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a b s t r a c t

An important aspect of numerically approximating the solution of an infinite-horizon optimal control
problem is the manner in which the horizon is treated. Generally, an infinite-horizon optimal control
problem is approximated with a finite-horizon problem. In such cases, regardless of the finite duration
of the approximation, the final time lies an infinite duration from the actual horizon at t =

+∞. In this paper we describe two new direct pseudospectral methods using Legendre–Gauss (LG)
and Legendre–Gauss–Radau (LGR) collocation for solving infinite-horizon optimal control problems
numerically. A smooth, strictly monotonic transformation is used to map the infinite time domain t ∈

[0, ∞) onto a half-open interval τ ∈ [−1, 1). The resulting problem on the finite interval is transcribed to
a nonlinear programming problem using collocation. The proposed methods yield approximations to the
state and the costate on the entire horizon, including approximations at t = +∞. These pseudospectral
methods can be written equivalently in either a differential or an implicit integral form. In numerical
experiments, the discrete solution exhibits exponential convergence as a function of the number of
collocation points. It is shown that the map φ : [−1, +1) → [0, +∞) can be tuned to improve the
quality of the discrete approximation.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last decade, pseudospectral methods have become in-
creasingly popular in the numerical solution of optimal control
problems. Benson (2004), Benson, Huntington, Thorvaldsen, and
Rao (2006), Elnagar, Kazemi, and Razzaghi (1995), Elnagar and Raz-
zaghi (1997), Fahroo and Ross (2008), Garg et al. (2009), Garg et al.
(2010), Huntington (2007), Rao et al. (2010) and Williams (2004)
Pseudospectral methods are a class of direct collocation methods
where the optimal control problem is transcribed to a nonlin-
ear programming problem (NLP) by parameterizing the state and
the control using global polynomials and collocating the differ-
ential–algebraic equations using nodes obtained from a Gaussian
quadrature. The three most commonly used sets of collocation
points are Legendre–Gauss (LG), Legendre–Gauss–Radau (LGR), and
Legendre–Gauss–Lobatto (LGL) points. These three sets of points
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are obtained from the roots of a Legendre polynomial and/or lin-
ear combinations of a Legendre polynomial and its derivatives.
All three sets of points are defined on the domain [−1, 1], but
differ significantly in that the LG points include neither of the
endpoints, the LGR points include one of the endpoints, and the
LGL points include both of the endpoints. In recent years, the two
most well-documented pseudospectral methods are the Legen-
dre–Gauss–Lobatto pseudospectral method (Elnagar et al., 1995) and
the Legendre–Gauss pseudospectral method (Benson et al., 2006;
Garg et al., 2010; Rao et al., 2010).

In this paper we describe two new pseudospectral methods
for the numerical solution of nonlinear infinite-horizon optimal
control problems based on either LG or LGR collocation. For either
scheme, a smooth, strictlymonotonic change of variables is used to
map the domain of the infinite time interval t ∈ [0, ∞) to a finite
half open time interval τ ∈ [−1, +1). The resulting finite horizon
problem is discretized using either LG or LGR collocation. Our
collocation schemes avoid the singularity at τ = +1 introduced
by the change of variables. Furthermore, in the LG scheme, an
explicit formula is derived to include the state at the horizon (that
is, at t = +∞) in the NLP, while in the LGR scheme the state at
t = +∞ is included in theNLP as a variable in state approximation.
Thus, either scheme developed in this paper yields an estimate for
the state on the entire horizon. In addition, we also present the
transformed adjoint systems that relate the Lagrange multipliers
of the NLP to the costate of the continuous control problem.

We note that an LGR pseudospectral method for approximat-
ing the solution of nonlinear infinite-horizon optimal control prob-
lems has been previously developed in Fahroo and Ross (2008).
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In Fahroo and Ross (2008), the infinite-horizon problem is con-
verted to a finite-horizon problem using the change of variables
t = (1+ τ)/(1− τ). The finite interval τ ∈ [−1, +1] corresponds
to the infinite time interval t ∈ [0, ∞) in the original infinite-
horizon problem. The finite-horizon problem is then discretized by
collocation at the LGR points. Because the final LGR point is strictly
smaller than τ = +1, the singularity in the change of variables
t = (1 + τ)/(1 − τ) is avoided. Fahroo and Ross (2008) then pro-
vides two numerical examples that illustrate the approach.

