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SUMMARY

Two methods are presented for approximating the costate of optimal control problems in integral form using
orthogonal collocation at Legendre—Gauss (LG) and Legendre—Gauss—Radau (LGR) points. It is shown that
the derivative of the costate of the continuous-time optimal control problem is equal to the negative of the
costate of the integral form of the continuous-time optimal control problem. Using this continuous-time
relationship between the differential and integral costate, it is shown that the discrete approximations of the
differential costate using LG and LGR collocation are related to the corresponding discrete approximations
of the integral costate via integration matrices. The approach developed in this paper provides a way to
approximate the costate of the original optimal control problem using the Lagrange multipliers of the integral
form of the LG and LGR collocation methods. The methods are demonstrated on two examples where it is
shown that both the differential and integral costate converge exponentially as a function of the number of
LG or LGR points. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the past two decades, direct collocation methods have become popular in the numerical
solution of nonlinear optimal control problems. In a direct collocation method, the state and
control are discretized at a set of appropriately chosen points in the time interval of interest.
The continuous-time optimal control problem is then transcribed to a finite-dimensional nonlinear
programming problem (NLP), and the NLP is solved using well known software [1, 2]. Recently,
a great deal of research has been done on the class of Gaussian quadrature orthogonal collocation
methods [3-25]. In a Gaussian quadrature orthogonal collocation method, the state is approxi-
mated using a basis of either Lagrange or Chebyshev polynomials, and the dynamics are collocated
at points associated with a Gaussian quadrature. The most common Gaussian quadrature collo-
cation points are Legendre—Gauss (LG) [3, 4, 6-9, 11], Legendre-Gauss—Radau (LGR) [9-14],
and Legendre—Gauss—Lobatto [15-25]. All three types of Gaussian quadrature points are defined
on the domain [—1, 1] but differ in that the LG points include neither of the endpoints, the LGR
points include one of the endpoints, and the LGL points include both of the endpoints. The use
of global polynomials together with Gaussian quadrature collocation points is known to provide
accurate approximations that converge exponentially fast for problems whose solutions are smooth
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[6, 911, 14]. An advantage of these methods is that by computing the solution of the control
problem accurately at a small number of carefully chosen points, one obtains an accurate global
approximation. Because the problem solution is approximated in a small dimensional space, the
numerical algorithms can be very efficient.

The costate variable in an optimal control problem is related to the sensitivity of the objective
function to perturbations in the system dynamics. The costate is essentially the derivative of the
objective function with respect to a perturbation in the system dynamics. For example, see [26]
and the references therein. Previous research on costate approximation using Gaussian quadrature
collocation has focused on the use of the differential form of the collocation methods. However,
recent research strongly indicates that there may be computational advantages to using the integral
form of LG and LGR collocation over the differential form. In fact, the most current implementation
of LGR collocation is the MATLAB optimal control software GPOPS — I [27], which uses the
integral form of LGR collocation by default because it has been found through a variety of examples
that the integral form provides more consistent results. The implicit integral forms of LG and LGR
collocation are consistent with the implementations used by established optimal control software
packages such as SOCS [28], DIRCOL [29], OTIS [30], ICLOCS [31], and ACADO [32].

It is important to note that while the differential and integral forms of LG and LGR collocation
produce equivalent primal solutions (i.e., state and control), these two formulations produce com-
pletely different dual variables. Moreover, the discretized versions of the integral and differential
dynamics have much different numerical characteristics. For example, when refining the mesh in
order to achieve a specified error tolerance, the error estimates for the integral dynamics are much
more stable and reliable than the error estimates derived from the differential dynamics [27, 33].
On the basis of the computational importance of the integral form of the collocation methods, this
paper will analyze the relationship between the Lagrange multipliers associated with the discretized
integral forms, and the costate of the continuous optimal control problem. Our earlier work [9-11]
analyzed the relationships between the Lagrange multipliers arising in the discrete and continuous
differential formulations of the optimal control problem.

