIx,, —x" ||, we will have proven (3). The proof is given in detail by
Cohen in an appendix to [3].

2
PROOF OF CLAIM 2.8. By Lemma 2.7b, || dy., ]| <2 [1 + %J Il dg I, so

23i
M
I i1 < {z[n;;] }udh u
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for i =0,...,j(k)-1. Since this algorithm converges, Lemma 2.7a implies that
g — 0; thus d;, — 0 and by Lemma 2.7b, d, = 0. To show (6), assume that k

is a multiple of r. The proof is by induction, and requires one to show:

lotesidiys — ofdill = 0 (fl di 1P (7a)
ldei —dill =0l d. 1® )
g — gl =odld, 1% (7¢)

fori =0,...,j (%)—1. We use the fact that the algorithms converge, ie., X = x,

where V2f (x*) = 0. We need the following lemmas from the appendix in Cohen’s

paper [3] to continue.
(2.9) LEMMA. a) | Hy,; - Hll = 0(llde 1)

b) | He, —Hell =0 de ).

(2.10) LEMMA. (PR) and (D) [l disisy — 4"l = Ol dys — di ) + O (Il 4, |

+0(| Sk+i+1 — gl£+1 I

(FR) lldiyinn —df =0 des; = diD+ Ol d, D
+ 0l gy — g D+ O( g — gt

(2.11) LEMMA. | gyiy — 87 I <Ol gews —giD + 0 (14, 1D

+M| O 4ileyi — alidlg Il

(2.12) LEMMA. | 0y diy; — afdf | = O(llgsi — gD + Ol d, |2

+ O ([l dgy; — dilD.
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Now we continue with the proof by induction. For the base step i = 0, we

have
logd, — afd? =0
ld, —d2 =0

- bege-glh=0

because k = r! for some integer /. Now assume that (7a), (7b) and (7c) hold for i;

we must prove them for i+1. By Lemma 2.11 and the induction hypothesis,

leisio — 8l <Ol gess — gE D + Ol de 1D + M || o1 dp s — aifdi |

=0 ([l d. 3.
By Lemma 2.10, we have
ldesin = dE = Ol s — af ) + Ol de 1D + O (Il gevinr — i1

and

I desinn = diF = Ol des; — di ) + O di 1) + O (N gsinn — &)

+ 0 (|l gesi — g,
the first for (PR) and (D), the second for (FR). So, by induction, we have
ldesivs = di* =0 (llde ID

and finally, by Lemma 2.12 and induction:

" O i1 Deie1 — al£+1dl£+l " = 0(" Bk+i+1 — gl£+1 ") + 0(" desiv1 — dl£+1 ")

+o(ld. %

=0 (4, IP. i
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2.1.2. Cohen’s Theorem Extended for HS

The proof given above can be extended easily to include the HS method.
Remember that the proof is completed in two steps. The first step is contingent
upon known results from the quadratic case of the algorithm. The place where the
specific formula for B comes into play is in the second step, in Lemma 2.5. The

- following addition to Lemma 2.5 will allow the proof of step 2 to be extended to

HS.
T ﬁ d R 1

(2.5%) LEMMA. (HS) P, = g"+‘."—" here H, = [H(x, + oy dy)dE.
dyH,d, 0

PROOF OF LEMMA (2.5%): By definition of the HS method,

B, = Bes1 = 8) Besr  Bhr1(@es1 — 8)
k = = :
(841 — 86)dg df (841 — &)

By Taylor’s Theorem,

i1 =8 — o Hid,.
Therefore,

B, = gen(-o Hede)  glaH,d; ”
k - ~ - ~
df o H,dy) d{f,d,

Note that the conclusion of this lemma for HS is identical to the conclusion
for PR in Lemma 2.5. The rest of the proof of Step 2 for HS proceeds in the same
manner as that for the PR method. We have now established n-step quadratic con-
vergence for the conjugate gradient methods PR, FR, D and HS with exact line
search, under conditions (AS1) and (AS2).
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2.2. Inexact Line Search
The most time consuming step of any conjugate gradient algorithm is the line

search performed to update x:

X1 = Xg + 0 d;, where o = argmom F(xp + adg).
o>

————Since this minimum is rarely attained computationally, the effects of inaccuracy
here are of great concern. We will present an analysis which will answer the ques-
tion, “How accurate do these line searches have to be in order to preserve n-step

quadratic convergence?”’

In 1976, Lenard presented a proof of n-step quadratic convergence for the con-
jugate gradient methods FR and HS with inaccurate line searches [14]. The condi-
tions imposed on the function to be minimized are slightly different than those of

Cohen. (AS1) is weakened to

(ASIW) [ eCXR™);

(AS2) is retained as stated previously:

(AS2) J0<m <M <o st Y x,yeR*, myly<yTHx)ysMyTy;
and a new condition on the Hessian is added:

(AS3) JLeR st VxeR® |[Hx) -HE*)| <L |[x-x"|.

This last condition is refered to as a second derivative Lipschitz condition. The

algorithm proceeds from x; to x;,; as follows:
Xps1 = Xg + O dy,
where o, approximates what we will henceforth call oz,: :

* .
o, = argmin f (x, + oad,).
£ ga)of(k k)
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The method then updates

A1 =—8rs1 + Beds
as before, where B is selected using either the FR or HS formula. We assume that

the procedure is restarted every r 2n steps. Lenard [14] proves that given

(AS1IW), (A§2), (AS_3) and certain conditions on the line search, the conjugate gra-

dient methods FR and HS are n-step quadratically convergent. We present her
proof in the next section and then extend the result to include the PR and D

methods.

2.2.1. Lenard’s Proof for FR and HS

The method of proof will be to compare n stepé of the conjugate gradient
method with inaccurate line searches applied to f, to n steps of the same method

with exact line searches applied to the quadratic approximation
Q) =7f&x")+ -;—(x - x")THE")(x - x*).

Note that
IH&) - V,0x) || <L [x-x"|.

We will use the following notation to distinguish between the method applied to the

original function and the quadratic approximation. We set x, = x§ = x{.

For the quadratic, Q, let
g€ = Vo (P
x2, = x£ + o 2dg
a1 =-g, + pPdg
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Note that ngTde <0 and ggfld,? = 0 because Q is quadratic and the line searches

are exact,

For the original function, £,
gl = Vf &x{)
- — xfy=x[+ofdf e
{1 =-gfn +Bldf.

We will need the following lemmas from Lenard’s papers [13, 14] to present

the proof of n-step quadratic convergence.

(2.13) LEMMA. Given (ASIW) and (AS2), Y x,x’eR"”
m|x-x| < |VFfx) - VA &) < M [Ix - x’|.
(2.14) LEMMA. Ifx* is the minimizer of f satisfying (ASIW) and (AS2), then
2 2
(2.15) LEMMA. If x* is the minimizer of f satisfying (ASIW) and (AS2), and if

for two points x,X’, f (X) < f (x), then

3

M |2
Ix" x| < [;;J Ix—x*|.

T
d
(2.16) LEMMA. Suppose that g[rd[ <0 and 6, = Bl df for 06, <1-n,

glldf
where 0<n<1. Let @ be s.t. |x2 —x"|| < w and | x{ —x*|| < @, and suppose
that3a >0 s.t. | d2| 2 a | g8, then
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ld&, - dfsll < By Ix2 —x{ || + Byl d@ - df|| + Bsw® + B8, 0
for B; > 0 depending only upon m, M and L.

Using these lemmas it can be proven that the conjugate gradient methods HS
and FR are n-step quadratically convergent with inaccurate line searches, provided

that the line searches become more accurate [14]:

(2.17) THEOREM. If 6, <K | Vfxpl, k =0,1,...,n=1, with 0 < 0, <1-n,
0<n<1 for x4 in a neighborhood of the minimizer, x*, of f, where K and 1 are

positive constants independent of k ; and if the procedure satisfies:
i) A quadratic problem is solved in at most n steps with exact line search.

i) da>0 depending only upon m and M s.t.

a2l = allgll.

iil) Under the hypotheses of Lemma 2.16,
1d&; - dfill < CiI1x@ —x[]| + Co[|d2 - df || + C30? + €8, 0,
for positive constants C; depending only upon m, M and L.
Then:
Ixf —x" || < 8llxo - x" |2
where § is a constant depending only upon m, M, L and K .