The contributions of our paper are as follows. First, we derive
twonewpseudospectralmethods using LG and LGRpoints for solv-
ing the nonlinear infinite-horizon optimal control problem. Our
LGR scheme is different from the LGR scheme in Fahroo and Ross
(2008). In either of our methods, the state and the costate at the
horizon (that is, t = +∞), are variables in the discrete approxima-
tion. As a result, the state and the costate solutions are obtained on
the entire horizon. Second, ourmethods have the property that the
differentiationmatrices are rectangular and full rank, leading to the
property that either of our discrete approximations can be written
equivalently as an integral method. Third, we consider a general
change of variables t = φ(τ) of an infinite-horizon problem to a
finite-horizon problem. We find that better approximations to the
continuous-time problem can be attained by using a function φ(τ)
that grows more slowly than t = (1 + τ)/(1 − τ) near the point
τ = +1. Hence, by tuning the choice of the transformation, the
accuracy of the discretization can be improved.

This paper is organized as follows. In Section 2 we provide a de-
scription of our notation. In Section 3 we state the infinite-horizon
optimal control problem. Section 4 describes our Gauss and Radau
pseudospectral methods for solving infinite-horizon optimal con-
trol problems. In addition, we show that the first-order optimal-
ity conditions associated with our Gauss and Radau methods are
equivalent to pseudospectral schemes for the continuous costate
equation. In Section 5 we demonstrate the methods on two exam-
ples. Finally, in Section 6 we provide conclusions.

2. Notation

Throughout the paper, we employ the following notation. First,
we treat all vector functions of time as row vectors; that is,
x(τ ) = [x1(τ ), . . . , xn(τ )] ∈ Rn, where n is the continuous-
time dimension of x(τ ). BT denotes the transpose of a matrix B.
Given a and b ∈ Rn, ⟨a, b⟩ is their dot product. If f : Rn

→ Rm,
then ∇f is the m by n Jacobian matrix whose ith row is ∇fi. In
particular, the gradient of a scalar-valued function is a row vector.
If φ : Rm×n

→ R and X is an m by n matrix, then ∇φ denotes the
m by n matrix whose (i, j) element is (∇φ(X))ij = ∂φ(X)/∂Xij. If
A is a matrix, then Ai:j is the submatrix formed by rows i through j,
while Ai is the ith row of A. The Kronecker delta function is defined
by δii = 1 and δij = 0 if i ≠ j.

3. Infinite-horizon optimal control problem

Consider the infinite-horizon optimal control problem:

min J =

∫
∞

0
g(x(t),u(t))dt

subject to
ẋ(t) = f(x(t),u(t)), x(0) = x0,

(1)

where g : Rn
× Rm

→ R, f : Rn
× Rm

→ Rn, and ẋ denotes the
time derivative of x. We make the change of variables t = φ(τ)
where φ is a differentiable, strictly monotonic function of τ that
maps the interval [−1, 1] onto [0, ∞). Three examples of such a
function are
φa(τ ) =
1 + τ

1 − τ
, (2)

φb(τ ) = log


2
1 − τ


, (3)

φc(τ ) = log


4
(1 − τ)2


. (4)

The change of variables φa(τ ) was originally proposed in Fahroo
and Ross (2008), while the transformations φb(τ ) and φc(τ ) are
introduced in this paper. These latter changes of variables produce
slower growth in t = φ(τ) as τ approaches+1, than that of φa(τ ).
As we will see in the numerical experiments, better discretization
can be achieved by tuning the change of variables to the problem.

Define T (τ ) = dφ/dτ ≡ φ′(τ ). After changing variables from t
to τ , the infinite-horizon optimal control problem becomes

min J =

∫
+1

−1
T (τ )g(x(τ ),u(τ ))dτ

subject to
ẋ(τ ) = T (τ )f(x(τ ),u(τ )), x(−1) = x0.

(5)

Here x(τ ) andu(τ ) denote the state and the control as a function of
the new variable τ . Formally, the first-order optimality conditions
for the finite horizon control problem Eq. (5), also called the
Pontryagin minimum principle, are

λ̇(τ ) = −T (τ )∇xH(x(τ ),u(τ ), λ(τ )), λ(1) = 0, (6)
0 = ∇uH(x(τ ),u(τ ), λ(τ )), (7)

where H(x,u, λ) = g(x,u) + ⟨λ, f(x,u)⟩ is the Hamiltonian for
Eq. (1).

