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Abstract

An adaptive mesh refinement method for solving optimal control problems is developed.
The method employs orthogonal collocation at Legendre-Gauss-Radau points, and adjusts
both the mesh size and the degree of the approximating polynomials in the refinement pro-
cess. A previously derived convergence rate is used to guide the refinement process. The
method brackets discontinuities and improves solution accuracy by checking for large in-
creases in higher-order derivatives of the state. In regions between discontinuities, where the
solution is smooth, the error in the approximation is reduced by increasing the degree of the
approximating polynomial. On mesh intervals where the error tolerance has been met, mesh
density may be reduced either by merging adjacent mesh intervals or lowering the degree of
the approximating polynomial. Finally, the method is demonstrated on two examples from
the open literature and its performance is compared against a previously developed adaptive
method.

1 Introduction

Over the past two decades, direct collocation methods have become popular in the numerical

solution of nonlinear optimal control problems. In a direct collocation method, the state and

control are discretized at a set of appropriately chosen points in the time interval of interest. The

continuous-time optimal control problem is then transcribed to a finite-dimensional nonlinear
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programming problem (NLP) and the NLP is solved using well known software [1,2]. Originally,

direct collocation methods were developed as h methods (for example, Euler or Runge-Kutta

methods) where the time interval is divided into a mesh and the state is approximated using

the same fixed-degree polynomial in each mesh interval. Convergence in an h method is then

achieved by increasing the number and placement of the mesh points [3–5]. More recently, a

great deal of research as been done in the class of direct Gaussian quadrature orthogonal collocation

methods [6–23]. In a Gaussian quadrature collocation method, the state is typically approxi-

mated using a Lagrange polynomial where the support points of the Lagrange polynomial are

chosen to be points associated with a Gaussian quadrature. Originally, Gaussian quadrature col-

location methods were implemented as p methods using a single interval. Convergence of the p

method was then achieved by increasing the degree of the polynomial approximation. For prob-

lems whose solutions are smooth and well-behaved, a Gaussian quadrature collocation method

has a simple structure and converges at an exponential rate [24–26]. The most well developed

Gaussian quadrature methods are those that employ either Legendre-Gauss (LG) points [10,15],

Legendre-Gauss-Radau (LGR) points [16, 17, 19], or Legendre-Gauss-Lobatto (LGL) points [6].

Many mesh refinement methods employing h or p direct collocation methods have been de-

veloped previously. Reference [27] describes what is essentially a p method where a differentia-

tion matrix is used to identify switches, kinks, corners, and other discontinuities in the solution.

References [28] and [29] locally refine the grids by splitting selected intervals according to some

splitting criterion. Reference [5] develops a fixed-order method that uses a density function to

generate a sequence of non-decreasing size meshes on which to solve the optimal control prob-

lem. References [30] and [31] (and the references therein) describe a dual weighted residual

(DWR) method for mesh refinement and goal-oriented model reduction. The DWR method uses

estimates of a dual multiplier together with local estimates of the residuals to adaptively refine

a mesh and control the error in problems governed by partial differential equations. Finally, in

Ref. [3] an error estimate is developed by integrating the difference between an interpolation

of the time derivative of the state and the right-hand side of the dynamics. The error estimate

developed in Ref. [3] is predicated on the use of a fixed-order method (for example, trapezoid,

Hermite-Simpson, Runge-Kutta) and computes a low-order approximation of the integral of the

aforementioned difference. Different from all of this previous research where the order of the

method is fixed and the mesh can only increase in size, in the method of this paper varies the
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degree of the polynomial approximation is varied and the mesh size can be be reduced.

While h methods have a long history and p methods have shown promise in certain types

of problems, both the h and p approaches have limitations. Specifically, achieving a desired

accuracy tolerance may require an extremely fine mesh (in the case of an h method) or may

require the use of an unreasonably large degree polynomial approximation (in the case of a

p method). In order to reduce significantly the size of the finite-dimensional approximation,

and thus improve computational efficiency of solving the NLP, hp collocation methods have

been developed. In an hp method, both the number of mesh intervals and the degree of the

approximating polynomial within each mesh interval is allowed to vary. Originally, hp methods

were developed as finite-element methods for solving partial differential equations [32–36]. In

the past few years the problem of developing hp methods for solving optimal control problems

has been of interest [20–22]. References [20] and [21] describe hp adaptive methods where the

error estimate is based on the difference between an approximation of the time derivative of

the state and the right-hand side of the dynamics midway between the collocation points. It is

noted that the approach of Refs. [20] and [21] creates a great deal of noise in the error estimate,

thereby making these approaches computationally intractable when a high-accuracy solution is

desired. Furthermore, the error estimate of Refs. [20] and [21] does not take advantage of the

exponential convergence rate of a Gaussian quadrature collocation method. On the other hand,

Ref. [22] develops an error estimate based on the difference between the state interpolated on an

increased number of Legendre-Gauss-Radau points in each mesh interval and the state obtained

by integrating the dynamics on the solution using the interpolated state and control. Similar to

the methods of Refs. [20] and [21], however,the method of Ref. [22] can only increase the size of

the mesh.

As stated above, two key limitations of previous mesh refinement methods for optimal con-

trol is that the mesh can neither be decreased in size nor does the method attempt to detect dis-

continuities in the solution as the mesh refinement progresses. As a result, these previous meth-

ods may either create an unnecessarily large mesh. In addition, such methods place a larger

than required number of mesh intervals near discontinuities or rapid changes in the solution.