The approach developed in this paper provides a way to approximate the costate of the original
optimal control problem using the Lagrange multipliers of the integral form of the LG and LGR
collocation methods. Transformations are derived that relate the Lagrange multipliers of the inte-
gral forms of the LG and LGR collocation methods to the costate of the original optimal control
problem. These transformations are derived by writing the original continuous-time optimal con-
trol problem in integral form. A new continuous-time dual variable called the integral costate is
then introduced, where the integral costate is the Lagrange multiplier of the integral dynamic con-
straint. The first-order optimality conditions of the integral form of the optimal control problem are
derived in terms of the integral costate. The integral form of the optimal control problem is then
discretized using the integral LG and LGR collocation methods and relationships between the dis-
crete form of the integral costate and the costate of the original differential optimal control problem
are developed. It is shown that the LGR integration matrix that relates the differential costate to the
integral costate is singular while the corresponding LG integration matrix is full rank. These rela-
tionships lead to a way to approximate the costate of the original optimal control problem using the
Lagrange multipliers of the integral form of the LG and LGR collocation methods. The two methods
developed in this paper are demonstrated on two examples where it is found that the costate con-
verges exponentially, consistent with the analysis in [34] for unconstrained control problems with
smooth solutions. Although we focus on unconstrained control problems in this paper, the relations
we establish between the continuous costate and the Lagrange multipliers for the discrete integral
forms are also applicable for problems with control constraints or endpoint constraints. On the other
hand, when state constraints are present, the relationship between the continuous costate and the
multipliers in the discrete problem is more complex as shown in [35] and [36].

This paper is organized as follows. In Section 2, we introduce the conventions and notation used
in the remainder of this paper. In Section 3, we formulate the continuous-time optimal control prob-
lem with the dynamic constraints formulated in both differential and integral form, and we present
the first-order optimality conditions for each form. In Sections 4 and 5, we present the LG and
LGR collocation methods in both differential and integral forms, derive the first-order optimality
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conditions in each form, develop the transformed adjoint system, and derive a costate approximation
in terms of the Lagrange multipliers of the integral forms. In Section 6, we provide two examples
that demonstrate the accuracy of the LG and LGR costate approximation methods derived in this
paper. Finally, in Section 7, we provide conclusions on our work.

2. CONVENTIONS AND NOTATION

The following notation and conventions are used throughout this paper. Except where explicitly
noted, vectors in this paper are row vector. In particular, if y(r) € R” is the state vector at time T,
then y(z) = [y1(7), -, yu(7)]. Generally, if Y is a matrix, then Y; is the i-th row of Y, while Y;.;
denotes the submatrix formed by rows i through j. Two exceptions are the differentiation matrix D
and the integration matrix A, in which case D; and A; refer to the i™ column of D or A. Finally,
D' denotes the transpose of matrix D, and DZT denotes the transpose of the i column of D. Given
vectors X and y € R”, the notation (x,y) is used to denote the standard Euclidean inner product
between x and y. Furthermore, if f : R — R™ and Y is N by n, then f(Y) is the matrix whose
i-th row is f(Y;). If y € R”, then Vf(y) denotes the Jacobian of f evaluate at y; the Jacobian is an
m X n matrix whose i-th row is Vf;(y). In particular, the gradient of a scalar-valued function is a
row vector. Finally, the Kronecker delta function is defined by §;; = 1 and §;; = 0if i # j.

3. CONTINUOUS-TIME BOLZA OPTIMAL CONTROL PROBLEM

In this section, we state the differential and integral forms of the continuous-time Bolza optimal
control problem under consideration in this paper. In addition, we provide the first-order optimality
conditions of each form of the problem and explain how these two sets of optimality conditions are
related to one another.

3.1. Differential and integral forms of optimal control problem

Consider the following continuous-time optimal control problem defined on the interval
7 € [—1,+1]. Determine the state y(r) € R” and the control u(r) € R™ that minimize the
cost functional

+1
s =060+ [ gt um)d 1)
-1
subject to the dynamic constraint

y(t) - f(Y(T)v ll(l')) = 07 TE [_1’ +1]7 (2)

and the boundary condition

y(=1) = yo. 3

It is noted that the time interval T € [—1, +1] can be transformed to the interval [tg,  ¢] via the affine
transformation

Ir—1to Iy + 1y
=75 T+ >
Henceforth, (1)—(3) will be referred to as the differential optimal control problem.

The differential optimal control problem given in (1)-(3) can be re-written in the following
integral form. In particular, integrating the dynamics given in (2), we have

t

¥(0) = y(-1) + /_ H(y(0).u(r) d.

The optimal control problem in integral form is then stated as follows. Determine the state y(t) €
R"™ and the control u(z) € R™ that minimize the cost functional

+1
J = O(y(+1) + /_ 5. () 4
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subject to the integral constraint

T
y©) -y - [ f@.u@) dr =0, cel-1+1, 5)
-1
and the boundary condition

y(=1) = yo. (6)

Henceforth, (4)—(6) will be referred to as the integral optimal control problem.