First we prove the theorem in general, and then we check the various
hypotheses for methods FR and HS.
PROOF OF THEOREM (2.17): Let w = (xg,dd)T denote the starting point with
do=—go. Consider two other starting points, # and v with u = (x],d])T and

v = xJ,dNT, where
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d, =-g, =-Vf(x,),
d, =-g, =-Vf(x)

and
Ix, =x* I < %o = x* |,

— e R o

Two sequences of points can be generated:

ey = Vr@f) and v, =¥, D),

with ¥ defined as before, as one step of the given conjugate gradient method
applied to the function noted in the subscript, letting uf = u and v@ =v. To dis-

tinguish the two parts of the 2-n vector, we use the following notation:
uf = &[@)",df[@)NT and v€ = x@W)T,d2w)NT.

3
2
A= [”‘—:-J , M >m implies A > 1. Lemma 2.16 and iii) applied to % and v

give:
Ix{@) - xPo)|| + Il df @) — df)| <

Di|x, —x,[| +Dy|ld, —d, || + A2Ds]|xg— x" |2 + AD 8yl xy — x" || (8)

where D; = B; + C;. From the hypothesis and Lemma 2.13, we have:

Bp SKM || xy—x" |. ©)
So,

I x{() — xPo)]| + [l df ) - dBw)| <
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<SR(Ix, -x, [+ Ild, —d, D+ S Ix—x" |2 (10)
where R =D, + Dy, and S = A?D 5 + AKMD,. We show by induction that
Ixfi1G) = x|l + | dfa@) - d€,00)] <
<SRHM(|x, —=x, |+ [1d, —d, D+ S % —x" [2A+R +...+R%). (11
~ When & =0, (11) is true by (10). Assume (11) for . We must show that (11) is
also true for k+1.

By Lemma 2.15, we have
Ixf@)-x"I <Allx, —-x" | <A]x-x"|
Ix@w) - x" <A lx, —x" | <A llxp-x"|.
Then, by ii), iii) and Lemma 2.16:
Ixfi1@) = x&10)1 + | df @) — d,0)l <
SR(Ix, -x, [+ 1d, —d, D+ S xo—x" |2
By induction:
I%f1@) = xGa )l + 11 df0@) - d8,0)l <
<Slxp—x"2+R{S|xo—x" |2 [1+R +...+R"‘1]}
+RR (%, = x, || + Il d, - d, D)
=S|xo - x" [PA+R +...+R*) + R*Y(||x, - x, | + |l d, - d, ),

which is exactly (11) for k+1! Thus (11) hold for all k. Now let k=n-1,

u =v =w; using i):

Ixfw) —x* | <Rl g@ — gfI) + S | xo — x* [2A+R +...+R* ), (12)
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and, finally,
e - &fll = 1V?2Q(xp — x*) — Hp(xp — x*)||
<[V - He [Ix-x"|

where H; = V2f (%) for X =Axy+ (1 - A)x* with Ae[0,1]. Using the Lipschitz
__condition: - - e

le® - efll <L lx-x" |12

Thus (12) becomes:
Ixf —x* | < 8ll%—x" ||
for xg in a neighborhood of x*, where §=S(1 +R +,..., +R*Y)+R"L. JJ
Now that the theorem is proven, we can use it to show that the FR and HS

methods are n-step quadratically convergent. For further detail, see [14]. We check
the hypotheses for each method.

i)  This hypothesis is satisfied by both since they each will solve the quadratic

problem with exact line searches in <n steps.

ii) This is also met by both methods. Since d2; =-g&, + a2dg, we have

1@ 1% 2 188 1? + Il 2202

from which it follows that
12,12 > [ g%

iii) We need the condition in Lemma 2.16 to be satisfied, namely gf7df < 0. This
condition guarantees that each search direction is a descent direction. For FR,

we need 6, 2 0 which is one of the conditions of Theorem 2.17. For HS, we



need the added condition,

ekg[+1Tdkf <| g[+1 "2
Next we verify iii) for each method. For both metliods, we have

a8 — dfuill < 1881 - gl ll + I BRAR - BLaf|

e e e et il
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< lgl:-voxlyl+ Vo xfa)-glall
+ |B2IId2 - df |l + | B2 - BL| I d]].

Applying the Lipschitz condition and Lemmas 2.13 and 2.16, we get

3
M
a8 - dfall s MIxE; —xfll + L |[= | [[xo—x" |2
m

+ BRI g — af |l + | B2 - B/l /1.

Now, we will consider each of the terms in (13) individually.

We can bound || x&; — x{,; || using Lemma 2.16 to get:

148, - dfnll <MB,IIx2 - x[|| + B,| 42 - df | + B3w? + B 46, 0)
3
+L[%J %o —x* >+ | BRI d@ - af || + | B2 - BL |l df]l.

Next, to see that | B2| is bounded, first note that,

2&. V0 dP

= evioap

(13)

(14)

This follows for both methods from the definition of B, because Q is quadratic.

Using ii) and Lemma 2.14 we have,
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|B2| <

(15)

Mgl llell [M ]%.

< — |—
m|ld2|lg2l — a|m

Now we consider |BZ — Bf ||l df| for methods FR and HS.

The formula for B, in the HS method yields

T 52 _ B/ = (88,78~ D) _ela'ela-ghD|
a2l -2  dfeli-gh
Further,
_ |88, "Hg, a8 gkf+1Tﬁ[+1dkf
PR [aﬂn&ag oo }

where ﬁ[+1 =V &), x=Axf+(1 - AMx/,, for some A, 0SA<]1. Norming both

sides and clearing denominators yields:
|BE - BLI (m2|| d@12l af P <
< | e&,"HZ,d2af"H[, df - gf.,"[,;d[d€"HE, a2
< g8 "HE 2] - d@TH, 0/ | + |28, HE @@ - af)afT ], df |
+ | ef"HG dfa@ Tl af - aD) | + || @B - ef.)HE dfagTR], a2
+ lel" @&, - Alafaf R], 10| + | gf,," AL, a[af"FL,, - HE AL
<3M>| g€ I a2 af 1N a2 - af | + M2)| a2)2 | af | g81 — gl
+2M || gl Il df || a2 HE, - FL,, |l

This implies that
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I8
IB?-B[IIId[IIs3[mJ o]

M2
|
m

Using the Lipschitz condition, Lemma 2.13 and Lemma 2.14 gives:

——or 142 - d{||

I g8 - gl ll + ;2’% lelo I HE, - L, a6

3
M
le&i - efull sMx2; —xf |l +L [Tn-] %o — x* ||2. 17
By Lemma 2.14 and ii),

8l _ NeBallefl _ 1[ ]%.

- (18)
la2l — leflld@l ~ a
By Lemmas 2.13 and 2.15,
3
* M 2 *
gl s M| xf,; —x IISM[;;J Ixo —x"||. (19)
Finally, by the Lipschitz condition and Lemma 2.15,
IHG, - Bl sLIgx-x"| SL(x{ - x" | + Ixf,, - x" )
3
2
<L|1+ [%:-J Ixo—x* |. (20)

Thus, substituting (17), (18), (19), and (20) into (16), gives:

3

|ﬁ8—s{|||d{||ss[%]"’§||d£ o/ + 218, - Ll
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3 3

5 3 3

2 2

+L[ﬂ} ||x0_x*||2+2_Mf[M_} [1+ [ﬂ}
m m2 |m m

Combining (14), (15), (21) and Lemma 2.16, we get our result for HS.

Ix-x"2. (1)

We investigate | B2 — Bf||| df|| for FR. By definition,

_ rggi-l'rggi-l gkf+1Tgkf+1_ 1
e -pi= l e'ef  elsl J

which gives
|B2 - BL Il @Il gf 112 <
< lefi"efel el - el el 1eP eP
< |21 "2l - @l + Il @B — ef11) 2R 128"e/ |
+ leln"efuef @l - e + el @81 - ef.02f 22|
< leéilPlelll el - g2l + N2l el I ef Il g8y - el
+ lelulll @i Il 22Ul el - 21 + ll gl ll I 281121 81 — gl |

This implies that

182 - B l1ef] < [ug&uz . ||g&||]

12l el
[ ""g‘jg"" 16— gfl + g8 - el ||}.