Both of these limitations are addressed by the adaptive hp mesh refinement method described

in this paper. The method of this paper is fundamentally different from any of these previously

developed methods because it detects points where smoothness in the solution is lost and allows
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for reducing the size of the mesh. First, motivated by the approach similar to that of Ref. [37],

nonsmoothness in the solution is determined by examining local maxima in the magnitude of

the second derivative of the state within mesh intervals. Specifically, if a local maximum of the

magnitude of the second derivative of the state is a user-specified factor greater than this second

derivative at the same point on the previous mesh, then the mesh interval where this local max-

imum occurs is deemed to be a nonsmooth interval and the interval is divided. Mesh interval

division in this manner then brackets the discontinuity within a narrow mesh interval. Outside

of these intervals where the solution may be nonsmooth, the accuracy of the solution is improved

by increasing the degree of the approximating polynomial. The method can reduce the size of

the mesh either by combining mesh intervals or by reducing the degree of the approximating

polynomial within a mesh interval. On mesh intervals where the error tolerance is satisfied, the

degree of the approximating polynomial can be reduced when the high order terms in a power

series expansion of the solution are sufficiently small. Similarly, adjacent mesh intervals can be

combined into a single mesh interval when the degree of the polynomial approximation in these

adjacent mesh intervals is essentially the same. The procedure for determining the intervals of

nonsmoothness or for determining the mesh width is based on the solution of the collocated

control problem on two meshes, one finer than the other, and an upper bound for the error in

the collocation approximation given in Ref. [38]. Finally, it is noted that a preliminary version of

the approach developed in this paper is given in Ref. [39].

This paper is organized as follows. In Section 2 the Bolza optimal control problem of interest

in this research is described. In Section 3 the Legendre-Gauss-Radau collocation method used

as the basis of the method of this paper is described. In Section 4 the mesh refinement method

is described in detail. In Section 5 the method developed in Section 4 is demonstrated on two

examples taken from the open literature. In Section 6 we provide a discussion of the method and

the results obtained in the numerical examples. Finally, in Section 7 we provide conclusions on

our research.

2 Bolza Optimal Control Problem

Without loss of generality, consider the following general optimal control problem in Bolza form.

Determine the state y(τ) ∈ R
ny and the control u(τ) ∈ R

nu on the domain τ ∈ [−1,+1], the initial
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time, t0, and the terminal time tf that minimize the cost functional

J = M(y(−1), t0,y(+1), tf ) +
tf − t0

2

∫ +1

−1

L(y(τ),u(τ), t(τ, t0, tf )) dτ, (1)

subject to the dynamic constraints

dy

dτ
=

tf − t0
2

a(y(τ),u(τ), t(τ, t0, tf )), (2)

the inequality path constraints

cmin ≤ c(y(τ),u(τ), t(τ, t0, tf )) ≤ cmax, (3)

and the boundary conditions

bmin ≤ b(y(−1), t0,y(+1), tf ) ≤ bmax. (4)

It is noted that the time interval τ ∈ [−1,+1] can be transformed to the time interval t ∈ [t0, tf ]

via the affine transformation

t ≡ t(τ, t0, tf ) =
tf − t0

2
τ +

tf + t0
2

. (5)

In the hp discretization, the domain τ ∈ [−1,+1] is partitioned into a mesh consisting of K

mesh intervals Sk = [Tk−1, Tk], k = 1, . . . , K, where −1 = T0 < T1 < . . . < TK = +1. The mesh

intervals have the property that
K
⋃

k=1

Sk = [−1,+1]. Let y(k)(τ) and u(k)(τ) be the state and control

in Sk. The Bolza optimal control problem of Eqs. (1)–(4) can then rewritten as follows. Minimize

the cost functional

J = M(y(1)(−1), t0,y
(K)(+1), tf ) +

tf − t0
2

K
∑

k=1

∫ Tk

Tk−1

L(y(k)(τ),u(k)(τ), t(τ, t0, tf )) dτ, (6)

subject to the dynamic constraints

dy(k)(τ)

dτ
=

tf − t0
2

a(y(k)(τ),u(k)(τ), t(τ, t0, tf )), (k = 1, . . . , K), (7)

the path constraints

cmin ≤ c(y(k)(τ),u(k)(τ), t(τ, t0, tf )) ≤ cmax, (k = 1, . . . , K), (8)

and the boundary conditions

bmin ≤ b(y(1)(−1), t0,y
(K)(+1), tf ) ≤ bmax. (9)

Because the state must be continuous at each interior mesh point, it is required that the condition

y(T−
k ) = y(T+

k ), (k = 1, . . . , K − 1) be satisfied at the interior mesh points (T1, . . . , TK−1).
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3 Legendre-Gauss-Radau Collocation

The multiple-interval form of the continuous-time Bolza optimal control problem in Section 2

is discretized using collocation at Legendre-Gauss-Radau (LGR) points [16–19, 22]. In the LGR

collocation method, the state of the continuous-time Bolza optimal control problem is approxi-

mated in Sk, k ∈ [1, . . . , K], as

y(k)(τ) ≈ Y(k)(τ) =

Nk+1
∑

j=1

Y
(k)
j ℓ

(k)
j (τ), ℓ

(k)
j (τ) =

Nk+1
∏

l=1
l 6=j

τ − τ
(k)
l

τ
(k)
j − τ

(k)
l

, (10)

where τ ∈ [−1,+1], ℓ
(k)
j (τ), j = 1, . . . , Nk + 1, is a basis of Lagrange polynomials,

(

τ
(k)
1 , . . . , τ

(k)
Nk

)

are the Legendre-Gauss-Radau (LGR) [40] collocation points in Sk = [Tk−1, Tk), and τ
(k)
Nk+1 = Tk is

a noncollocated point. Differentiating Y(k)(τ) in Eq. (10) with respect to τ gives

dY(k)(τ)

dτ
=

Nk+1
∑

j=1

Y
(k)
j

dℓ
(k)
j (τ)

dτ
. (11)