3.2. First-order optimality conditions of differential and integral forms

The first-order optimality conditions for the differential optimal control problem, given by the
Pontryagin minimum principle, are[37]

y(@) =f(y(r),u(x), tel[-1+1]. (7
0 = VyH(y(r). u(r), A(7)), 7e[-1,+1], €))
—A(r) = V,H(y(0),u(x), A(1), T €[-1,+1] (10)
A(+1) = VO(y(+1)). 11
Here 7 is the Hamiltonian defined by
H(y,w.4) = g(y,u) + (A.f(y, w)), (12)

and A is the Lagrange multiplier associated with the differential dynamics given in (7).
The first-order optimality conditions for the integral optimal control problem, derived in the
Appendix, are the following:

¥ = y(-1) + /_ 00Ot T e 1] (13)
¥y(-1) = yo. (14)
0 = V,H(y(r),u(r), A(x), € [=1,+1], (15)
F(1) = VyH (0. 0@ A@), 7€ [~ +1], (16)
where
+1
A(r) = VO(y(+1)) +/ r(t) dt, 17)

and r is the multiplier associated with the integral dynamics of (13). Thus, (17) gives the relation-
ship between the multipliers in the differential and integral formulations. Differentiating (17), we
see that r(7) = —A (7); i.e., the multiplier for the integral dynamics is the negative derivative of the
multiplier for the differential dynamics. The remainder of this paper is devoted to deriving two dis-
crete approximations of the differential costate, A(t), using discrete approximations of the integral
costate, r(7).

4. COSTATE APPROXIMATION USING INTEGRAL LEGENDRE-GAUSS COLLOCATION

In this section, we present the LG collocation method and establish the relation between the integral
and differential discretized problems.
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COSTATE APPROXIMATION IN OPTIMAL CONTROL

4.1. Differential form of Legendre—Gauss collocation

The differential optimal control problem is now approximated using collocation at LG points (see
Refs. [6, 9-11]). The LG points are denoted (7y,...,7x) and are defined on the open interval
(=1, +1). The state is approximated by the polynomial

N N
T—7;
YO Y@ =) YiLi(o), Li(x) = H — T’j, (18)
i=0 j=0
J#i
where 7y = —1 is an additional point where we approximate the state, and L;(t),i = 0,..., N is
a basis of Lagrange polynomials of degree N with support points (zg, ..., Ty ). The time derivative
of the state approximationatz = 7;, 1 <i < N is
N N
y@) ~ Y1) =Y Y;Lj(m) =Y Y;D;; = [DYonli. 19

j:() j=0

where Y; = Y(7;) and D is the N x (N + 1) LG differentiation matrix whose elements are given
by D;j = L j (7). Note that we only collocate the dynamics at the quadrature points 7;, 1 <i < N,
not at the initial time tp = —1. If w = (wy, ..., wy) is the row vector of LG quadrature weights
and 7y +1 = +1 is the terminal time, then the discretized control problem is

N
min J = ®(Yyi1) + Y w;g(Y;.Uj). (20)
j=1
subject to the collocated dynamics
DYo.n —f(Yi:n,Ury) =0, (2D
Yn+1— Yo —wi(Y1:n, Ury) =0, (22)
Yo = Yo, (23)

It is noted for LG collocation that (22) provides an LG quadrature approximation, Y 41, of the
state at the final noncollocated point 7y +; = +1. The NLP described by (20)—(23) will be referred
to as the differential LG collocation method.

4.2. Karush—Kuhn—Tucker conditions using differential Legendre—Gauss collocation

In [10], it is shown that the Karush—Kuhn-Tucker (KKT) conditions for the differential LG
collocation method associated with (20)—(23) can be written in the following form:

DYo.ny =f(Yi:n.Urn), Yo =Yo, (24)
Yn+1 = Yo+ wi(Yin,Uprn), (25)
0=V,H(Y;, Ui, 4;), (26)
(DT A1 11)i = —VyH(Yi, Ui A)), @7)
AN+1 = VO(Yn+1), (28)
i =1,2,...,N, where DT is defined by
w N
t_ W - P t
Djj ==rDjis 1<ij<N. and Di’NH_—jX_;DU-. (29)
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It was shown in Theorem 1 of [9] that DT is a differentiation matrix for the space of polynomials
of degree N. More precisely, if b is a polynomial of degree at most N and b € RN +1 is the vector
whose i*" element is b; = b(t;), 1 <i < N + 1, then (D'b); = b(z;). In the transcription of (24)—
(28), the state is differentiated by a matrix D [given by (19)], which is based on the derivatives of
polynomials of degree N with coefficients at the N LG points plus the initial noncollocated point
To = —1, whereas the costate is differentiated by a matrix D [given by (29)], which is based on
the derivatives of polynomials of degree N with coefficients at the N LG points plus the terminal
noncollocated point Ty = +1.