4. Pseudospectral methods for infinite-horizon optimal con-
trol problems

In this section we formulate discrete approximations to the
nonlinear infinite-horizon optimal control problem described in
Section 3. These discrete schemes are based on global collocation
using either Gauss or Radau collocation points. As will be seen,
these two schemes differ in their treatment of the horizon. For the
Gauss quadrature scheme, the state at the horizon is included by
quadrature, while for the Radau scheme, the state at the horizon is
included in the state approximation.

4.1. Infinite-horizon Gauss pseudospectral method

Consider the LG collocation points (τ1, . . . , τN) on the interval
(−1, 1) and two additional noncollocated points τ0 = −1 (the
initial time) and τN+1 = 1 (the terminal time, corresponding to
t = +∞). The state is approximated by a polynomial of degree at
most N as

x(τ ) ≈

N−
j=0

XjLj(τ ),

Lj(τ ) =

N∏
k=0
k≠j

τ − τk

τj − τk
, j = 0, . . . ,N,

(8)

where Xj ∈ Rn and Lj is a basis of Nth-degree Lagrange polyno-
mials. Notice that the basis includes the function L0 corresponding
to the initial time τ0 = −1, but not a function corresponding to
τN+1 = +1. Differentiating the series of Eq. (8) and evaluating at
the collocation point τi gives

ẋ(τi) ≈

N−
j=0

XjL̇j(τi) = DiX, (9)
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where Di is the ith row of D,

Dij = L̇j(τi), and X =

X0
...
XN

 .

The rectangular N × (N + 1) matrix D formed by the coefficients
Dij, (i = 1, . . . ,N; j = 0, . . . ,N) is the Gauss Pseudospectral
differentiation matrix since it transforms the state approximation
at τ0, . . . , τN to the derivative of the state approximation at the
collocation points τ1, . . . , τN .

Let U be an N ×mmatrix whose ith row Ui is an approximation
to the control u(τi), 1 ≤ i ≤ N . Our discrete approximation
to the system dynamics ẋ(τ ) = T (τ )f(x(τ ),u(τ )) is obtained
by evaluating the system dynamics at each collocation point and
replacing ẋ(τi) by its discrete approximation DiX. Hence, the
discrete approximation to the system dynamics is

DiX = T (τi)f(Xi,Ui), 1 ≤ i ≤ N. (10)

It is important to observe that the left-hand side of Eq. (10)
contains approximations for the state at the initial point plus the
LG points while the right-hand side contains approximations for
the state (and control) at only the LG points. The objective function
in Eq. (5) is approximated by a Legendre–Gauss quadrature as

J =

∫
+1

−1
T (τ )g(x(τ ),u(τ ))dτ ≈

N−
i=1

wiT (τi)g(Xi,Ui),

where wi is the quadrature weight associated with τi. The state at
the horizon is estimated by quadrature as

x(+1) = x(−1) +

∫
+1

−1
T (τ )f(x(τ ),u(τ ))dτ

≈ X0 +

N−
i=1

wiT (τi)f(Xi,Ui) ≡ XN+1, (11)

where XN+1 is treated as an additional variable. Rearranging Eq.
(11), the following equality constraint is then added in the discrete
approximation:

X0 − XN+1 +

N−
i=1

wiT (τi)f(Xi,Ui) = 0. (12)

It is noted that adding the constraint of Eq. (12) and the variable
XN+1 does not change the number of degrees of freedom because
Eq. (12) is the same size as XN+1. The continuous-time nonlinear
infinite-horizon optimal control problem of Eq. (1) is then approx-
imated by the following NLP:

min
N−
i=1

wiT (τi)g(Xi,Ui)

subject to
T (τi)f(Xi,Ui) − DiX = 0, 1 ≤ i ≤ N,

X0 − XN+1 +

N−
i=1

wiT (τi)f(Xi,Ui) = 0,

x0 − X0 = 0.

(13)

Although the change of variables t = φ(τ) must have a singu-
larity at τ = +1,we never evaluate T (τ ) = φ′(τ ) at the singularity
in Eq. (13), ratherwe evaluate T at the quadrature points which are
all strictly less than 1.