The dynamics are then approximated at the Nk LGR points in mesh interval k ∈ [1, . . . , K] as

Nk+1
∑

j=1

D
(k)
ij Y

(k)
j =

tf − t0
2

a(Y
(k)
i ,U

(k)
i , t(τ

(k)
i , t0, tf )), (i = 1, . . . , Nk), (12)

where

D
(k)
ij =

dℓ
(k)
j (τ

(k)
i )

dτ
, (i = 1, . . . , Nk, j = 1, . . . , Nk + 1)

are the elements of the Nk × (Nk + 1) Legendre-Gauss-Radau differentiation matrix [16] in mesh

interval Sk, k ∈ [1, . . . , K]. The LGR discretization then leads to the following nonlinear pro-

gramming problem (NLP). Minimize the LGR quadrature approximation to the cost functional

J ≈ M(Y
(1)
1 , t0,Y

(K)
NK+1, tf ) +

K
∑

k=1

Nk
∑

j=1

tf − t0
2

w
(k)
j L(Y(k)

j ,U
(k)
j , t(τ

(k)
j , t0, tf )) (13)

subject to the collocation equations

Nk+1
∑

j=1

D
(k)
ij Y

(k)
j − tf − t0

2
a(Y

(k)
i ,U

(k)
i , t(τ

(k)
i , t0, tf )) = 0, (i = 1, . . . , Nk), (14)

the discretized path constraints

cmin ≤ c(Y
(k)
i ,U

(k)
i , t(τ

(k)
i , t0, tf )) ≤ cmax, (i = 1, . . . , Nk), (15)
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and the discretized boundary conditions

bmin ≤ b(Y
(1)
1 , t0,Y

(K)
NK+1, tf ) ≤ bmax. (16)

It is noted that the continuity in the state at the interior mesh points (T1, . . . , TK−1) is enforced

via the condition

Y
(k)
Nk+1 = Y

(k+1)
1 , (k = 1, . . . , K − 1). (17)

Computationally, the constraint of Eq. (17) is eliminated from the problem by using the same

variable for both Y
(k)
Nk+1 and Y

(k+1)
1 .

4 Adaptive Mesh Refinement Method

In this section the adaptive mesh refinement method of this paper is described. The description

of the method is divided into five parts. First a review is provided of the approach of Ref. [22]

for estimating the relative error in the solution on a given mesh. Next, the methods for both

mesh interval division and polynomial degree increase are described. Finally, two approaches

are described for reducing the size of the mesh.

4.1 Approximation of Solution Error

In this Section the approach of Ref. [22] for estimating the relative error in the solution on a given

mesh is reviewed. The relative error approximation derived in Ref. [22] is obtained by comparing

two approximations to the state, one with higher accuracy. The key idea is that for a problem

whose solution is smooth, an increase in the number of LGR points should yield a state that more

accurately satisfies the dynamics. Hence, the difference between the solution associated with the

original set of LGR points, and the approximation associated with the increased number of LGR

points should yield an approximation of the error in the state.

Assume that the NLP of Eqs. (13)–(16) corresponding to the discretized Bolza optimal con-

trol problem has been solved on a mesh Sk = [Tk−1, Tk], k = 1, . . . , K, with Nk LGR points in

mesh interval Sk. Suppose that the objective is to approximate the error in the state at a set of

Mk = Nk + 1 LGR points
(

τ̂
(k)
1 , . . . , τ̂

(k)
Mk

)

, where τ̂
(k)
1 = τ

(k)
1 = Tk−1, and that τ̂

(k)
Mk+1 = Tk. Sup-

pose further that the values of the state approximation at the points
(

τ̂
(k)
1 , . . . , τ̂

(k)
Mk

)

are denoted
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(

y(τ̂
(k)
1 ), . . . ,y(τ̂

(k)
Mk

)
)

. Next, let the control be approximated in Sk using the Lagrange interpolat-

ing polynomial

U(k)(τ) =

Nk
∑

j=1

U
(k)
j ℓ̂

(k)
j (τ), ℓ̂

(k)
j (τ) =

Nk
∏

l=1
l 6=j

τ − τ
(k)
l

τ
(k)
j − τ

(k)
l

, (18)

and let the control approximation at τ̂
(k)
i be denoted u(τ̂

(k)
i ), 1 ≤ i ≤ Mk. The value of the

right-hand side of the dynamics at (Y(τ̂
(k)
i ),U(τ̂

(k)
i ), τ̂

(k)
i ) is used to construct an improved ap-

proximation of the state. Let Ŷ(k) be a polynomial of degree at most Mk that is defined on the

interval Sk. If the derivative of Ŷ(k) matches the dynamics at each of the Radau quadrature

points τ̂
(k)
i , 1 ≤ i ≤ Mk, we then have

Ŷ(k)(τ̂
(k)
j ) = Y(k)(τk−1) +

tf − t0
2

Mk
∑

l=1

Î
(k)
jl a

(

Y(k)(τ̂
(k)
l ),U(k)(τ̂

(k)
l ), t(τ̂

(k)
l , t0, tf )

)

,

j = 2, . . . ,Mk + 1,

(19)

where Î
(k)
jl , j, l = 1, . . . ,Mk, is the Mk × Mk LGR integration matrix corresponding to the LGR

points defined by
(

τ̂
(k)
1 , . . . , τ̂

(k)
Mk

)

. Using the values y(τ̂
(k)
l ) and ŷ(τ̂

(k)
l ), l = 1, . . . ,Mk + 1, the

absolute and relative errors in the ith component of the state at (τ̂
(k)
1 , . . . , τ̂