4.3. Integral form of Legendre—Gauss collocation

The integral optimal control problem is now discretized using the integral form of LG collocation.
It has been shown in [10] that the LG differentiation matrix D given by (19) has the property that
the square matrix D;.y obtained by removing the first column of D is full-rank and —Dl_&v Dy =1.
We multiply the differential dynamics in (24) by A = Dl_:}V to obtain

Yiv = 1Yo + Af(Y1:nv. Urn), (30)

where 1 is an N x 1 column vector of all ones. Combining (30) with (25) gives the discretized
dynamics for the integral formulation. The integral optimal control problem of (4)—(6) can then be
approximated via the following finite-dimensional nonlinear programming problem: Minimize the
cost function of (20) subject to the algebraic constraints

Yin = IYO +Af(Y1:N,U1:N), (31)

Yyi1 =Yoo+ wi(Yin,Upn). (32)

The NLP described by the objective function of (20) and the dynamics of (31) and (32) will be
referred to as the integral LG collocation method.

4.4. Karush—Kuhn—Tucker conditions using integral Legendre—Gauss collocation

The KKT conditions of the integral LG collocation method are found by taking the partial derivatives
of the Lagrangian £ of the NLP with respect to every free variable and setting the result to zero. The
Lagrangian is

N
L=oYyi1)+ > wig(Yi.Up) + (Riy. Iyo + Af(Y1n, Upy) — Yion)
i=1
+ (Ry+1.¥0 + wE(Y1.n, Uiy) — Y1),

where R is the N + 1 by n matrix of multipliers associated with the discrete dynamics. The partial
derivatives with respect to the control and the state yield

0 =w;i Vug(Yi, Up) + Vi (ATR 8 )i £(Y:, Up)) + wi Vi (Ry 1. £(Yi, Up)), 1 <i <N,
R; = w;Vyg(Yi, Up) + Vy (ATRy:n)i, £(Y:, Up)) + wi Vy (Ry 1, £(Y;:,Up)), 1<i <N,
Ry+1=VO(Yn41).
We make the change of variables
. Wi
r, =Ri/wi, 1<i<N. ryy1=Ryyi. A= w—fAjj. (33)
j
After these substitutions and after dividing the i equation by w;, we obtain
r, = VyH(Yi,Ui, [Ll-), (35)
Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2014)
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ry+1 = VO(Yn+1), (36)
i=1,2,...,N, where
m; =ryny1+ AT 37

Because A y+1 = ry+1 by (28), we see that (34)—(35) and (26)—(27) are equivalent if the following
conditions hold:

(@) Ay =1Iryp; +Afry and () vy = DA v .

We will now show that conditions (a) and (b) are equivalent. This equivalence is based on the

following key property: (DI: N) = —AT'. For example, if (b) holds, then by the definition of
Dj\,ﬂ in (29), we have

1y =DMA Ny = DJ{:NM:N + Djv+1)~N+1 = DI;NM:N _DI:NIAN—H-

—1
We multiply by (D, ) = —AT to obtain (a). The identity (D], ) = —A is now established.

Theorem 1
The matrix AT defined in (33) is a backwards integration matrix for the space of polynomials of
degree N — 1. That is, if p is a polynomial of degree at most N — 1 and p € R¥ is the vector with

i*" component p; = p(t;), then
+1
W= [ pwar. (38)
T
N

Moreover, Al = (Dlz N)
Proof
Let p and g denote polynomials of degree at most N — 1 such that p; = p(r;) and ¢; = q(z;) for
Jj =1,..., N. Changing the order of integration, we have

+1 T +1 +1
/_1 [q(r)/_lp(t) dt} dt :/_1 |:p(t)[t q(t) dt]dr. (39)

Because p and g are polynomials of degree at most N — 1, it follows that

“+1 T
(@) / g(ydi and g(v) /_ (o

are polynomials of degree at most 2N — 1. Because LG quadrature is exact for polynomials of degree
at most 2N — 1, the integrals in (39) can be replaced by their LG quadrature equivalents to obtain

T

N j N +1
ijéh'/ p()dt = Zwipi/ q(t)dt. (40)
j=1 -1 i=1 T

In [10], it is shown that

/’ p(t)di = (Ap);, 1<j <N, (41)
-1

where p is a column vector. Let L;r. denote the Lagrange basis functions defined by
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and define the N x N matrix B by

+1
bij =/ L) dr.
T

By the definition of B, it follows that

+1
/ 4(6) di = (Bq):. “2)

i

Combining (42) with (40) and (41), we obtain

N N N N
Y > wiqjAjipi =YY wipiBiq;.

j=li=1 i=1j=1

Rearranging this last expression gives

N N
YD alwiAji —wiBilpi = 0.
j=1i=1
Because this last result must hold for all p and q, we conclude that the bracketed expression must
vanish. Therefore,