By Lemmas 2.13 and 2.14, and (17),
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1

IB?-B[IIIg[IISZ[%}Z

3

1
X M[%Jzﬂxkg—x["+M||X/g,1—x[+1||+L[%l4_] Ixe - x* |12 . @2)

For both @ and f superscripts, we have

dp =—g; + Br_ydi_s-

So
e l?= 1l g I? + B2 Il dey 112 - 2B, _g7d,
which implies that
ld. > 28 ge Ay + B2 I dp I
=1=2P [ r———
g I lee I I g I?
=1+ 2T cos¢p + T2,
T
. di._
where T = - ""—khl[ik_l and cosd = T k" 21 ld¢_1ll. Thus we have,
8k
I dg |12 ) 2
2S1+2|T||cos<|>|+|T| SA+|T)) (23)
el
or, using the definition of FR’s B,_;,
Ndel lgel? ldeyll
S1+ITI=1+ 3 .
Teell lgei 1 leel

By Lemma 2.14



30

[l de |
Il

| de- |

<1+ |T| <1+ M _—
m | | gl

If dy = —gj, then this recurrence relation gives:

lal ka[y 13 a4 13
Tl “Z|m| SZ[m| =%

j=0 L™

for k=0,1,...,n. So we have,

ldell <R |lgl.
Using these inequalities (with superscripts) yields:
1
|88 - Bl 1= lafll < B2 - B{ I &/
and thus, using (22),

1 1

: M[%-Fux,?-x[u

2

|B2 - B/l af] < 2R [ﬁ”{-}

3
+M||x&1-x{+lll+L[%—} Ix— x* II}. 24)

Finally, combining (14), (15), (24) and Lemma 2.16 gives us our result for FR.
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2.2,2. Lenard’s Theorem Extended for PR and D

In order to show that the theorem holds for the PR and D methods, we must
also check the hypotheses of the theorem for them. First note that i) and ii) are
satisfied by PR and D using the same reasoning as for the FR and HS methods in

the previous section. The real difference comes in iii). We first need to check that

each direction is a descent direction. Here, as for HS, we need additional condi-

tions on the line searches.

We ignore the superscript f momentarily. In general, to check that g,'crdk <0,

consider:
gdd, = gl (- g + Brydy_y)

=-gig + Be1gld

= =181 + Bro16¢1851dp . 25)
We will use induction. For k¥ = 0, we have

g0do=—gdgo < 0
for both the PR and D methods. Now we assume (25) for £ and prove it for k +1:
810541 =~ 8F18es1 + BrOrgldy.
For D, we have

T
8r+1Hd,
810kt = = lgesa |2 + ———0,gld,.
k Hep1dg

It is easily verified that the added condition g,'cr,,lHk,,ldk 0, = 0 guarantees descent.

For PR, we have

—
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(8r+1—80) ka1

gl;r+1dk+1 == llges 2 + T 6,87 dy.
8k Bk
. - T | gt 2] & 112
Here, again, the added condition 6(g;,;—g;) g4 2 T4 guarantees
8k di

descent. In her paper [14], Lenard suggests the condition on the line search for PR,

but deesnot show the proof of n-step quadratic convergence. Next we need to
show that iii) holds for PR and D. Our proof will proceed in essentially the same
fashion as Lenard’s proof for HS and FR given above. First note that the inequali-
ties (13) and (14) also hold for PR and D using the same reasoning as for FR and
HS. It remains to bound | B2 — Bf||| df|| appropriately for PR and D.

For D,

82 _py = |SPiBBdR _ eliHfaf
dg'HG 4@  d[H[,df |

Using (AS2) on HZ,; and H{,, and clearing denominators, we get
|B2 - BL| (| d2I2 af |® <
< | e, " HE, dPd[ ™1, df - gf,,"H[,,d[d2HE 42|
< lg&:"HE,d2d{ - dD™HLdf | + g8, "HE @@ - af)df™H], d{ |
+ |ef1"HG, afa@"H, (af - dD)| + | 28, - gf,)"HE, d[dL H/, a2
+ lel" @8,y - HL,)a[d@™H, a2 + || g/, "H], afa@"®[,, - HE )d2|
<3M%| gZ. Il a2 af I d@ - af | + M2 212N af ) g8 — gl
+2M | gl I af I a1 HE, - B, .

This implies that



33

M| lgdil
|ﬁ/9-ﬁ[|||d[||53[7n-} 192 Id@ - df]|
+ [%} g1 - el +2;M2—|| glallHE, -H{, . @6

Using the same reasoning as for HS, we have that (17), (18) and (19) also

hold for D. Also, by the Lipschitz condition and Lemma 2.15, we have

- 13

M |2
I8&, -H,l <L|xf,-x" <L Tn-J Ixf - x*|
- 13
2

M
m

Thus, substituting (17), (18), (19), and (27) into (26), gives:

<L . 27

5

1B - B/ df] <3 [%{-F% 142 - of I+ 2L | x@, - xf

m

5 : 3
M M
+ [Tn-:lL"xo—x* "2+LM[Tn-:| (J)"X()—X‘.r II (28)

Combining (14), (15), (28) and Lemma 2.16, we get our result for method D.

Lastly, we must investigate | B2 — B/ ||| df || for PR. By definition,

@21 -8d"88:  @la-eh"el,

e - B = ge? el'el |

which gives
182 - BL 11 22PNl el 1? <
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<| ng+1Tde+1 - ngT 8/9+1 I g[ 12+ | gkf+1Tg[+1 - g[r g[+1 I ng 12
< g2 Pl ef 12+ g2l el el 12 + lgfe 121 2812 + I gf I gfoi 1l 22112

This implies that

leli >  llgl,l I gl
1B - B gfll < gl + + lglull |—— +1].
L!!EEHZ —telh+— tteft—1
leful  lg8yl 3
2
By Lemmas 2.13 and 2.14, both —ottll 4ng M8eal o o [ﬂ] . Also, by
el el m
Lemmas 2.13 and 2.15, |
3
M2
”g["SM"xIc_X*HSMI:Tn'} I xo—x" |l
and
3
M |2
Ilg[+1|lSMIka+1-X"IISM[7n-J Il xo - x"|.
Therefore,
1B -Bflllelll <Cilixg—x*| (29)
3 1
2 2
whereC1=M[M-J M-+2[M-} +1].
m m m

Using the same reasoning as for FR, (23) also holds for PR:

I d, |12
lee I1?

Using the PR formula for B,_;, we have

<1+2|T||cos¢| + |T |2 < 1+| T )2
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d - 8- di-
9] gy Jemmallad T
Te.] lealP e

lgell Ndeoall  Ildey ]
<1+ + .
leeall leeall el

As with FR, if dy = —g;, then this recurrence relation gives:

fdell k2 2 2
- n
Mal soim 2o fm |2
"gk" j=o ™ j=o L™

for k=0,1,...,n. So we have,

ldel <R gl

1
- 2

where R =1+ [M-}
j

L A
n oM |2 n oM (2 ] . s :
— | + Y [— | . Using these inequalities (with
m 2| m m

j=0

superscripts) yields:
|B2 - B[I%Hd[ll <|IBE-Bllllelll s Cillx-x"|

and

1BE - Bl dfll < CiR % —x"|. (30)

Finally, (14), (15), (30) and Lemma 2.16 give us our result for PR. We have now
shown that the conjugate gradient methods FR, PR, HS and D applied to a function
satisfying (AS1W), (AS2) and (AS3) are n-step quadratically convergent provided
that the line search satisfies the condition YV k = 1,2,...,n-1, 6, <K | g, where

0<6,<m, 0<n<1 with | and K constants independent of k.
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Chapter 3
A REPLACEMENT FOR THE LINE SEARCH

There are several difficulties with Lenard’s theory for conjugate gradient
methods with inaccurate line searches. Finding a step-size which satisfies the con-

_dition on the line search may become very complicated, requiring several trial step-

sizes. Each of these trials involves calculating the gradient, evaluations which can
make even inexact line searches very expensive. We will present a different condi-
tion on the line search and a particular simplification which preserves the n-step

quadratic convergence.

3.1. Justification for the Replacement

Consider the following proposition [11].
(3.1) PROPOSITION. Let ¢(s)eC3([0,0)) and let m(s) and M(s) denote the
minimum and maximum of ¢” on [0,s]. If ¢'(0) <0 and m(b)>0 for some b>0
with ¢(b) < ¢§(0), then the quadratic that interpolates the value and the derivative
of ¢ at s =0 and the value of ¢ at s =b has a minimizer o. If, in addition, ¢ itself

has a local minimizer, o > 0 with m(a') >0, and

M (max{b,o” D <
m(max{b,a*}) =

then

3@
m(max{b,a’}) osmrffx’fb.allq) @)I-

la—a'| <

This proposition implies that under the appropriate assumptions, the approxi-

mation, «,, to the exact minimizer, o, found by one quadratic fit for
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¢(s) = f (X1 + sd,_;) would satisfy the condition

* 3(a*)2 rr7
oy — o] - 0G5

—_ max
ml dpy|?  Osssmax(a,o)

———il

Note that
I _TW__T 2. asf(Xk-'-Sd_k)ddd. _
B i,j,zl'=l ax,-axjax, i J ’i
83f(xk +Sdk)
< dd. R
S TG Hallg

assuming that d, = (dl'dz'...,d,,)T and x; = (xl'xz'...,x,,)T. But we know that

|d;| < || d ||, and since

o f (x, + sdy)

| ox; dx; 0x; [sv<e,
we have
|6™ ()] <3nv]d, |
This implies
o — o] < 2eYnvid P
T mlar
or

I (ox — ap)dell < c [la”d |2
where ¢ €R, ¢ >0.