(k)
Mk+1) are then defined,

respectively, as

E
(k)
i (τ̂

(k)
l ) =

∣

∣

∣
Ŷ

(k)
i (τ̂

(k)
l )− Y

(k)
i (τ̂

(k)
l )
∣

∣

∣
,

e
(k)
i (τ̂

(k)
l ) =

E
(k)
i (τ̂

(k)
l )

1 + max
j∈[1,...,Nk+1]

k∈[1,...,K]

∣

∣

∣
Y

(k)
i (τ

(k)
j )
∣

∣

∣

,





l = 1, . . . ,Mk + 1,

i = 1, . . . , ny,



 . (20)

The maximum relative error in Sk is then defined as

e(k)max = max
i∈[1,...,ny ]

l∈[1,...,Mk+1]

e
(k)
i (τ̂

(k)
l ). (21)

4.2 LGR Collocation Error Bound for Use in Mesh Refinement

It has been shown In Refs. [38] that, under suitable assumptions, the maximum difference be-

tween the LGR approximation (x,u) generated on a uniform mesh and the true solution (x∗,u∗)

evaluated on the same mesh satisfies an estimate of the form

‖x− x∗‖∞ + ‖u− u∗‖∞ ≤ chq

N q−5/2
, (22)
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where c is a constant, N is the number of LGR collocation points on each interval, h is the width

of the mesh interval, q is the minimum of N and number of continuous derivatives in the solu-

tion, and ‖ · ‖∞ denotes the sup-norm over the mesh points. Although Eq. (22) is an inequality

that provides an upper bound for the error in the domain [−1,+1], it is useful in developing a

variable-order mesh refinement method that allows for changes in the width of each mesh inter-

val, changes in the number of mesh intervals, and changes in the number of collocation points

in each mesh interval.

4.3 Refining the Mesh

After solving the NLP of Eqs. (13)–(16) on a given mesh, the maximum relative error estimate is

computed in each mesh interval using Eq. (21). If in any mesh interval the estimated maximum

relative error exceeds the mesh refinement accuracy tolerance ǫ, then the mesh interval is modi-

fied either by dividing it into smaller intervals or by increasing the degree of the approximating

polynomial. As described earlier, a mesh interval is divided into subintervals when the solution

is not sufficiently smooth in the mesh interval, while the polynomial degree in a mesh interval

is increased when the solution is estimated to be sufficiently smooth in the mesh interval. The

criterion for determining if a mesh interval is smooth or nonsmooth is based on whether the

magnitude of the maximum second derivative of the state has increased by a specified factor

from the previous mesh to the current mesh. In Section 4.3.1 an approach is developed for lo-

cating mesh intervals where the solution is nonsmooth, while Sections 4.3.2 and 4.3.3 provide

methods for dividing a mesh interval (if the solution in the mesh interval is determined to be

nonsmooth) or increasing the degree of the polynomial approximation (if the solution in the

mesh interval is determined to be smooth).

4.3.1 Method for Locating Mesh Intervals Where Solution is Nonsmooth

Assume now that an optimal control problem has been solved on a mesh M using the previ-

ously described Radau collocation method and that Y(M)(τ) = [Y
(M)
1 (τ) · · ·Y (M)

ny (τ)] is the state

approximation that results from the solution on mesh M . Let τij, (i = 1, . . . , ny, j = 1, . . . , Li) be

the values of τ ∈ [−1,+1] corresponding to the local maxima of |Ÿ (M)
i (τ)| that lie on the interior

of mesh intervals. [that is, τij, (i = 1, . . . , ny, j = 1, . . . , Li) are the interior local maxima of the
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absolute value of the ith component of the state, i ∈ [1, . . . , ny], on mesh M ]. For compactness,

let P
(M)
ij = |Ÿ (M)

i (τij)|, (i = 1, . . . , ny, j = 1, . . . , Li). Similarly, let P
(M−1)
ij be the biggest interior

local maximum of the function |Ÿ (M−1)
i (τ)| in the mesh interval on mesh M − 1 that contains a

particular value τij from mesh M . The solution in the mesh interval Sk, k ∈ [1, . . . , K] on mesh

M is considered to be nonsmooth if the condition

Rij =
P

(M)
ij

P
(M−1)
ij

≥ R̄ (23)

is satisfied for some i ∈ [1, . . . , ny] and for some j ∈ [1, . . . , Li] with τij ∈ Sk, where R̄ is a

user-specified ratio.

The motivation for Eq. (23) is Ref. [37] where the function values on two uniform meshes,

a fine mesh and a coarse mesh, are used to estimate low order derivatives of a function. If a

maximum in the magnitude of the (k + 1)th derivative on the fine mesh is much greater than

corresponding (k+1)th derivative on the coarse mesh, then it is predicted that the kth derivative

is discontinuous in an interval near the maximum. In the context of optimal control, the optimal

control can be discontinuous at one or more switch point which often implies that the state has

a discontinuous derivative. Thus, in a manner similar to that of Ref. [37], in the mesh refine-

ment method of this paper the growth condition of Eq. (23) in the second derivative is used to

determine if the solution in a mesh interval is nonsmooth.