The first-order optimality conditions for Eq. (13), also called
the KKT conditions, are obtained by differentiating the Lagrangian
L with respect to the components of X and U. The Lagrangian
associated with Eq. (13) is
L(Λ, Λ0, ΛN+1,X,U)

=

N−
i=1


wiT (τi)g(Xi,Ui) + ⟨Λi, T (τi)f(Xi,Ui) − DiX⟩



+ ⟨Λ0, x0 − X0⟩ +


ΛN+1,X0 − XN+1

+

N−
i=1

wiT (τi)f(Xi,Ui)


, (14)

whereΛ is anN×nmatrix of Lagrangemultipliers associatedwith
the collocation points, andΛ0 andΛN+1 are each 1×n row vectors
of Lagrange multipliers associated with the initial condition
and the quadrature equation, respectively. Differentiating the
Lagrangian with respect to X0,XN+1,Xi and Ui, 1 ≤ i ≤ N , gives
us the optimality conditions

Λ0 = −DT
0Λ, (15)

ΛN+1 = 0, (16)

DT
i Λ = T (τi)∇x (wig(Xi,Ui) + ⟨Λi, f(Xi,Ui)⟩) , (17)

0 = T (τi)∇u (wig(Xi,Ui) + ⟨Λi, f(Xi,Ui)⟩) , (18)
where DT

i is the ith row of DT.
Using an approach similar to that of Hager (2000), the first-

order optimality conditions given in Eqs. (15)–(18) can be refor-
mulated so that they become a discretization of the first-order
optimality conditions for the continuous control problem given in
Eq. (5). First, define the following expressions:

λ0 = Λ0, λN+1 = ΛN+1,

λ = W−1Λ, DĎ
= −W−1DT

1:NW,
(19)

were W is the diagonal matrix whose ith diagonal element is wi.
Making these substitutions in Eqs. (15)–(18), we can rewrite the
optimality conditions as

λ0 = −DT
0Wλ, (20)

λN+1 = 0, (21)

DĎ
i λ = −T (τi)∇xH(Xi,Ui, λi), 1 ≤ i ≤ N, (22)

0 = ∇uH(Xi,Ui, λi). (23)
Hence, this transformation makes the discrete optimality condi-
tions look very similar to the continuous Pontryagin minimum
principle of Eq. (6)–(7). There are two basic differences: The con-
tinuous derivative λ̇(τ ) is replaced by the discrete analog DĎ

i λ and
the definition of initial costate of Eq. (20) does not appear in the
continuous optimality conditions.

In Garg et al. (2010), we show thatDĎ is a differentiationmatrix
for polynomials of degree N; more precisely, if p is a polynomial of
degree at most N with values pi = p(τi), 1 ≤ i ≤ N , then
(DĎp)i = ṗ(τi), 1 ≤ i ≤ N.

Hence, the systemof equations in (22), represents a pseudospectral
scheme for the costate equation based on polynomials of degreeN .
In Garg et al. (2010) we have also shown that

λ0 = −DT
0Λ =

N−
j=1

wjTj∇xH(Xj,Uj, λj). (24)

On the other hand, because Eq. (6) holds, the continuous costate
satisfies

λ(−1) = λ(+1) −

∫
+1

−1
λ̇(τ )dτ

=

∫
+1

−1
T (τ )∇xH(x(τ ),u(τ ), λ(τ ))dτ . (25)
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The right side of Eq. (24) represents a quadrature approximation to
the right side of Eq. (25). Hence, Eq. (20) is in fact an approxima-
tion to the continuous-time initial costate. We refer to the LG col-
location method developed in this section as the infinite-horizon
version of the Gauss pseudospectral method (Benson, 2004; Benson
et al., 2006; Garg et al., 2010; Huntington, 2007; Rao et al., 2010)

4.2. Infinite-horizon Radau pseudospectral method

Consider the LGR collocation points −1 = τ1 < · · · < τN <
+1, and the additional noncollocated point τN+1 = 1. The state is
then approximated by a polynomial of degree at most N as

x(τ ) ≈

N+1−
j=1

XjLj(τ ),

Lj(τ ) =

N+1∏
k=1
k≠j

τ − τk

τj − τk
, j = 1, . . . ,N + 1,

(26)

where Lj is a basis of Nth-degree Lagrange polynomials. For the
Radau scheme, the Lagrange interpolation points are τ1 = −1
through τN+1 = +1, while for the Gauss scheme, the interpolation
points were τ0 = −1 through τN < +1. Again, differentiating the
series Eq. (26) and evaluating at the collocation point τi gives

ẋ(τi) ≈

N+1−
j=1

XjL̇j(τi)

=

N+1−
j=1

DijXj = DiX, i = 1, . . . ,N, (27)

where

Dij = L̇j(τi) and X =

 X1
...