We propose to use this as a general criterion on the line search in the conju-

gate gradient method. Since the error here is squared, as suggested by Proposition
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3.1, the overall n-step quadratic convergence of the method should be preserved.
We will show that with this condition, the following algorithm will converge n-step
quadratically.

(3.2) The Modified FR Conjugate Gradient Method

Given arbitrary x,eR":

1. go=Vf(xp)
2. dy=-g
3. fork=0 ton-1do
L Xpp =X + 0 d,
where o, is found by one step of any univariate minimi-
zation scheme with || (o, — o*)d, || < ¢ [lo* dp, ||2
iil. g4 = Vf(x44); check stopping criterion
. dpyy = — a1 + Brdy
where B, is chosen to be 0 if k =n-1, otherwise
B, = gk+1:gk+l
8k Bk
4. if convergence has not been reached:
i. xpex,
i, gye g,
ii. dy e d,

iv. goto 3.



39

3.2. N-Step Quadratic Convergence

Before proceeding to the proof of n-step quadratic convergence, we will gen-
eralize Lenard’s work with inaccurate line searches presented in Chapter 2. Again
we will assume that the function, f, to be minimized satisfies conditions (AS1W),

(AS2) and (AS3), and Lemmas 2.13, 2.14, and 2.15. We will prove the following

~variations of Lemma 2.16 and Theorem 2.17.

(3.3) LEMMA. (Generalization of 2.16.) Suppose that g[r d[ <0 and
_ g{HTdkf

 gl"af

Ixf —x* | < w, and suppose thatJa > 0 s.1. Id2Il = a | gBll, then

0, for 18] < 1-m, where 0<n<1. Let @ be st. | x2 - x* || < w and

148, - dfill < By IIx€ - x{ || + B,|| d€ - df || + Byw? + B,|6, |®
Jor B; > 0 depending only upon m, M and L.

(34) THEOREM. (Generalization of 2.17.) If 18, | <K || VFf (x|,
k=0,1,...,n=1, with |8,]<1-m, 0<n<1 for xy in a neighborhood of the
minimizer, X", of f, (with K and M positive constants independent of k;) and if the

procedure satisfies:
i) A quadratic problem is solved in at most n steps with exact line search.

i) da>0 depending only upon m and M s.1.
a2l 2 a gl
iii*) Under the hypotheses of Lemma 3.3 and ii),
181 = dfiyll < C1lIx2 - x{ ] + C,l @ - df || + C30% + C 4] 6; oo,

Jor positive constants C; depending only uponm, M and L.
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Then:
Ixf - x" | < 8]l xp - x" ||
where 8 is a constant depending only upon m, M, L and K.

Note that the only changes in the statement of the lemma and the theorem con-

cemn 6;. Lenard’s condition that 0 £ 6, £1-m, 0 <7 < 1 forces the line search to

approach the minimizer from the left side only. We choose not to limit the line
search in this way, requiring only that |0, | < 1-m. The proofs follow Lenard’s
[14] very closely, the major differences occuring in the proof of the lemma. We
will prove Lemma 3.3 in detail and highlight the differences between Theorems
2.17 and 3.4.

PROOF OF LEMMA 3.3:  From the definition of X,
%G1 — xLall = I1x@ + «2d@ - x{ - ofd[||
< I1x@—x[ll + @] d2 - dfll + | o€ - af| I d{]l.
Then
1%€1 = xfall < 1x€ - x[ ]l + | 2|11 d2 - d{ |
+ (@ — o | + o — of DI df ]l (31)

We will consider each term in (31) separately. Note that ocg is determined by the
fact that gngdg = 0. But, by Taylor’s Theorem,

gl = gP + a2 V¥Qd2.

So

of = —s#df

~ df'vigag " ma’
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Similarly, letting %,,; = x{ + o df, (ie., Vf (%,,,)7d, = 0,) we have
0= Vf (xf + adf) = Vf xf) + o V3f ®)Tdf,
where X = (1 — K)x[ + A%, for some A e [0, 1]. Therefore, we have

of = ;gkf_ri
- d™H&d]

Using Lemma 2.15 and the hypothesis on w,

3
- * * * M 2 *
Ix—x" < lixf-x" I+ Ixfy-x" <0+ l—’;] Ixf —x* |
3 3
Sw+ [ﬂlzm = |1+ [—Mr . (32)
m m
Now,
0f — ol = gl'dl  gflag
“" a"amdf  af'vipdg’
which implies that

d{"H®A)aFV?Q a@)af - o) = g d[df"V20 a2 - gTa@d[TH )4/,
which implies that
m?| [ |2 d21*| of - o | < lgf"afd€"V?0dP - gf"dLd{TH(%)d{ |
= | gf"a@d{™M(x)d{ - g{"d[dZ"V?0 d2 + gfTdLd{"H(%)d?
+ g@Tdfd/TH®)d2 + g@Td{dg"H()d2
+ gfa/d@™H(%)d2 + gf"d{dZ"V?Q d@|
< | g€ dRa/TH(x) 4@ - af)| + |g€" @2 - d))a[TH®)d2]
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+ |lefa[@] - dDTH®AR| + | @ - gy d[df"H%)dg)
+ lg{"afa@" M) - V?0)dg|

<3M g2l a@lliafl d@ - afll + M || af |1l a2l g2 - g/ |
+L I gfIafIl a2l % - x* .

This implies that

Il
EHl

m?|df ||l - o] < 3M 1d2—dfll + Mgl -gfll

+L1gllll%-x"|.

Using Lemma 2.13 and the hypothesis,

M
m?laf 1o - o] < 2L ap - af] + M2)x@ - xf]

+ML | x{ - x" 1% - x"|.

By (32), we have

o — o1l df | < A 12 - af ] + A5l x€ — x[ || + 452, (33)
3
2
where Ay = 222 A= M2 and Ay = ML |1 + [ﬂ] .
am m

Finally, we consider |oy; — oof ||| df||. Let ¢(ct) = f (x{ + ad[); then by Tay-
Ior,

-
oy

(o) = ¢’ + _[[q;"(t )dt.
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——

But
0'(0) = Vf (x{ + egdTdf = 0
and
-¢'(of) =—-gf.,"df =—0,g/Td/.
So, — T

-0,gfTdf = I[¢”(t)dt,

which implies that

.
oy

|6, g{Tdf | = lj[¢"(t)dtl 2 [m(ag - of)ll df |12]

or
|6 gl dfll 2 m o — af |1 df ||
This implies that
| 6 |
lo —of |1 df]l < — llgfll.
By Lemma 2.13, we have
|6 |
lof —aclllaf] s —=Mo,

which, combined with (31) and (33), implies that
1
Ix&1 = xfiall < Ix2 - x[1| + %Ild/?—dkfll +A,l1d@ - df|

+ALx2 = x| +Ase? + Mo, o
m



=B, |x2 - x{|| + Byl d2 — d{|| + B;0* + B4| 8, |. I

Now we examine the changes imposed on the proof of Theorem 2.17 when the

hypothesis is changed, and Lemma 3.3 is used instead of 2.16.
PROOF OF THEOREM (3.4): We begin in the same fashion, letting
————w=1xg,dg ) denotethe-starting point with-dg=—gg and considering twoother ————
starting points, ¥ and v with u = (xJ,dNT and v = x),dN)T. Now we apply
Lemma 3.3 and iii*) to # and v to give:
Ix{@) - xP)ll + Il df@w) - dPo) I < Dylix, —x, 1| + Dol d, —d, |
+ADsIxg = x" I + AD 4 8ol ll %o — x| (34)
where D; = B; + C;. This is the same inequality as (8) in the proof of Theorem
2.17, except for the addition of the absolute values around 0,. The proof continues
on as before, now with

|6o] < KM [ xo—x" | (35)

This is just equation (9) from the proof of Theorem 2.17, again with the additional
absolute values. The proof continues, using (35) to substitute KM ||x, — x* || into

(34) for | 6] just as in the proof of Theorem 2.17. The rest of the proof of

Theorem 3.4 is exactly the same as that of Theorem 2.17. 1/

Now consider the following Theorem.