4.3.2 Method for Dividing a Mesh Interval

Assume now that the condition in Eq. (23) is satisfied, that is, P
(M)
l /P

(M−1)
l > R̄ in a mesh interval

Sk on the current mesh, and that the mesh interval needs to be divided. Treating Eq. (22) as an

equality gives the relationship

e
(M)
k =

c
[

h
(M)
k

]q

[

N
(M)
k

]q−5/2
. (24)

Furthermore, assume for the ensuing mesh M+1 that it is desired to achieve a maximum relative

error accuracy ǫ. Again, treating Eq. (22) as an equality gives

ǫ =
c
[

h
(M+1)
k

]q

[

N
(M+1)
k

]q−5/2
. (25)
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Since the mesh interval Sk is being divided, assume that N
(M+1)
k = N

(M)
k (that is, the number

of collocation points in each subinterval of Sk on mesh M + 1 is the same as the number of

collocation points in Sk on mesh M ). Equations (24) and 25 can then be solved for the ratio

H = h
(M+1)
k /h

(M)
k as

H =
h
(M)
k

h
(M+1)
k

=

(

e
(M)
k

ǫ

)1/q

. (26)

To obtain an estimate for q, consider the relative error on the mesh M − 1, which is assumed to

contain mesh M :

e
(M−1)
k =

c
[

h
(M−1)
k

]q

[

N
(M−1)
k

]q−5/2
. (27)

The constant c is eliminated by forming the ratio of (24) and (27), and then solve for q. The ratio

H given in Eq. (26) is then used to determine the number of subintervals into which Sk should

be divided. Specifically, the number of newly created subintervals must be at least ⌈H⌉, the

next largest integer greater than or equal to H . Now, because H can become large for certain

problems, it is necessary to limit the growth in the number of subintervals. In this research the

maximum number of subintervals into which Sk divided is based on the ratio of the relative

error in the solution and the mesh refinement accuracy tolerance and is given as

Hmax = ⌈logN(e(k)/ǫ)⌉, (28)

where ⌈·⌉ is the next largest integer of the argument. The upper limit on the number of subin-

tervals given in Eq. (28) is given as follows. First, when e(k) ≫ ǫ (say 106) the value of Hmax will

typically in the range of 15 to 25. Next, it is seen that Hmax will decrease to zero as e(k) → ǫ. Thus,

it will always be the case that Hmax will provide a reasonable upper limit on allowable number

of subintervals. Using Eq. (28) together with Eq. (27), the number of subintervals, denoted S,

into which Sk is divided is given as

S = min(⌈H⌉, Hmax). (29)

4.3.3 Method for Increasing the Degree of the Polynomial Approximation

Suppose now that the error tolerance in a given mesh interval Sk has not been met and that the

condition in Eq. (23) is not satisfied. In this case the solution in the mesh interval is regarded as
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smooth in Sk and, if possible, the degree of the polynomial approximation used on mesh M + 1

is increased in order to reduce the solution error. Let e
(M)
k denote the error on interval Sk of mesh

M . If the width of the mesh interval is the same on meshes M and M+1, then h
(M)
k = h

(M+1)
k and

Eqs. (24) and (25), together with the value of q computed in Section 4.3.2, can be used to solve

for N
(M+1)
k as

N
(M+1)
k = N

(M)
k

(

e
(M)
k

ǫ

)1/(q−5/2)

. (30)

Now, in order to obtain a strict increase in the number of collocation points in Sk on mesh M +1,

the result of Eq. (30) is replaced with

N
(M+1)
k =









N
(M)
k

(

e
(M)
k

ǫ

)1/(q−5/2)








. (31)

Finally, to ensure that the polynomial degree does not grow to an unreasonably large value, an

upper limit Nmax is set for the maximum allowable polynomial degree. If N
(M+1)
k > Nmax, then

the mesh interval is divided into equally spaced subintervals with N
(M)
k collocation points in

each subinterval using the procedure of Section 4.3.2.

4.3.4 Reducing the Number of Collocation Points in a Mesh Interval

In addition to the two approaches for increasing the size of the mesh as described in Sections 4.3.2

and 4.3.3, the mesh size can be decreased either by reducing the number of collocation points or

by reducing the number of mesh intervals. Both of these methods for mesh size reduction are

now described.

Consider any mesh interval Sk = [Tk−1, Tk] where the accuracy tolerance ǫ has been satisfied.

Suppose further that it is desired to determine if it is possible to reduce the degree of the poly-

nomial approximation of the state in Sk while retaining the same accuracy as has been attained

using the current polynomial degree. The determination as to whether or not the polynomial

degree can be reduced is based on the following representation of the polynomial approxima-

tion of the state in Sk. Let µk = (Tk−1 + Tk)/2, hk = (Tk − Tk−1)/2, and Y(k)(τ) be the midpoint

of the mesh interval, the mesh interval half-width, and the state approximation, respectively, in

mesh interval Sk. Then the Lagrange polynomial representation of the ith component of the state
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approximation, Y
(k)
i (τ), is given as

Y
(k)
i (τ) =

Nk+1
∑

j=1

Yijℓj

(

τ − µk

hk

)

, ℓj(s) =

Nk+1
∏

i=1
i 6=j

(

s− si
sj − si

)

, (32)

where −1 = s1 < s2 < . . . < sNk
< 1 are the LGR points on the interval [−1,+1] and sNk+1 = +1.

The polynomial ℓj(s) can then written in the form

ℓj(s) =

Nk
∑

l=0

aljs
l, (33)

where alj are coefficients that depend only on the LGR points and are computed as follows. First,

suppose that Qj(s) is a power series whose roots are the same as those of ℓj(s), that is, Qj(s) has

roots {sk}Nk+1
k=1
k 6=j

and has the form

Qj(s) =

Nk
∑

l=0

Qljs
l. (34)

Then, because ℓj(sj) = 1,

ℓj(s) =
1

Qj(sj)
Qj(s) =

Nk
∑

l=0

Qlj

Qj(sj)
sl, (35)

which implies that

alj =
Qlj

Qj(sj)
. (36)

It is noted that the coefficients alj depend only on Nk and, thus, only need to be computed once

for each value of Nk after which they can be stored for future use on other intervals and meshes.