XN+1

 .

Unlike the LG scheme of the previous section, the state XN+1 at the
horizon appears in the state discretization Eq. (27). The discrete
approximation to the control problem, using LGR scheme of this
section, is almost the same as the LG scheme Eq. (13) except for
the absence of the quadrature equation and the index on the initial
condition X1 below corresponding to τ1 = −1:

min
N−
i=1

wiT (τi)g(Xi,Ui)

subject to
T (τi)f(Xi,Ui) − DiX = 0, 1 ≤ i ≤ N
x0 − X1 = 0.

(28)

As with the Gauss pseudospectral method, it is important
to observe that the left-hand side of the collocation equations
contains approximations for the state at the LGR points plus the
terminal point τ = +1, which corresponds to t = +∞. The right-
hand side of the collocation equations contains approximations of
the state at only the LGR points. Moreover, because the state X in
Eq. (28) contains an additional component XN+1 corresponding to
τN+1 = +1, the state at the horizon is a variable in our Radau state
discretization. Again, we point out that the singularity in T (τ ) at
τ = +1 is avoided in Eq. (28) sincewe evaluate T at the collocation
points τi, 1 ≤ i ≤ N , where τN < 1.

In order to better relate the Radau discretization to the contin-
uous control problem, we utilize the Lagrangian
L(Λ,X,U) = ⟨µ, x0 − X1⟩ +

N−
i=1


wiT (τi)g(Xi,Ui)

+ ⟨Λi, T (τi)f(Xi,Ui) − DiX⟩


.

The optimality conditions, obtained by differentiating the Lagran-
gian with respect to the states X1, . . . ,XN+1 and the controls
U1, . . . ,UN , are

DT
i Λ = T (τi)∇x (wig(Xi,Ui) + ⟨Λi, f(Xi,Ui)⟩) − δ1iµ, (29)

0 = DT
N+1Λ, (30)

0 = T (τi)∇u (wig(Xi,Ui) + ⟨Λi, f(Xi,Ui)⟩) , (31)

where 1 ≤ i ≤ N . The µ term only enters into the first equation
corresponding to differentiation with respect to X1. The boundary
condition DT

N+1Λ = 0 arises from differentiating the Lagrangian
with respect to XN+1.

In a manner similar to that for the infinite-horizon Gauss pseu-
dospectral method, the first-order optimality conditions of Eqs.
(29)–(31) arising from the infinite-horizon Radau pseudospectral
method can be reformulated so that they resemble the first-order
optimality conditions for the continuous control problem Eq. (5).
First, we introduce the following expressions:

λ = W−1Λ,

λN+1 = DT
N+1Λ,

DĎ
= −W−1DT

1:NW −
1
w1

e1eT1,

(32)

where e1 is the first column of the identity matrix. Substituting
Eq. (32) into the conditions of Eqs. (29)–(31) gives

DĎ
i λ = −T (τi)∇xH(Xi,Ui, λi) +

δ1i

w1
(µ − λ1), (33)

λN+1 = 0, (34)

0 = ∇uH(Xi,Ui, λi), 1 ≤ i ≤ N. (35)

The λ1 term in Eq. (33) emerges from the e1 term in the definition
ofDĎ. Moreover, from the definition of λN+1, the following identity
can be derived (see Garg et al., 2009, for the details):

µ = λN+1 +

N−
j=1

wjTj∇xH(Xi,Ui, λi). (36)

Eq. (36) represents a quadrature approximation to the funda-
mental theorem of calculus Eq. (25). The right-hand side is the
quadrature approximation to the costate λ1 at the initial time.
Consequently, Eq. (36) is a subtle way of enforcing the equality
µ = λ1 in Eq. (33). In Garg et al. (2009), we also show that DĎ

is a differentiation matrix for polynomials of degree N − 1; more
precisely, if p is a polynomial of degree at most N − 1 with values
pi = p(τi), 1 ≤ i ≤ N , then

(DĎp)i = ṗ(τi), 1 ≤ i ≤ N.