"y
Bij = LA,
l
which shows that B = AT. Consequently, (42) yields (38).
Given p € R¥, let p(t) denote the polynomial of degree at most N — 1 that satisfies p(z;) = p;.
Let g be the polynomial of degree at most N defined by

+1
4(0) = f p(t) d. 43)

Let q € RV F! be the vector with components ¢; = ¢(z;), 1 <i < N + 1. By Theorem 1 in [10]
and by (43), we have

O]y 1@ =¢(r) = —p(m) =—p;. 1<i<N. (44)
By (38), we have q1.5y = ATp. Because gy +1 = 0, it follows that
])11-:N+1q = DI;qu:N = DI:NATP' 45)
Combining (44) and (45) yields
D] yA'p = —p.
-1
Because p was arbitrary, we deduce that DJ{: N is invertible and (DJ{: N) = —Af, |

5. COSTATE APPROXIMATION USING INTEGRAL LEGENDRE-GAUSS-RADAU
COLLOCATION

In this section, we develop the relation between the multipliers arising in the integral LGR colloca-
tion scheme and the costate associated with the differential LGR collocation scheme. In Section 5.1,
we review the differential form of the LGR collocation method, and in Section 5.2, we review the
first-order optimality conditions for the discrete problem (see Refs. [9-11]). In Section 5.3, we
describe the integral form of the LGR collocation method, and we provide the first-order optimality
conditions of the nonlinear programming problem described in Section 5.1, and the relationships
between the multipliers in the integral and differential discretizations.
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5.1. Differential form of Legendre—Gauss—Radau collocation

We will consider the so-called flipped LGR points located on the half-open interval (—1, 41], as
in [10], because the algebraic manipulations are somewhat simpler than those for the LGR points
located on [—1, +1) considered in [9]. If (t1, ..., Ty ) are the LGR quadrature points with 7y = +1,
then the state is approximated as

N N
T—7T;
YORY@ =) Yili(®), L@ =]] — T’j : (46)
i=0 Jj=0
J#i
where 1y = —1 is the starting time and L;(t), i =0, ..., N, is a basis of Lagrange polynomials of
degree N with support points (7o, . .., Ta ). The time derivative of the state approximation at t = t;,
1<i<Nis
N
y(m) ~ Y(m) = > Y;L;(n) = DYonli. 47)
j=0

where Y; = Y(t;) and D is the N x (N + 1) LGR differentiation matrix whose elements are given
by D;;j = L j(7;). Note that we collocate the dynamics at the quadrature points 7;, 1 < i < N,
which includes the final time t; = +1 but not the initial time 79 = —1. If w = (wq,...,wy) is
the vector of LGR quadrature weights, then the discretized control problem is

N
min J = ®(Yy)+ Y w;g(Y;,Uj), (48)
j=1
subject to the collocated dynamics
DYo.n — f(leN» UI:N) =0, (49)
Yo = Yo. (50)
The NLP described by (48)—(50) will be referred to as the differential LGR method.

5.2. Karush—Kuhn—Tucker conditions using differential Legendre—Gauss—Radau collocation

In [10], it is shown that the KKT first-order optimality conditions of the differential LGR collocation
method can be written in the following form:

DYo.xn = f(Y1:n,Ui:n), Yo = Yo, (51)
1
(D A1n)i = —VyH(Y:, Ui, A) + E&-N(AN —Vo(Yy), (53)

where 4;, 1 < i < N is the transformed multiplier associated with the collocated dynamics at
i, 8;n is the Kronecker delta, which is zero except for Sy = 1, and D' is the N x N matrix
defined by

+ 1 T w; .
Diy=-Dyn+— and D} =—-—LD;; otherwise. (54)
wy Wi

By Theorem 1 in [10], DT is a differentiation matrix for the space of polynomials of degree N — 1.
More precisely, if b is a polynomial of degree at most N — 1 and b € R¥ is the vector with i**
element b; = b(z;) for1 <i < N, then

(Db); = b(w).

It is noted that in (51)—(53), the time derivative of the state is approximated using the differentiation
matrix D for the space of polynomials of degree N [(47)], while the costate is being differentiated
by a differentiation matrix D for the space of polynomials of degree N — 1.
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5.3. Integral form of Legendre—Gauss—Radau collocation

It is shown in [10] that the LGR differentiation matrix D given by (47) has the property that the
square matrix Dj.y obtained by removing the first column of D is full-rank and —Dl_&vDo =1
Using these properties, the integral dynamic constraints (5) can be approximated as

Yin = IYO + Af(Yl:Nv UI:N), (55)

where 1 as a column vector of all ones. The NLP described by (48) and (55) will be referred to as
the LGR collocation method.