Next, combining (32) and (33) gives

Y
(k)
i (τ) =

Nk
∑

l=0

bil

(

τ − µk

hk

)l

, bil =

Nk+1
∑

j=1

Yijalj. (37)

Now, it follows from the definitions of mesh interval midpoint and the mesh interval half-width

that |τ − µk|/hk ≤ 1 for τ ∈ Sk. Therefore, if the N th
k degree term in Eq. (37) is dropped, the

pointwise absolute error in mesh interval Sk is at most |biNk
|. In order to obtain a error estimate

in mesh interval Sk that can be compared with the mesh refinement accuracy tolerance, however,

it is necessary to normalize the coefficients bil. The quantities used to normalize the coefficients

bil for each component of the state i ∈ [1, . . . , ny] are similar to the manner in which the relative

error estimate in the solution from Eq. (21) is obtained and is given as

βi = 1 + max
k∈[1,...,K]

max
τ∈Sk

|Y (k)
i (τ)|, (i = 1, . . . , ny). (38)

13



Then, starting with the highest power, all terms in Eq. (37) can continue to be removed (thus

lowering the degree of the polynomial) until a coefficient bil/βi is found such that |bil|/βi > ǫ.

The aforementioned process of polynomial degree reduction is repeated for all components of

the state i ∈ [1, . . . , ny], resulting in reduced polynomial degrees N
(k)
1 , . . . , N

(k)
ny . Then, the degree

of the polynomial used for Y(k)(τ) in mesh interval Sk on the ensuing mesh is the one that

corresponds to maximum of (N
(k)
1 , . . . , N

(k)
ny ). In other words, the reduced polynomial degree in

mesh interval Sk is the one that corresponds to the largest of the reduced polynomial degrees

over all components of the state. Finally, because the Radau collocation method requires at least

one collocation point in each mesh interval, the polynomial approximation cannot be reduced to

a constant but can only be reduced to a linear function in each mesh interval.

4.3.5 Merging Mesh Intervals

The second manner in which the mesh size can be reduced is by merging two adjacent mesh

intervals into a single mesh interval. Before testing whether two subintervals can be merged, the

highest powers in the polynomial approximation are eliminated when possible using the process

described in Section 4.3.4. Next, two mesh intervals are joined into a single interval when the

polynomials on the adjacent subintervals are roughly the same. First note that if Nk+1 6= Nk, then

mesh intervals Sk+1 = [Tk, Tk+1] and Sk = [Tk−1, Tk] cannot be merged because the degree of the

polynomials in each mesh interval are different. The test for deciding when two intervals can

be merged is the following: If the polynomial on the larger interval is extended into the smaller

interval and if the pointwise difference between the original polynomial on the small interval

and the extension from the large interval is at most ǫ, the state accuracy tolerance, then the mesh

intervals Sk and Sk+1 are merged to form a single interval.

By continuity, the polynomials on Sk and Sk+1 are equal at Tk, the point where the intervals

join. Typically, the difference between the original polynomial on the small interval and the

extension from the large interval is largest at the end point, either Tk−1 or Tk+1. If this difference is

greater than ǫ, then the intervals should not be joined. On the other hand, if the difference is less

than ǫ, then it is necessary to examine the polynomial difference over the entire smaller interval.

It is possible to approximate the pointwise difference between the polynomials by evaluating

the polynomials at more points on the smaller interval. An alternative to this approach, which

is now described, is to derive an upper bound for this difference that is valid over the entire

14



interval.

From Eq. (37) it is seen that the midpoint and mesh half-width of mesh interval Sk are dif-

ferent from the midpoint and mesh half-width of mesh interval Sk+1. Consequently, using the

representation in Eq. (37), it is difficult to bound the difference between the polynomial approx-

imations in Sk and Sk+1. In order to bound the difference between these two polynomials, it is

convenient to expand these two polynomials about the junction, Tk, between the mesh intervals

Sk and Sk+1. These expansions are obtained by expressing the Lagrange basis in Eq. (32) in terms

of the following two power series using the points +1 and −1:

ℓj(s) =

Nk
∑

l=0

(s− 1)la
(k)
lj , (39)

ℓj(s) =

Nk
∑

l=0

(s+ 1)la
(k+1)
lj . (40)

The representations of the Lagrange polynomials given in Eqs. (39) and (40) can then be evalu-

ated in an analogous manner to the approach used to compute the coefficients in Eq. (33). Fur-

thermore, combining Eq. (32) with Eq. (39) in mesh interval Sk and with Eq. (40) in mesh interval

Sk+1, the ith component of the state approximations Y(k)(τ) and Y(k+1)(τ) in mesh intervals Sk

and Sk+1 are given, respectively, as

Y
(k)
i (τ) =

Nk
∑

l=0

c
(k)
il

(

τ − Tk

hk

)l

, c
(k)
il =

Nk+1
∑

j=1

Yija
(k)
lj , (41)

Y
(k+1)
i (τ) =

Nk
∑

l=0

c
(k+1)
il

(

τ − Tk

hk+1

)l

, c
(k+1)
il =

Nk+1
∑

j=1

Yija
(k+1)
lj . (42)

The representations of Y
(k)
i (τ) and Y

(k+1)
i (τ) in Eqs. (41) and (42) now differ only in that hk

appears in the denominator of Eq. (41) while hk+1 appears in the denominator of Eq. (42). In

order to unify Eqs. (41) and (42) into a form such that the denominators are the same, let h̄k =

min{hk, hk+1}. The representations of the state approximation in mesh intervals Sk and Sk+1 can

then be written, respectively, as

Y
(k)
i (τ) =

Nk
∑

l=0

b
(k)
il

(

τ − Tk

h̄k

)l

, b
(k)
il = c

(k)
il

[

h̄k

hk

]l

, (43)

Y
(k+1)
i (τ) =

Nk
∑

l=0

b
(k+1)
il

(

τ − Tk

h̄k

)l

, b
(k+1)
il = c

(k+1)
il

[

h̄k

hk+1

]l

. (44)
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Because the powers in both expansions are the same, the difference between the polynomials

Y
(k)
i (τ) and Y

(k+1)
i (τ) is

Y
(k)
i (τ)− Y

(k+1)
i (τ) =

Nk
∑

l=0

(

b
(k)
il − b

(k+1)
il

)

(

τ − Tk

h̄k

)l

.