(3.5) THEOREM. When used to minimize a function which satisfies (ASIW), (AS2)
and (AS3), the conjugate gradient algorithm 3.2 is n-step quadratically convergent

in a neighborhood of the minimizer.
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The proof of this result will rely on the following technical lemmas. For all of
these lemmas, we assume that we are using Algorithm 3.2 to minimize a function
satisfying (AS1W), (AS2) and (AS3).

(3.6) LEMMA [11]. If ¢ € C([0,)), ¢'(0) = 0, ¢”(cg) > O, then 3 a neighbor-

hood of o with the property that for each o in that neighborhood with

2| o - o] < o]
we have
o(r) < ¢(0).

PROOF OF LEMMA 3.6:  Let I be a closed interval containing o, and 0,

/i = min ¢”(ct) and M = max ¢”(ct). Then, by Taylor’s Theorem,
ael ael

o) < (o) + —A;i(a —ap)?
and
00) 2 o(ct) + %(o — o
Thus
o) — ¢(0) < —Igi(a - o) - %(a,:)z.

By the hypothesis, we have (o — o;)2 < l(oc .)%, which implies that
k 4 Sk

M ~
0@ - 00 < | T = 2 (e
8 2
er s M
So, if I is small enough that — < 4, we have our result. 1l

m



— -

c
(3.7) LEMMA. Lo — g | < — [ g [l x|
PROOF OF LEMMA 3.7:  ||(oy — o,0)d; || < ¢ || o;'d,, |2 imaplies
log — ol < clogl-log] .

Using Taylor’s Theorem, setting ¢(0)) = f (x; + od,),

-
Oty

0'(c) = ¢°0) + [¢"(r)dr
0

or
O’(0) 2 ¢°(0) + m o ||| dy, |12

But ¢’(cg) = 0 and ¢(0) = gfd, so
2 |og |l dg |

or

"gk"
*

o d, || < .
o 1l < —

(3.8) LEMMA. If x, is sufficiently close to x* then

leel <Cillgel and gl < C,lligl,

n
where Ci =1+ 21 gnac, = [1+—2ﬂ] .
m m
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i

PROOF OF LEMMA 3.8: We prove this result by induction. We’ll need to

assume that X, is contained in a neighborhood of x* where

-n

m 2M
E— |1 +=1 .
Il 20[ m]



47

First we must prove the conclusion of the lemma for k = 0.
By (AS2) and the Mean Value Theorem, we have: || g, — goll < M || x; — x,],
which implies
lell < llgoll +M Il x; - xoll =l goll + Magl dgll. (36)

Let ¢(a) = f (xg + ady); then by Taylor’s Theorem,

¢(og) = ¢(0) + 2,4(0) + mTl)zd)"(a)
where & = Aoy, A€[0,1]. We want to apply Lemma 3.6, so we need
2l oy — o] < Joy]. 37)
By Lemma 3.7, |a; — o] < T;- |yl goll, and by our assumption on the size of

the neighborhood above, we know that < | gyl < %; thus we have (37). By

lemma 3.6, we have

(0y)?

0(0) > d(0)) = 6(0) + o, gddy + m | dg %,

which implies that

—20,gdd, 2
——— 2 04|l dgll or oy|ldyll € =1lgll.
moq gl - %119l or arlidoll< e

Again, to use Lemma 3.6, we must assume that X, is contained in a small enough

neighborhood of x" so that 2= < 4, Note that ¢"(c) = dTH(x, + c:dg)dy and by
m

(AS2), VY xeR”

m || dy||? < dJH(x)dg < M || dg |12



48

Also, max ¢”(ct) =M < M, and min ¢”(0t) = 7 2 m; thus, if X, is in a sufficiently

small neighborhood of x*,

max dJH(x, + ad;)d, <

min dJH(x, + od,)d,

(38)

where k£ = 0 and the max and min are taken over the neighborhood of x* contain-

Plugging into (36) yields

2M
< —
el < Il gl [1+ — ]

and the base step of our proof by induction is complete.

Now we assume the result for k and prove for k+1. By (AS2) and the Mean

Value Theorem, as before, we have
leeall < lgell + Moy || dg |l (39)
Letting ¢(a) = f (x, + ad,) and applying Taylor’s Theorem yields

(o )?
2

d(or) = ¢(0) + 0 $(0) + ¢"(@)

where & = Ao, Ae[0, 1].

Again, as in the base step, we want to apply lemma 3.6, so we must obtain the

hypothesis, 2| 0t ,; — 0| < | o|. By Lemma 3.7,
* c *
o — 0 | <— | .
| o | ml el gl
Thus, by induction we have:

A C
oy - o] < 6L of gl

—
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n
where ¢ = [1 + %] . By our assumption,

-n

m 2M
<— |14+ —=— R
llgo" 20[ m]

which implies 2| 0t ,; — 0g4q] < | 0tg4;]. Thus, by Lemma 3.6

o )?
$(0) > d(oy) 2 ¢(0) + 0, ¢°(0) + > o o(Q),
which implies
(0 )?
— o gfd, > ——m | d |2

Note that, as in the base step, we had to assume (38) in order to use Lemma 3.6.
Simplifying gives
2
o fld, | £— .
k" k" " "gk"

Plugging this into (39) gives

k+1
2M 2M
I g ll < [1+—m—]||gk||5---5 [1+—m—} I goll

Vk=0,1,,..,n-1. I
(3.9) LEMMA. If x, is sufficiently close to x", then

ldell <Csllgell and |ldp |l < Cull gl

for C; > 0 depending only upon M, m and L.
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PROOQOF OF LEMMA 3.9; We will use Lemma 3.8, so we will need the same

restrictions on x; as before. Note that d, =—g, + B,_;d;_;- Using Lemma 3.8

gives:
d d,_ _
Idg <14 legel I deyll c1+c %l lde_s I
I el lgeall  Nlgel lge—1
Since “daﬂ = 101 = 1, we have
leoll Nl
I dg |
s Z(Cl)] < Z(Cl)] Cs.
Teel p-
Thus

ldell < Csllge Il < CsCallgoll = Callgoll. m
(3.10) LEMMA. If || (o — a0)d || < c || oid || then for some Cs >0 indepen-
dent of k, we have
lo, —og |l d Il < Csllge 1%
PROOF OF LEMMA 3.10:  From the hypothesis, we have
log —og [l dg Il < el [ dg 1

Let ¢(ct) = f (x, + od, ). Then ¢’(cr;) = 0 and ¢’(0) = gfd,. By Taylor’s Theorem,
we have
o
0= ¢'(ag) = ¢'(0) + [¢"(¢)a.
0
This implies that

oy

-gedy = J¢”(t)dt
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By (AS2),
—gfd, 2 o5m | d, |2,

which implies that

|-gfd, |

log — el de |l S e—F—
lm || de 1212

la <l l?<cslel®  m
m2

(3.11) LEMMA. If xq is chosen sufficiently close to x*, then di41 is a descent

direction, i.e., gf.1d;,; < 0.
PROOF OF LEMMA 3.11: We know that d;,; is a descent direction if
gf.1d, = 0, because then

gl'cr+1dk+1 = — g8k + Brgdnd, = ~ 888k < 0.

With an approximate o, gf,id; # 0, which implies that g, de,; # —gF180.1-
But it would be sufficient to have g, d, < eglg, for 0 < e < 1, because then we

would have
gl'cr+1dk+1 = Bkgl;r+ldk - gl'cr+1gk+l
<SBregle — ghagiar

Thus, using the FR definition of B,

ghden SE-Dllgal?<o0.
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To show that gf,;d, <e| g || let ¢(ct) = £ (x, + atd,); then by Taylor’s Theorem
Ol
') = ¢'(cte) + [97(e)dt,
oy

which implies that

e S = oM a2 = (o — oy ae i ap ]
and by Lemma 3.10,
0’(oy) < Csllge 1M || di .
But by Lemma 3.9,
CsM | d; || < CsMCyl goll.