The KKT first-order optimality conditions of the integral LGR collocation method are found by
taking the partial derivatives of the Lagrangian of the NLP with respect to every free variable and
setting the result to zero. The Lagrangian is

N
L=o(Yy)+ ) wig(Yi.U;) + (R 1yo + Af(Y1:n. Ury) — Yion).
i=1
where R;, 1 <i < N, is the multiplier associated with the collocated dynamics at t;. The partial
derivatives with respect to the control and the state yield the relations

0 = w; Voug(Yi. Up) 4+ Vi (A"R);. £(Y;, Up)), (56)
Ri = w;V,g(Yi, Up) + V, ((ATR); . £(Y;, U)) + Sni VO(Y ). (57)

1 < i < N.Next, we make the change of variables
ri = R;/w; — (Sni/wi)VO(Yy). (58)

In addition, we define the matrix A as
Al = l:)—jA i (59)
Substituting the results of (58) and (59) into (56) and (57) and dividing the i’ k equation by w;, we
obtain
0 = Vi H(Y;, Ui, (AT0); + (Ani/wi) VO(Y ),
ri = VyH(Yi, Ui, (AT0); + (Ani /wi) V(Y w)).
In [10], it is shown that

K Yoy
A»-:[ L), Lt = L
& _ J nrj_fi

i=1

J#i
Because ty = +1, we deduce that Ay; = w; and Ay;/w; = 1. Hence, we obtain the following
necessary optimality conditions
0=V, H(Y;, U, p,;), (60)
ri = vyH(Yj,Ui,lLi), (61)
1 <i <N, where
p; = Vo(Yy) + (ATr);. (62)

Comparing (52) and (53) to (60) and (61), we see that they are equivalent if the following conditions
hold:

1 1
(@) A =1V®(Yy) +Afr and (b) r= (—eNe,TV —DT) A— —eyVO(Yy),
wWN wWN

where ey is the last column of the identity (the column vector whose entries are all zero except the
last entry which is 1). The conditions (a) and (b) are equivalent in that if (a) holds, then so does (b)
and if (b) holds, then so does (a). This equivalence is based on the following analog of Theorem 1,
which was established in [34].
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Theorem 2
Let M; denote the Lagrange interpolating polynomials defined by

N-1

T—T .
Mi(r) = , 1<j<N-1L
() ilj Ep— J
1#]
The first N — 1 columns of AT are given by
+1
Al = Mj(t)dt —wyM;(ty), 1<i<N,

T

while all entries in the last column of At are w ~ . Moreover, we have

1 -1
AT = —eyel — D .
(e

Based on Theorem 2 and the special form of the last column of At if (b) holds, then we can
multiply both sides of (b) by AT to obtain

Afr = A —1VO(Yy),

which yields (a). Another consequence of the theorem is that

+1
ATt =Gy =g+ + [ g de
T

where ¢ is the polynomial of degree at most N — 2 defined by ¢(t;) = rj for1 < i < N — 1.
Hence, p; in (62) represents an approximation to the continuous costate A (t;) of (17) in which the
integral is replaced by a quadrature based on function values at 7y, ..., Ty—; plus an additional
term connected with the difference between ry and the polynomial extrapolation of (rq,...,ry—1)
to T = +1. Clearly, the Radau approximation to the control problem with integrated dynamics
is nontrivial.

6. EXAMPLES

We now consider two examples that employ both the LG and LGR methods developed in Sections 4
and 5. The first example is an initial-value optimal control problem with a Mayer cost while the
second example is a boundary-value optimal control problem with a Lagrange cost. The examples
provide an analysis of the errors in both the integral costate approximation, r, and the differential
costate estimate approximation, A.

Example 1

Consider the following optimal control problem:

. _ é _ _ 2
Minimize J = —y(2) subject to { ig))) _ 12( @)+ yOu@) —ut)y), (63)
The solution to the optimal control problem given in (63) is
4 y* (@)
) = — ,ut(t) = ——,
o= ") =5 §
() = a(t)(15exp(5t/2) —5) () = _exp21n(a(t)) — 5t/2’
2bexp(5t/2) b
§[Correction made here after initial online publication.]
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(a) LG Differential and Integral Costate Approximation for N = 10. (b) LGR Differential and Integral Costate Approximations for N = 10.

Figure 1. Exact and approximated differential and integral costate for Example (63) for N = 10 Legendre—
Gauss and Legendre—Gauss—Radau collocation points.
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(a) LG Base Ten Logarithm of L.c-Norm Error.

N
(b) LGR Base Ten Logarithm of Loc-Norm Error.