Then, because |τ − Tk|/h̄k ≤ 2 for τ in the smaller interval, it follows from the triangle inequality

that the polynomial difference has the pointwise bound

max{|Y (k)
i (τ)− Y

(k+1)
i (τ)|} ≤

Nk
∑

l=0

2l|b(k)il − b
(k+1)
il |, τ ∈ S̄k (45)

where S̄k is the smaller of Sk and Sk+1. Now the result of Eq. (45) provides an upper bound on

the maximum absolute difference between Y
(k)
i (τ) and Y

(k+1)
i (τ). In order to obtain a difference

that can be compared with the mesh refinement accuracy tolerance, however, it is necessary

to scale Eq. (45) appropriately to obtain an upper bound on the maximum relative difference

between the polynomials Y
(k)
i (τ) and Y

(k+1)
i (τ). The quantities used to normalize each of the

absolute differences |Y (k)
i (τ) − Y

(k+1)
i (τ)| are the values βi, (i = 1, . . . , ny) given in Eq. (38) and

which were used in the approach for polynomial reduction as described in Section 4.3.4. Scaling

Eq. (45) by βi gives the following relative difference between Y
(k)
i (τ) and Y

(k+1)
i (τ):

1

βi

max{|Y (k)
i (τ)− Y

(k+1)
i (τ)|} ≤ 1

βi

Nk
∑

l=0

2l|b(k)il − b
(k+1)
il |, τ ∈ S̄k, (i = 1, . . . , ny). (46)

Then, if

1

βi

Nk
∑

l=0

2l|b(k)il − b
(k+1)
il | < ǫ, τ ∈ S̄k, (i = 1, . . . , ny), (47)

for all components of the state i ∈ [1, . . . , ny] (where we recall that ǫ is the mesh refinement accu-

racy tolerance), the mesh intervals Sk and Sk+1 are merged into a single mesh interval. Finally, it

is noted that Sk and Sk+1 cannot be merged if Eq. (47) is violated for any component of the state

i ∈ [1, . . . , ny].

4.3.6 Mesh Refinement Method

The mesh refinement method described in this paper is summarized in the following steps

shown below.

I. Supply an initial mesh that consists of K mesh intervals Sk = [Tk−1, Tk], k = 1, . . . , K, with

Nk collocation points on each interval.
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II. Solve the NLP of Eqs. (13)–(16) on the initial mesh.

III. If the maximum relative error in all mesh intervals is less than the mesh refinement accuracy

tolerance, ǫ, then terminate.

IV. Generate a second mesh as follows:

(i) Compute the maximum relative error given by Eq. (21).

(ii) In every mesh interval where the maximum relative error of Eq. (21) is greater than

the mesh refinement accuracy tolerance, ǫ, add three collocation points in the mesh

interval.

(iii) In every mesh interval where the maximum relative error of Eq. (21) is less than than

the mesh refinement accuracy tolerance, ǫ, use the mesh size reduction approaches

given in Sections 4.3.4 and 4.3.5 to decrease the degree of the approximating polyno-

mial or merge mesh intervals where possible.

For every mesh after the second mesh, employ the following steps.

V. Repeat the following steps until the mesh refinement accuracy tolerance ǫ is satisfied in

every mesh interval Sk, (k = 1, . . . , K) or a specified maximum number of mesh refinement

iterations is reached:

(i) Solve the problem on the current mesh and estimate the maximum relative error e
(k)
max

in each mesh interval.

(ii) Increase or decrease the size of the mesh using steps (a)–(c) below.

(a) For every mesh interval k ∈ [1, . . . , K] where e
(k)
max ≥ ǫ, estimate the ratio Rij for ev-

ery component of the state using the approach in Section 4.3.1. If Rij > R̄ (where R̄

is a threshold of significance of the ratio of second derivatives) for any component

of the state, then divide the mesh interval into subintervals using the approach in

Section 4.3.2. Otherwise, increase the degree of the polynomial approximation in

mesh interval k ∈ [1, . . . , K] using the approach in Section 4.3.3.

(b) For every mesh interval k ∈ [1, . . . , K] where e
(k)
max < ǫ, determine if the number of

collocation points in the mesh interval can be reduced using the the approach of

Section 4.3.4.

(c) For every pair of adjacent mesh intervals k ∈ [1, . . . , K] and k + 1 ∈ [1, . . . , K]

where e
(k)
max < ǫ and e

(k+1)
max < ǫ, determine if these mesh intervals can be combined

using the approach of Section 4.3.5.

(iii) Construct the new mesh, interpolate the solution from the previous mesh to this new

mesh, and go to Step IV(i).

A schematic of the method is shown in Fig. 1.
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Figure 1: Schematic of hp Mesh Refinement Method.
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5 Examples

In this Section the mesh refinement method described in Section 4 is applied to two examples

taken from the open literature. The first example is the robot arm optimal control problem taken

from Ref. [41]. This example demonstrates the ability of the mesh refinement method to accu-

rately determine regions of nonsmoothness in the problem on a problem whose solution con-

tains multiple control discontinuities. The second example is the hyper-sensitive optimal con-

trol problem taken from Ref. [42]. This second example demonstrates the ability of the mesh

refinement method to reduce the size of the mesh by eliminating unneeded mesh points and

collocation points.