Hence, the system of equations in Eq. (33), represents a pseu-
dospectral scheme for the costate equation based on polynomials
of degree N − 1. We refer to the LGR collocation method devel-
oped in this section as the infinite-horizon version of the Radau
pseudospectral method.

4.3. Integrated forms

In formulating the pseudospectral schemes, the left side of the
state equations in Eqs. (13) and (28) contained the derivatives of
Lagrange polynomials. As shown inGarg et al. (2009) andGarg et al.
(2010), we can invert the nonsingular part of the differentiation
matrix D to write the discrete dynamics in the form
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Xi = x0 +

N−
j=1

AijTjf(Xj,Uj), (37)

where 1 ≤ i ≤ N for LG collocation and 2 ≤ i ≤ N + 1 for
LGR collocation. Here the matrix elements Aij can be expressed
as the integrals of Lagrange interpolating polynomials associated
with the collocation points. More precisely, for LG collocation, we
have

Aij =

∫ τi

−1
LĎj (τ )dτ ,

LĎj =

N∏
k=1
k≠j

τ − τk

τj − τk
, i, j = 1, . . . ,N.

(38)

For LGR collocation, the right side of Eq. (38) defines Ai+1,j.
Computationally, the differential formulation of Eq. (10) of the
system dynamics is more convenient since any nonlinear terms in
f retain their sparsity in the discretization, while for the integrated
version of Eq. (37), the nonlinear terms are nonsparse due to
multiplication by the dense matrix A.

5. Examples

We now consider two examples of the pseudospectral methods
developed in Section 4. In the first example we perform both
an error analysis and a computation time comparison. In the
second,more complex example, we focus on the computation time
required to obtain a solution using each method.

5.1. Infinite-horizon control of a one-dimensional nonlinear system

Consider the following nonlinear infinite-horizon optimal con-
trol problem:

min J =
1
2

∫
∞

0


log2 y(t) + u(t)2


dt

subject to
ẏ(t) = y(t) log y(t) + y(t)u(t), y(0) = 2.

(39)

The exact solution to this problem is

y∗(t) = exp(x∗(t)), u∗(t) = −αx∗(t),

λ∗(t) = α exp(−x∗(t))x∗(t), x∗(t) = 2 exp(−t
√
2),

(40)

where α = 1 +
√
2. The example of Eq. (39) was solved for

N = (5, 10, 15, 20, 25, 30) using both the infinite-horizon pseu-
dospectral methods described in Section 4 and the approach of
Fahroo and Ross (2008) with the three strictly monotonic trans-
formations of the domain τ ∈ [−1, +1) given in Eqs. (2)–(4). All
solutions were obtained using an Apple MacBook Pro running Mac
OS-X version 10.6.4 with 4 GB of DDR3 1 GHz memory, MATLAB
Version 7.10.0.499 (R2010a), and the NLP solver SNOPT (Gill, Mur-
ray, & Saunders, 2002, 2005) with optimality and feasibility toler-
ances of 1 × 10−10 and 2 × 10−10, respectively. Furthermore, the
following initial guess of the solution was used:

y(τ ) = y0, u(τ ) = τ , τ ∈ [−1, 1]. (41)

The maximum base ten logarithm of the state, the control, and the
costate errors are defined as

Ey = max
k

log10
Yk − y∗(τk)


Eu = max

k
log10

Uk − u∗(τk)


Eλ = max
k

log10
λk − λ∗

y(τk)
 . (42)
In Eq. (42) the index k spans the approximation points in the case
of either the state and the costate and spans only the collocation
points in the case of the control. We remind the reader that the
state and the costate obtained on the entire horizonwith the index
N + 1 corresponding to the state and the costate at τ = +1, or
equivalently, at t = +∞.