Figure 2. Base 10 logarithm of L oo-norm error of differential and integral costate for Example (63).

where a(t) = 1 + 3exp(5¢/2) and b = exp(—5) + 6 + 9exp(5). The example was solved using
the integral LG and LGR collocation methods and the NLP solver SNOPT[1], where SNOPT was
implemented using optimality and feasibility tolerances of 1 x 1077 and 2 x 1077, respectively.
Figure 1(a) and (b) shows the LG and LGR approximations, respectively, of the dual variables A
and r alongside the optimal values r* and A* for N = 10 collocation points, where it is seen that
the approximations are indistinguishable from the optimal values. Next, Figure 2(a) and (b) shows
the base 10 logarithm of the L .,-norm errors in A and p as a function of the number of collocation
points, N for N = (2,4,...,10). It is seen for this example that the errors in both A and r decrease
exponentially and in all cases the approximation of A is slightly more accurate than the approxima-
tion of r. Finally, it is observed that, for any particular value of N, the LG costate approximation is
one order of magnitude more accurate than the LGR costate estimate.

Example 2

Consider the following optimal control problem:

y() = y@)logy(t) + y(®)u(?),
Minimize J = = tf(lo 2y 4+ u?)dt subject to { * © =5 T (64)
=3 A gy ] y(tf) =3,
tr = 5.

I[Correction made here after initial online publication.]
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(a) LG Differential and Integral Costate Approximations for N = 32.
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(b) LGR Differential and Integral Costate Approximations for N = 20.
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Figure 3. Differential and integral costate approximations for Example (64) for N = 20 Legendre—Gauss
and Legendre—Gauss—Radau collocation points.
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Figure 4. Base 10 logarithm of L oo-norm error of differential and integral costate for Example (64).

The solution to the optimal control problem in (64) is

y*(1) = exp(x*(1)) , cut(t) = =90,
r¥(t) = exp(=x" () (A" ()Y (1) =¥ * (1) , A*(t) = exp(—=x" )y (1),
where
|:x*(t)i| B exp (—t \/E) exp (tﬁ) 1 1 - [log yo] |
U)o (1 + ﬁ) exp (—t ﬁ) (1—ﬁ> exp (tﬁ) exp (—tf ﬁ) exp (tf ﬁ) log yrl’

The example was solved by the integral LG and LGR collocation methods using the NLP solver
SNOPT[1] using optimality and feasibility tolerances of 1 x 10~7 and 2 x 1077, respectively.
Figure 3(a) and (b) shows the LG and LGR approximations, respectively, of the dual variables A
and r alongside the optimal values r* and A* for N = 20 collocation points, where it is seen that
the approximations are indistinguishable from the optimal values. Next, Figure 4(a) and (b) shows
the base 10 logarithm of the L.-norm errors in A and r as a function of the number of colloca-
tion points, N for N = (2,4,...,20). Similar to the results obtained in the first example, it is
seen for this example that the errors in both A and r decrease exponentially and in all cases the
approximation of A is slightly better than the approximation of . In addition, and again similar to

I[Correction made here after initial online publication.]
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the results obtained in the first example, it is observed for any particular value of N that the LG
costate approximation is one order of magnitude more accurate than the LGR costate approxima-
tion. Note that because this example includes a terminal constraint, we need to introduce a Lagrange
multiplier for the constraint, which is added to the terminal multipliers for both the continuous and
discrete problems.

7. CONCLUSIONS

Two methods have been presented for approximating the costate of an optimal control problem
using the integral form of orthogonal collocation at LG and LGR points. A new dual variable called
the integral costate has been introduced in order to obtain the first-order optimality conditions when
the continuous-time Bolza optimal control problem is written in integral form. It was shown that
discrete forms of the integral costate are related to the costate of the original differential form of
the problem via integration matrices. It has been shown that the integral LG collocation method
produces a costate that is approximated by a polynomial of degree N while the integral LGR method
produces a costate that is approximated by a polynomial of degree N — 1. Furthermore, it has
been shown that the relationship between the costate of the original optimal control problem and
the integral costate associated with the integral form of the optimal control problem provides an
equivalence between the first-order optimality conditions of the differential and integral forms of
the optimal control problem. Finally, it was shown on two examples that the LG and LGR costate
approximations converge exponentially.