Once again, if x; is sufficiently close to x", then

€
C4C5M ’

lgoll <

which implies that
0'(c) = grpade <€l g 1% m

Now we are prepared to prove Theorem 3.5.
PROOF OF THEOREM 3.5: We will use Lemma 3.4 and Theorem 2.17 to

show our result. First we need to verify the hypotheses i), ii) and iii*).

i)  This condition is satisfied because algorithm 3.2 is just the FR method when

applied with exact line searches to a quadratic.

i) Since df=-gf+B2,d2, we have [d2|%= | 2|2+ |BE, 12l d2, |2

which implies that
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142122 || 212
iii*) By Lemma 3.11, we have that g[r d/ < 0. In general, we have

ld2: —afall < gl - gfull + | BLd2 - pfd/ |
< el - VoLl + 1 Vo L) — gl

+ BRI a2 - afll + B2 - B/l df|

Applying Lemmas 2.13, 2.15 and 3.3

3
M
ld&1 - alull < M| x21 —xfal +L [;} %o — x" 12

+ |B@IIda2 - af | + B2 - B{ 1N df|. (40)

Note that this is exactly statement (13) from Chapter 2 which was used to
show that Lenard’s version of the FR method with inaccurate line searches
satisfies condition iii) of Theorem 2.17. The proof of iii*) proceeds in exactly

the same manner as that of iii) to give:

Mlggillgfl _ [ F
m g2l el

12| <

(41)

and

1

I1B2 - B Il af| <2R [—m’”l]zx

1

3
M[%]zllxkg—x[“+M"XkQ+1—x[+1"+L[—g} "xo_"* I @2
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Combining (40), (41), (42) and Lemma 3.3 gives iii*) for algorithm 3.2.
To finish the proof of Theorem 3.5, we must prove the following claim.
(3.12) CLAIM. If the conjugate gradient algorithm 3.2 is used to minimize a func-

tion which satisfies (ASIW), (AS2) and (AS3), then for k = 0,1,...,n-1

?

161 <K llgoll

Jor K independent of k and x in a neighborhood of x" .
PROOF OF CLAIM 3.12: We’ll prove the result by induction. For & =0, we

have

_gidy  -gfg gl
gddo -20 80 | goll?

8o

Now let ¢(x) = f (xg + odg). Then, ¢’(0tg) = 0 and, by Lemma 3.10,

Lo = a5 |1 dol < Csl gol?

which implies that

lag - ag| < Csl goll.

By Taylor’s Theorem, we have

o
0= ¢'(g) = ¢'(ctg) + [ 9" (¢)dl,
o

O
|—gfdol = | [¢"(t)dt|
O

lefdol < | (09 — )M [ dolI?| = | o — xg|M || do 12 < CsM | go .

Thus,



55

where K = MCs. The proof of the base step is complete.

Next we assume our result for k—1 and prove it for k. Note that we can

assume that

leesll > C gl (43)

for some C = 8KC, (fixed & > 1,) because if I€ > 0 such that || g1l < C gl
then the quadratic convergence we are looking for would already have been
obtained before step k, and we’d be finished. We will use this fact twice in the

remainder of the proof.
Let ¢(or) = f (x; + ody); then
¢(ag) =0 and ¢'(ct) = gfiydy

By Taylor’s Theorem, we know

Oty

¢'(0) = ¢'(0) + [¢"(@)a.

So

O

lgddy | = |I_¢"(l‘ )dt |
O

By (AS2) and Lemma 3.10, we have
leride | < | (o — oM || dg 12| =] o — o |M || de2<CsM | g 1Pl dell.  (44)

Then by Lemma 3.9 and the definition of 6, we have



56

lgfadi ]  CsM |l g 2l dg |l
| gld, | lgfd, |

CsM |l g %lld, |

|| 8k ||2
12 + wg;cr di|

N o 4 /% =
ghd,_, |
| gt II?

|9k|=

“l 8k

1+

CiCsM || gl

11+ &M,
I gy I

Now, note that

Br-180_1dx < |01l di |
lg_i 12 I ge

by (43) and induction, we have
|01 1l g | <KCyllgoll® < Clgol? < Il gy s
which implies that

| 6188 1d, ;| < |61 |1l dp,
Il 8k-1 ||2 - I k-1 I

By the Triangle Inequality, we have

ek—lgl'cr—ldk—ll S _ | 0 182-1d1 |

1+ 2
I k-1 "2 I 8r-1 "2

Thus,
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l 0 l < C4C5M " &0 " < C4C5M " g()"
k < :
018010k 1- 16 I de-s |
|1+ ————| |0y |——
I g II? (-

and then using Lemma 3.9, induction and (43),

C4CsM | goll C4CsM | goll C,.CsM
0] < < ———lgl
R I Kedwit I
I gl C Il gll?

with € = % < 1, since € = 8KC,. Thus

|6, <K | gl /i

Thus we have proven that when algorithm 3.2 is used to minimize a function
which satisfies (AS1W), (AS2) and (AS3), n-step quadratic convergence is attained
provided that xo, the initial guess, is sufficiently close to x*, the minimizer of the

~ function.

3.3. Other Choices of Beta

We next extend the proof of Theorem 3.5 for the other forms of By. First note
that Lemmas 3.6, 3.7, 3.8, 3.9 and 3.10 all hold for the D, PR and HS methods

with the condition
I (o — ap)d || < c |l ofd, |12

with no changes to their proofs. The difficulties occur in the proofs of Lemma 3.11
and Theorem 3.5. We present an alternate version of each of these. We will need

to assume an additional condition for each of the methods D, HS and PR.
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(3.13) LEMMA. (Alternate for Lemma 3.11.) Assume that Algorithm 32 (with the
form of B, changed to that of the D, PR or HS methods,) is used to minimize a
function , f, which satisfies (ASIW), (AS2) and (AS3). If Xg is sufficiently close to

x', then dy .1 is a descent direction, i.e., g;{ﬂdkﬂ <0.

PROOF OF LEMMA 3.13: We know that d;,; is a descent direction if

“gf1d, =0, because then
gradka = ~ 8Bk + Be8rndy = —glngen < 0.

With an approximate oy, gf,;d, # 0, which implies that g, d;,; #* —gF 8.1

For methods HS and D, it would be sufficient to have gJ,,d, < eﬁ— I gesr Il di Il

for 0 < € < 1, because then we would have
gl'cr+1dk+1 =B gl'cr+1dk - gl'cr+lgk+1
m
<e7Be lgealll dell - gdgrn. (44)

From Lemma 2.5* (for HS) and the definition of the D form of B,, we know that

T
gr+1Hiad,
®) Be = ———
d;Hy ., d;
and
T ~
g1 Hdy
(HS) Be = =1
d;H,d,

Thus, for both of these methods, we have

Mlgalldel _ Mlgeal Mgl

B < < < :
m| d,|? mldll = mld |l gl
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Plugging into (44) yields

T T
Bi19k41 S €88 < 0.

Thus we will assume that, for methods HS and D,

em
glad, < M I gesr ] di |l 45)

For PR, we take a different approach. From Section 2.2.2. we saw that

I geer 21 g 12
gld,

Ok (81 — 8) Bk 2
is a sufficient condition for descent for the PR method. Here we will strengthen
this condition to

Il 8k ||2 I 8k+1 "2
gid,

Ok (8r+1 — 8)T8ks1 > C (46)

where C¢ > 1. /i

Condition (46) is stronger than is necessary to guarantee descent for the PR
method. However, we will need this condition to finish the proof of Corollary 3.14.
A less stringent descent condition exists, but we were not able to prove the corol-
lary without condition (46). We will assume that these conditions are true for the

rest of this section.

To finish the proof of n-step quadratic convergence for algorithm 3.2 with the
D, HS and PR forms of B;, we need to verify i), ii), iii*) and Claim 3.12. The first
three are obvious; the proofs of i), ii) and iii*) follow directly from the proofs of i),
i), iii) and iii*) in Theorems 2.17 and 3.5. Lastly, we present as a corollary the

alternate version of Claim 3.12 necessary to complete the proof.
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(3.14) COROLLARY. If the conjugate gradient algorithm 3.2 (with the form of By

changed to that of the D, HS or PR methods,) is used to minimize a Junction which
satisfies (ASIW), (AS2) and (AS3), then for k =0,1,...,n—1

»

16, | < X || g

Jor K independent of k and x, in a neighborhood of x" .

PROOF OF COROLLARY 3.14:

For methods D and HS, induction is not
needed. Let ¢(cr) = f (x, + ad,); then

¢’(@) =0 and ¢'(ct) = gf,yd,.

By Taylor’s Theorem, we know

2]
(o) = (o) + [¢7(0)a.
So

O

lgende | = | [¢" ()t |.
o
By (AS2) and Lemma 3.10, we have
lgdsde | < | (o — oM || di |12] = | oy — o |M || d |2
<SCsM |l g 2 d, || <MC,Csliglll g I

Then by Lemma 3.9 and the definition of 6,, we have

16, | = lgiade | < CCsM g Il gl
= hS
| gidy | lgid; |

But

B —



lgdde | = |l g I + Be_sgldey .