The errors obtained using the Gauss and Radau methods of this
paper are shown, respectively, in Figs. 1 and 2 alongside the er-
ror obtained using the method of Fahroo and Ross (2008) with the
transformation given in Eqs. (2) and (4). It is seen for all three trans-
formations and for both methods of this paper, the state, the con-
trol, and the costate errors decrease in essentially a linear manner
until N = 30, demonstrating an approximately exponential con-
vergence rate. Furthermore, it is observed that either the Gauss or
Radau method of this paper yields approximately the same error
for a particular value of N and choice of transformation. Moreover,
it is seen that the errors are largest and smallest, respectively, using
the transformations of Eqs. (3) and (4). In fact, the transformation of
Eq. (4) is at least one order of magnitudemore accurate than either
of the other two transformations. Finally, it is seen that the errors
from the twomethods of this paper using the transformation of Eq.
(4) are significantly smaller than those obtained using the method
of Fahroo and Ross (2008) (where the transformation of Eq. (2) are
used). When the transformation of Eq. (4) is used, however, the
state errors from the method of Fahroo and Ross (2008) are nearly
the same as those obtained using the Gauss and Radau methods,
while the control and the costate errors are approximately one
order of magnitude larger using the method of Fahroo and Ross
(2008).

We now analyze the computational performance of each
method for this example. Fig. 3 shows the CPU time as a function
of N for the different methods, where it is seen that the change of
variables given in either t = φb(τ ) or t = φc(τ ) Eqs. (3) and (4),
respectively, are more computationally efficient than the change
of variables t = φa(τ ) given in Eq. (2). More specifically, it is seen
that for N > 5 using the change of variables t = φa(τ ) nearly
doubles the required CPU time when compared with either of the
other two transformations. Next, Fig. 3 also suggests that the CPU
time is not related to the choice of the collocation method since
the time to solve the discrete problem using either the Gauss or
Radau scheme of this paper or the Radau scheme of Fahroo and
Ross (2008) is about the same. Instead, the CPU time depends on
the choice of the change of variables t = φ(τ).

The different behavior of the functions given in Eqs. (2)–(4) is
understood if we apply the change of variables to the continuous
solution. The optimal state in the transformed coordinates is as
follows:

ya(τ ) = exp

exp


−2

√
2

1 + τ

1 − τ


yb(τ ) = exp


1 − τ

2

2
√
2


yc(τ ) = exp


(1 − τ)4

√
2

42
√
2


.

Here the subscripts a, b, and c correspond to the three choices of φ
given in Eqs. (2)–(4). An advantage of using a logarithmic change of
variables given in Eq. (3) or (4), as compared to the function given
in Eq. (2), is that logarithmic functions essentiallymove collocation
points associatedwith large values of t to the left. Because the exact
solution changes slowlywhen t is large, this leftwardmovement of
the collocation points is beneficial since more collocation points
are situated where the solution is changing most rapidly. The
disadvantage of a logarithmic change of variables is seen in the
function log(1− τ) where the growth is so slow near τ = +1 that
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(a) State error. (b) Control error.

(c) Costate error.

Fig. 1. Maximum Gauss pseudospectral state, control, and costate errors for Example 1.
the transformed solution possesses a singularity in a derivative
at τ = +1. In other words, the j-th derivative of a function of
the form (1 − τ)α , where α > 0 is not an integer, is singular
at τ = +1 for j > α. In particular, yb(τ ) has two derivatives
at τ = +1 but not three, while yc(τ ) has five derivatives at
τ = +1 but not six. To achieve exponential convergence, y(τ )
should be infinitely smooth. For this particular problem, the choice
of Eq. (4) has the following nice properties: yc(τ ) is relatively
smooth with five derivatives, although not infinitely smooth, and
collocation points corresponding to large values of t , where the
solution changes slowly, are moved to the left [when compared to
t = (1+ τ)/(1− τ)] where the solution changes more rapidly. As
a result, for 5 ≤ N ≤ 30, the function of Eq. (4) yields a solution
that is often two or more orders of magnitude more accurate than
the other choices for φ.

5.2. Infinite-horizon control of an inverted pendulum

Consider the following optimal control problem. Mills, Willis,
and Ninness (2009) Minimize the cost functional

J =

∫
∞

0


p2 + 10θ2

+ 10−4v2
+ 10−4ω2

+ 0.1u2 dt
subject to (43)
ṗ = v, θ̇ = ω,
v̇ =
a1w1 + w2 cos θ

d
, ω̇ =

w1 cos θ + a2w2

d
,

with the initial conditions

p(0) = 0, θ(0) = 225 deg,
v(0) = 0, ω(0) = 0,

(44)

where w1 = −k1u − ω2 sin θ − k2v, w2 = g sin θ − k3ω, d = b −

cos2 θ , and (a1, a2, k1, k2, g, b) = (5, 1, 1/2, −1/2, 9.81, 5). The
example of Eq. (42)–(44)was solved forN = (5, 10, 15, 20, 25, 30)
using both the infinite-horizon pseudospectral methods described
in Section 4 and the approach of Fahroo and Ross (2008) with
the three strictly monotonic transformations of the domain τ ∈