APPENDIX

The first-order optimality conditions of the integral form of the optimal control problem defined in
(4)—(6) are now derived. It is assumed that all the functions ®, g, and f are continuously differen-
tiable, and we assume that (y, u) is a smooth local minimizer. Let € denote a scalar, and consider the
perturbed control u + ev where v is an arbitrary smooth function. For € near zero, the corresponding
state is the solution of

Ye(7) = yo + /_1 f(ye()),u(r) + ev(r)) dt, 71 e[-1,4+1]. (A.1)

The objective function associated with the perturbation €v is

+1
Je = By (+1)) + /_ (0. 0(0) + VD),

Because (y, u) is a local minimizer, the objective function value for € # 0 can only be larger than the
objection function value for € = 0. In other words, as a function of €, the objective function achieves
a local minimum at € = 0. The first-order necessary optimality condition is that the derivative of J¢
should vanish at ¢ = 0. By the chain rule, we have

dJe
de €=0

dye
= VO(+1) 2E(+1)

€

+ gu(t)v(r) dt =0, (A.2)
€=0

+1 dYE
Ny
o . gy()de()

where g,(t) = V,g(y(r),u(r)) and g,(r) = V,g(y(r),u(r)). Here, the vectors y and v are
column vectors. We then obtain a formula for the derivative of y. by differentiating (A.1) with
respective €. Let z denote this derivative:

d
2(r) = =) (A3)
€ €=0
Differentiating (A.1) using the chain rule yields

T
z(t) = / f,(0)z(t) + £,(0)v(t) dt, v e[-1,+1], (A4)

-1
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where f, (1) = V,f(y(¢),u(t)) and £,(¢) = V,£(y(¢), u(?)). Here, z is also a column vector. After
replacing the derivative of y, by z in (A.2), we obtain

+1
Vo(y(+1)z(+1) + /_1 gy(0)z(7) + gu(v)v(r) dT = 0. (A.5)
By (A.4), it follows that
+1
z(+1) = / f,(0)z(r) + fu(v)v(r) dt. (A.6)
-1

Let p be any smooth row vector. Multiplying (A.4) by p and integrating over t between —1 and
+1, we obtain

+1 T +1
/ p(r)/ f,(0)z(t) + £, (t)v(t) dtdt —/ p(t)z(zr) dt = 0.
—1 -1 -1

In the double integral, we change the order of integration and then interchange the dummy variables
t and 7 to get

+1 p+1 +1
/_ |:/ p(?) dt] fy()z(r) + fu()v(r)) dt — / p(t)z(r) dt = 0. (A7)

1 -1
Adding (A.7) to (A.5) and substituting for z(+41) using (A.6), we obtain

+1 +1
o= (gym —p(r) + [Vd><y<+1>> + [ e dr} fy<r)) o(x) d
-1 4 (A.8)

+1 +1
+ / (gu(t) + |:VCI>(y(+1)) + / p(t) dt] f, (r)) v(t) dr.
T T
We now choose p so that the coefficient of z vanishes. In other words,
+1
p(0) = (0)+ | Vo) + [ b dr] 6,0 (A9)
With this choice for p, (A.8) yields
+1 +1
/ (gu(f) + |:V<1>(y(+1)) + / p(?) dt} fu(‘l,')) v(t)dt = 0.
T T
Because v was arbitrary, the coefficient of v vanishes, and we have
+1
gu(®) + |:Vd>(y(+1)) + / p@) dl} f,(z) =0 (A.10)
T

for all T € [—1, +1]. In terms of the Hamiltonian H(y,u, A) = g(y,u) + (A, f(y, u)), (A.9) can be
expressed

+1
p(0) = VH(y(0). u(r). (7).  A(7) = VO(y(+1)) + / p() dr. (A.11)
T
Similarly, (A.10) is equivalent to

+1

ViH(y(7),u(), A(r)) =0, A(r) = VO(y(+1)) + / p(r) dt. (A.12)
T

Our analysis has established the existence of a function p, which satisfies the first-order optimality

conditions of (A.11) and (A.12). We now show the relationship between p and a Lagrange multiplier.
Using the integral dynamics of (5), the objective function of our control problem can be expressed

+1 +1
d)(yo +/;1 f(y(z),u(r)) dt) +/—1 gy(r),u(r))dr. (A.13)
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We multiply the integral dynamics by p(t), integrate over T € [—1, 4+1], and add to the objective
function to obtain the Lagrangian

+1

+1
L(y.u,p) = (yO + /_1 f(y(z). u(x)) dt) +/ g(y(0).u()) + p(0)(yo —y(v)) dt

+1 T
* /_ 1 /_ POFy () 00) drd

Similar to (A.7), we change the order of integration in last term and we interchange the dummy
variables ¢ and t to rewrite this as

+1
L(y,u,p) =& (yo + /_1 f(y(z).u(r)) dt)

+1 +1
+ [ | (g(ym,u(r))+p(r)(yo—y(r))+[/ NG dr]f(y(r),um)) d.

Equating to zero the Fréchet derivatives of £ with respect to y and u, we obtain, respectively,
(A.9) [or equivalently (A.11)] and (A.10) [or equivalently (A.12)]. Therefore, p can be viewed as
a Lagrange multiplier for the integral dynamics when the objective function is written as given
in (A.13).
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