We know from the proof of Lemma 3.13 that for D and HS

grHd, S m g Il dey ]

Br-1= 2
dfHd,_, M| d,_|?

m || g lefd,_y) |

lgfd, | = | g 1>+

M| d, ||
m(gfd,_y)
=g l?1+ |.
M gl dey |l
But
| m(ged;_y) ! g Il iy <1
Mg llldesll "~ Mg llldeyl 7
thus
T T
meg,.d,_ m d,_
11+ 8k dr 21— |8 k-1l >1—
Mg Il dpy |l Mgl de_y |l
which gives
T 2 m
> 1—-—).
lgede | 2 | g 1% M)
Thus
MC Cs| gl
|6, | < EE——
1 — —
( M)
So

16, | <K | goll

n
M

61
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for K independent of k. We have completed the proof of the corollary for methods

D and HS. It remains to present the proof for PR.

For PR, we have

| gd1dy | < MC,Csll g 112l gl
|grd, | | grdy |

16, =

From the definition of d,,

Br-187d;_;

lgide | = |- g I? + Bragfdey | = g 1] >— — 1l.
Il g
From the definition of B,
Be-18¢di _ & - 8178k 0188 1d,
I g I I g 121l gy 12
Cogi_1dey ll g 121l ey I?
>— 5 5~ >Cs> 1,
8e-191 [l & I°l gy I
by (46). Thus
lBkL;crdk_l -1l =€e>0
FAk
which implies that
lgfdy | =€l g |I?
or
MC,Cs
|6 | < — Il &ll. /i

Thus we have proven Corollary 3.14 for methods D, HS and PR.
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In this chapter, we have shown that the conjugate gradient methods D, FR, HS
and PR are locally n-step quadratically convergent even when the exact line

searches are replaced by any method which satisfies the condition

| (o — adde || < e ) oed, |2




Chapter 4
EXPLICIT DANIEL METHOD

The four conjugate gradient methods analyzed in Chapters 1, 2 and 3, namely
D, FR, HS and PR, are methods in which the technique for finding o, of the line

_search is not the defining factor. These methods are “‘implicit’’ in some sense,

because oy is found via minimization. In 1967, Daniel [4] proposed a different,
“‘explicit’’ method, which we will call the Explicit Daniel Method (ED). Here the

line search is eliminated, and o, is explicitly given by

T
—grd;
O = ——=———. 47

Daniel attempted a proof of the local n-step quadratic convergence of this method
with no success [4, 5, 6]. In this chapter, we will show that this form of o
implies the condition on the line search in Algorithm 3.2, and thus is locally n-step

quadratically convergent with any of the choices of B,.

To show that this version of o fits into our hypothesis on the line search:
(o —o)di |l < c | ady |12,

we need to assume (AS1) instead of (AS1W), i.e., we need three continuous deriva-

tives. Note that if ¢(at) = f (x, + ad,), then (47) becomes

_—¢O
O ¢II(O) .

Subtracting o, from both sides gives



If we expand ¢’(0) in a Taylor Series around o, we get
¢’(0) = (o) — o™ (Aoxy),

where A €[0,1]. This implies that

oo | 9700
Oy — 0y = 0 W -1

or
(0 — )0"(0) = o (6" (Aex) — ¢ (0)).
But we can also expand ¢"(0) in a Taylor Series around Aoy, to give
¢(0) = ¢"(hoy) — Ao ¢™(m),
where 1 = 8(Aa), 8€[0,1]. So
(0 = @)07(0) = 0 (0" (hex) — ¢”(harg) + Ao ¢’ ()
= Moy )%™ (m).
Taking absolute values of both sides and applying (AS2) gives
m oy — oy |l di [1? < Mo)?] ¢ m) |
To bound | ¢”’(m)|, consider

n 9% (x, +mdy)
1jI=1 ox;0x;0x;

[¢”)| = | d;d;d, |

o%f (x, +nd,)
Ox; 0x;0x;

< ¥l

i,jJl

-ld; 11d; 14,1,

65

(48)

assuming that d, = (dl_dz_...,d,,)T and x; = (xl_xz_...,x,,)T. But we know that

|d; | < || d, ||, and since (AS1) gives
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O*f (x, +nd,)
ax,- 8xj ax,

| £V <o,

we have

|6’ | < 3nv] dg 3.

Plugging into (48) gives

A
oy — ol i 12 < = (0yc)3n v | d |
or

loy — o |l de |l < )2l di 12 = ¢ || ogd |12,

3nvAi
m

which is exactly our condition on the line search. Therefore, the form of o, from
method ED satisfies the conditions of Algorithm 3.2 and Theorem 3.5, and thus

converges locally n-step quadratically.
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Chapter 5
COMPUTATIONAL RESULTS

We perform the conjugate gradient method using the following estimate for o

of the line search. Let ¢(t) = f (x, + ad,), and s be such that O<s <1 with

B _ 0(s)<¢(0), ie., f(x; +s5d)<f(x;). Remember that ¢’(0) < 0. Thus the qua-
dratic, p, that interpolates ¢(c)) at ¢ =0 and o =s with ¢’(0) = p’(0), has a local

minimizer near the minimizer, o*, of the line search. This local minimizer, G,

will be our estimate for o.
To derive a formula for &, consider
py)=aa+boy +c

then

pO=00)=f(x)=c

p’0) = ¢'(0) = gfd, = b

PE)=06)=f(x, +sd,)=as?+bs +c

=as2+sg,"rdk + f(x)

which implies that

F(x +5dp) — s gld, — f(x;)

52

The minimum of p () occurs at o = %, thus:

-s2gld,

ak = T .
2(f (xp +sdg) = f (x,) — 5 g d;)

(49)
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Algorithm 3.2 with o, calculated directly using (49) was used to solve the five
problems given below. The properties of each problem are summarized, including
information on whether conditions (AS1W), (AS2) and (AS3) are satisfied, as well
as starting points and exact solutions. The results for each of the choices of B, are

summarized, where an iteration is a block of n conjugate gradient steps. The

“number of steps performed in the Tast iteration is recorded in parentheses. Compu-
tations were performed in Fortran77 on an IBM 3081 in double precision. The

stopping criterion was chosen to be | g [|.. = || V£ (x;)]l.. < 1078.

(5.1) PROBLEM. (Perturbed Quadratic)

T 0 4
F (X)) =%, Dx; + Yx;

i=1

where D is the diagonal matrix diag(1,2,...,10], and x; is component i of x.

n ASIW AS2 AS3 Xo x' &

10 yes yes yes (1,L..,DT (0,0,..,0)T 0

D Algorithm.

iteration f&x) Il 8 Il % —x* ||

0 65.0 24.0 1.0
1 0.5635x107 | 0.4607x1072 | 0.1751x10°2
2(10) 0.8983x10720 | 0.4658x10~° | 0.5963x10°10




ED Algorithm.
iteration fx) I 8 Il.. %, - x* |l..
0 65.0 24.0 1.0
1 | 05933x10° | 0.7189x102 | 0.8942x10°° |
2(10) | 0.1275x10720 | 0.2224x107° | 0.1112x10710
FR Algorithm,
iteration Fxe) I gl % — x* |l
0 65.0 24.0 1.0
1 0.9010x1073 | 0.5176x102 | 0.2588x10~2
2(10) | 0.2095x107'7 | 0.5691x10~% | 0.1134x10°%
HS Algorithm.
iteration Fxe) I g Nl % — x* ||
0 65.0 24.0 1.0
1 0.1667x10~> | 0.3690x102 | 0.7451x1073
2(10) | 0.2520x1072! | 0.7928x10710 | 0.9725x10~!1
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PR Algorithm.,
iteration J(x) Il % —x* |l..
0 65.0 240 1.0
1 0.9704x10™° | 0.3285x102 | 0.6116x10> |
2(10) 0.1318x1072! | 0.5846x10710 | 0.6782x10711

(5.2) PROBLEM. (Perturbed Quadratic)

T L
f (X)) =%, Dx + Xx;

i=1

where D is now the diagonal matrix diag [1,2, 3, 40, 50, 60, 700, 800, 900, 1000].

n

ASIW  AS2 AS3

Xo

X f&")

10

yes

yes  yes

1,1,..,. )T

(0,0,...,0)T 0
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D Algorithm.