[−1, +1) given in Eqs. (2)–(4). All solutions were obtained using
an Apple MacBook Pro running Mac OS-X version 10.6.4 with 4GB
of DDR3 1 GHzmemory,MATLAB Version 7.10.0.499 (R2010a), and
the NLP solver SNOPT (Gill et al., 2002, 2005) with default opti-
mality and feasibility tolerances. Furthermore, a straight line inter-
polation between the initial conditions and zero was used as the
initial guess for the state, while a guess of zero was used for the
control.

A representative numerical solution (obtained using the Radau
pseudospectral method with N = 40) is shown in Fig. 4(a).
As expected, both the state and the control approach zero as
τ −→ +1. Because this problem does not have an analytic
solution, we focus the remainder of our attention on a comparison
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(a) State error. (b) Control error.

(c) Costate error.

Fig. 2. Maximum Radau pseudospectral state, control, and costate errors for Example 1.
(a) CPU times using Gauss pseudospectral method and the method of Fahroo
and Ross (2008).

(b) CPU times using Radau pseudospectral method and the method of Fahroo
and Ross (2008).

Fig. 3. CPU times required to solve Example 1.
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(a) Representative solution to Example 2 using the Radau pseudospectral
method with n = 40.

(b) CPU times using both the infinite-horizon Gauss pseudospectral
method and the method of Fahroo and Ross (2008).

(c) CPU times using both the infinite-horizon Radau pseudospectral
method and the method of Fahroo and Ross (2008).

Fig. 4. Representative solution and CPU times for Example 2.
of the computation time required to solve the problem using each
method. Specifically, Fig. 4 shows the CPU time as a function
of N for all three transformations φa(τ ), φb(τ ), and φc(τ ) using
both methods developed in Section 4 and using the method of
Fahroo and Ross (2008). First, it is seen that, regardless of method
or transformation, the CPU time grows essentially linearly as a
function of N . Second, it is observed that, for some values of N , the
CPU time required by the two methods of this paper is larger than
the CPU time required by themethod Fahroo and Ross (2008). Even
in these cases, however, it is noted that the trend is not consistent.
For example, the CPU time using the Gauss pseudospectral method
with the transformation φb(τ ) and N = 15 is approximately twice
that required by the method of Fahroo and Ross (2008), whereas
for N = 10 the CPU times for all methods and transformations is
nearly the same. In the case of the Radau pseudospectral method,
it is seen that the CPU times are nearly the same except for certain
transformations (for example, the CPU time using Radau with N =

15 and φb(τ ) is twice as large as all other CPU times for N = 15).
Finally, because the CPU times are all the same order ofmagnitude,
any computational performance penalty is compensated by the
increased accuracy that may be offered by the Gauss and Radau
schemes of our paper.
6. Conclusions

Two pseudospectral methods have been presented for the
numerical solution of nonlinear infinite horizon optimal con-
trol problems using global collocation at Legendre–Gauss and
Legendre–Gauss–Radau points. It was shown that the nonlinear
programming problems which arise from a change of variables
followed by either Gauss or Radau collocation includes an approx-
imation to the state at t = +∞. The Legendre–Gauss and Leg-
endre–Gauss–Radau transformed adjoint systems connecting the
KKT conditions of the nonlinear programming problem to the Pon-
tryagin minimum principle were then derived. These transformed
adjoint systems resulted in approximations for the costate at t =

+∞. Finally, it was shown that either of the methods developed
in this paper can be written equivalently in either a differential or
integral form. The results of this paper indicate that the use of Leg-
endre–Gauss and Legendre–Gauss–Radau points lead to accurate
approximations to a continuous nonlinear infinite-horizon optimal
control problem in such a manner that the solution is obtained on
the entire infinite-horizon. By tuning the change of variables used
to map the infinite time domain [0, ∞) to a finite interval, it was
possible to improve the accuracy in the discrete approximation by
several orders of magnitude.
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