-—

ED Algorithm,

iteration fxp) I g . % — x* |
0 3566.0 2004.0 1.0
4 0.1659x103 | 04057 | 0.5006x1072 |
5 0.2063x10~7 | 0.3714x10~2 | 0.8161x10™%
6 0.5430x10711 | 0.5840%x1075 | 0.1593x1075
7(10) | 0.2298x1072! | 0.7523x107° | 0.5373x10712
iteration f(x) I g .. Ix —x* |l
0 3566.0 2004.0 1.0
5 0.7685x10~7 | 0.8511x1073 | 0.1418x1073
6 0.1737x1072 | 0.5710x10~3 | 0.5615x10°5
7 0.5820x10718 | 0.3953x10~7 | 0.2196x10"10
8(1) 0.5972x10720 | 0.3718x10~% | 0.2655x10~1!




FR Algorithm,
iteration f(x) F- Ix, —x* s
0 3566.0 2004.0 1.0
|5 ] 02529x1078 | 0.3677x1072 | 0.3112x1073
6 0.9360x107° | 0.3009x10~3 | 0.1750x10~4
7 0.6298x10716 | 0.4154x10°% | 0.2597x107°
8(2) 0.2387x1072% | 0.1435x10~® | 0.2089x10~10
HS Algorithm.
iteration f(x) I & .. I x, —x* |,
0 3566.0 2004.0 1.0
4 0.2390x107 | 0.5093x10~2 | 0.9945x1073
5 0.1890x10~% | 0.1377x102 | 0.7013x10~5
6 0.4963x10716 | 0.3918x10¢ | 0.2450x10°1°
7(2) 0.2018x10720 | 0.7698x107° | 0.2648x10710

L —
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PR Algorithm.
iteration fx) I g .. Ixe = x*
0 3566.0 2004.0 1.0
D 0.2862x10°° | 0.1154x107! | 0.3223x1073 |
6 0.8248x107% | 0.5828x10~* | 0.2230x1074
7 0.3273x10716 | 0.2461x10° | 0.1538x1072
8(2) 0.5954x1072° | 0.2743x10°8 | 0.1273x10°10

(5.3) PROBLEM. (Davidon’s Simple Quadratic [7])

F&x)=xf — 2xyxy + 2x2

where x; is component i of x;.

n ASIW AS2

AS3

Xo

x  f&")

2 yes

yes  yes

4,2)7

(0,0)T 0

TSN O

73



D Algorithm.
iteration f(x) I g .. % —x* [l
0 40.0 16.0 1.0
1(2) 0.3944x107% | 0.8882x107%5 | 0.8882x10715
ED Algorithm.,
iteration () I & lloe Ix —x* ..
0 40.0 16.0 1.0
1(2) 0.4930x1073! | 0.4441x10715 | 0.2220x10715
FR Algorithm.,
iteration f&x) I & e Ix — x* ..
0 40.0 16.0 1.0
1(2) 0.2021x10~2 | 0.3997x104 | 0.1110x10™4
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HS Algorithm.
iteration f(x) I g Il %, —x* ..
0 40.0 16.0 1.0
1(2) 0.7889x10730 | 0.1776x10714 o.sssleo-ls_

PR Algorithm.

iteration Fx) P Ix, — x|,

0 40.0 16.0

1.0

1(2) 0.7889x10730 | 0.1776x10714 | 0.8882x10715

(5.4) PROBLEM. (Rosenbrock [7])
f(x) =100(x, — x2)2+ (1 — x)?

where x; is component i of x;.

n ASIW AS2 AS3 Xo x'

f&)

2 yes no yes (12,07 (,n)T

0
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D Algorithm.
iteration Fx) I 8 Il %, — x* ..
0 242 215.6 22
| 10 | 0.1273x1072 1.3789 0.1687x107! |
11 0.4011x10°% | 0.2521x10! | 0.1386x1073
12 0.1139x10714 | 0.1343x1075 | 0.7621x1078
13(1) | 0.1204x10°16 | 0.2772x1078 | 0.6949x1078
ED Algorithm.
iteration f(x) I gl Ixe —x* ..
0 24.2 215.6 22
14 0.6163x1072 3.1631 0.1830%x107!
15 0.1583x1075 | 0.5030x107! | 0.1450x1073
16 0.1240x10713 | 0.4454x1075 | 0.1100x1077
17(1) | 0.1922x10716 | 0.3504x10°8 | 0.8779x1072
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FR Algorithm.
iteration fx) Il Ix, —x*|l..
0 24.2 215.6 22
s 0.6673x_10j5_ _o.3799>51(l-1m O.489_2>_<1_0‘f‘
16 0.7573x10°8 | 0.3474x102 | 0.1403x10~*
17 0.7543x10713 | 0.1098x10~% | 0.3014x10~7
18(1) 0.1516x10715 | 0.9841x10°8 | 0.2465x10~7
HS Algorithm.
iteration Fx) | g Il 1% —x* |l
0 242 215.60 2.2
6 0.1554x107! 4.4786 0.8781x107!
7 0.1883x1073 0.5435 0.3867x1072
8 0.1052x107° | 0.3943x103 | 0.5774x1075
9(2) 0.2940x10720 | 0.2152x10° | 0.1469x1071°
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PR Algorithm.
iteration f &) I g .. Ix —x* ..
0 242 215.60 22
| e ___Q£16_0><1_0‘1__ 3.8620 0.7897x107! |
7 0.1217x1073 0.4372 0.3055x1072

8 0.2937x10710 | 0.2048x1073 | 0.3596x1073
9(2) 0.5224x1072! | 0.9080x107° | 0.5793x10~!

(5.5) PROBLEM. (Wood [7])
f &) = 1000, — x£)2 + (1 = x1)% + 90(x4 — x3)? + (1 — x3)?
+10.1{(xy — 1% + (x4 — 1)2] + 19.8(x5 — 1)(x4 — 1)

where x; is component i of x;.

*

n ASIW AS2 AS3 X, X f&h

4  yes no yes (00007 (1,1,1,D)T 0




D Algorithm.
iteration f&x) I gl Ix; —x*
0 42.0 40.0 1.0
| 1 | 279301 | 100.8402 |  0.8467 |
4 0.1417x1073 0.4648 0.1405x10~2
5 0.1912x107% | 0.1704x102 | 0.1465x1072
6 0.2639x10710 | 0.1402x10°3 | 0.2373x10°3
7(4) 0.2707x107 | 0.6050x10°8 | 0.7678x10711
ED Algorithm.
iteration f(x) I g ll.. Ixe —x*|l..
0 420 40.0 1.0
14 0.7332x1075 | 0.8550x10~! | 0.1713x10°2
15 0.7929x108 | 0.3557x102 | 0.5733x107>
16 0.4104x1071 | 0.2557x1075 | 0.2294x1078
17(1) | 0.8791x107!® | 0.1029x10°® | 0.9965x10~°
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FR Algorithm.
iteration &) le .. % —x* |,
0 420 40.0 1.0
1 34.4408 64.8834 1.0100 |
9 0.4059x10™5 | 0.7347x107! | 0.5603x1073
10 0.1118x10~7 | 0.3891x10~2 | 0.2677x10~*
11 0.9400x10713 | 0.1161x10% | 0.1076x10~7
12(3) 0.1675x1071¢ | 0.4206x10°® | 0.4345x1078
HS Algorithm.
iteration F(x) I g Il %, —x*|..
0 420 40.0 1.0
1 35.9168 96.9042 1.0312
5 0.1571x1073 0.1528 0.1253x107!
6 0.1462x10°7 | 0.1019x1072 | 0.3703x10~*
7 0.3268x10713 | 0.4719x1075 | 0.1938x10~7
8(3) 0.5011x10717 | 0.1704x10~8 | 0.2361x10°8
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PR Algorithm.
iteration &) I g Ix, —x*[l..
0 420 40.0 1.0
1 34.1806 610045 | 10031 |
8 0.4937x10°7 | 0.4396x10~2 | 0.2015x1073
9 0.1760x10710 | 0.1541x1073 | 0.2130%x10°6
10 0.7527x10716 | 0.3266x10°¢ | 0.7025x107°
11(1) 0.4299x10718 | 0.8561x10~2 | 0.6473x10°°
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To summarize, Problems 1, 2 and 3 all satisfy (AS1W), (AS2) and (AS3), and
all three converge locally n-step quadratically. Problem 2 requires more iterations
than Problem 1 because the neighborhood of convergence is smaller due to the ill
conditioning of the matrix D. Problems 4 and 5 both fail to satisfy (AS2), but
Problem 4 converges locally n-step quadratically and Problem 5 converges better
than linearly.

The same problems were run through the same algorithms without restart, and
all of the problems had difficulties. Problem 4 failed to converge after 150 itera-
tions, and the other problems all took a significantly greater number of iterations to
converge.

When individual methods are compared with each other, the HS method usu-

ally converges in fewer iterations than the other methods on these five test prob-

lems.
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