The following terminology is used in the examples. First, the method developed in this

paper is called an hp method while the method of Ref. [22] (used for comparison) is called a ph

method. Next, the notation ph-(Nmin, Nmax) refers to a variant of the aforementioned ph method

where the number of collocation points in a mesh interval is allowed to vary between Nmin and

Nmax. Furthermore, the quantity M denotes the number of the mesh refinement, where M = 0

corresponds to the initial mesh, and the quantities N and K denote the total number of LGR

collocation points and the number of mesh intervals, respectively. Finally, it is noted that the hp

method will maintain at least two collocation points in a mesh interval and does not require that

an upper limit on the number of collocation points be specified.

All results shown in this paper were obtained using the MATLAB optimal control software

GPOPS− II [43] using the NLP solver SNOPT [1] using an optimality tolerance of 10−10 and a

feasibility tolerance of 2 × 10−10. All first derivatives for the NLP solver were obtained using

the MATLAB automatic differentiation tool AdiGator [44]. In all results a mesh refinement accu-

racy tolerance ǫ = 10−6 was used with an initial mesh consisting of ten uniformly-spaced mesh

intervals and the four collocation points per mesh interval, a second derivative ratio threshold

R̄ = 1.2 (which is the same value used in Ref. 45), and a maximum number of collocation points

Nmax = 14 for the hp method. Furthermore, the initial guess for all examples is a straight line

for variables with boundary conditions at both endpoints and is a constant for variables with

boundary conditions at only one endpoint. All computations were performed on a 2.5 GHz Intel

Core i7 MacBook Pro running MAC OS-X version 10.8.5 (Mountain Lion) with 16GB 1333MHz

DDR3 of RAM and MATLAB Version R2011b (build 7.13.0.564). The central processing unit
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(CPU) times reported in this paper are ten-run averages of the execution time and exclude the

time required to solve the NLP on the first mesh (because for any example the CPU time required

to solve the problem on the initial guess is the same for any method and, thus, adds a constant

to the total CPU time).

Example 1

Consider the following minimum time reorientation of a robot arm taken from Ref. [41]. The

objective is to minimize the cost functional

J = tf (48)

subject to the dynamic constraints

ẏ1 = y2 , ẏ2 = u1/L,

ẏ3 = y4 , ẏ4 = u2/Iθ,

ẏ5 = y6 , ẏ6 = u3/Iφ,

(49)

the control inequality constraints

−1 ≤ ui(t) ≤ 1, (i = 1, 2, 3), (50)

and the boundary conditions

y1(0) = y10 , y1(tf ) = y1f ,

y2(0) = y20 , y2(tf ) = y2f ,

y3(0) = y30 , y3(tf ) = y3f ,

y4(0) = y40 , y4(tf ) = y4f ,

y5(0) = y50 , y5(tf ) = y5f ,

y6(0) = y60 , y6(tf ) = y6f ,

(51)

where

Iθ =
((L− y1)

3 + y31)

3
sin2(y5), Iφ =

((L− y1)
3 + y31)

3
, L = 5, (52)
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and

y10 = 9/2 , y1f = 9/2,

y20 = 0 , y2f = 0,

y30 = 0 , y3f = 2π/3,

y40 = 0 , y4f = 0,

y50 = π/4 , y5f = π/4,

y60 = 0 , y6f = 0.

(53)

It is known for this problem that the optimal control has five discontinuities at t ≈ (2.286, 2.827,

4.570, 6.385, 6.855). Figures. 2a–2c show the three components of the optimal control obtained

by solving the optimal control problem of Eqs. (48)–(51) where these control discontinuities are

clearly seen. Next, Fig. 3a shows the evolution of the mesh points for this example where it is

seen that the second derivative ratio, R, is greater than the threshold R̄ = 1.2 in segments that

contain four of the five control discontinuities, while the fifth (middle) discontinuity is already

accurately located due to the fact that a mesh point is located at t ≈ 4.570. Furthermore, it is seen

that the mesh continues to be refined only in neighborhoods of the discontinuities because the

solution is smooth outside of these small segments. Thus, the error outside of the neighborhoods

of the discontinuities is reduced by increasing the degree of the polynomial approximation and

not by dividing mesh intervals. Moreover, it is seen that the mesh quickly progresses to a point

where the accuracy tolerance is satisfied and stops after three (M = 3) mesh refinements.

Now, in order to demonstrate that the hp method correctly identifies all of the discontinuities

even when none of the initial mesh points lie close to a discontinuity, consider now the hp mesh

refinement using an initial mesh that consists of nine equally spaced mesh intervals. The mesh

history for this initial mesh is shown in Fig. 3e. As alluded to earlier, this alternate initial mesh

does contain a mesh point that lies close to a discontinuity. As the mesh refinement progresses

from this initial mesh it is seen in Fig. 3e that the mesh interval S = [4, 5] is found to be nons-

mooth (R > R̄) on the second mesh (M = 1) and the hp method divides this mesh interval into

two equally spaced mesh intervals in order to meet the accuracy tolerance. Furthermore, as with

the initial ten-interval mesh, it is seen for the initial nine-interval mesh that the hp method adds

mesh intervals that either closely surround or lie at the location of the five discontinuities and

adds very few mesh points anywhere else on the interval [0, tf ].

The hp mesh refinement method is now compared against various h methods and the pre-
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Figure 2: Optimal Control for Example 1 Using the hp Method.
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viously developed ph mesh refinement method of Ref. [22]. First, it is seen from Fig. 3f that

the CPU time required to solve the problem grows as the product of the number of collocation

points and the number of mesh refinements, NM . In other words, as one might expect, the CPU

time increases due to an increase in either the size of the mesh or an increase in the number of

mesh refinement iterations required to meet the mesh refinement accuracy tolerance. An alter-

nate view of this same trend in the CPU time is reflected in Table 1. Comparing Fig. 3f and Table

1, it is seen that the CPU time required by the hp method lies in the lower left-hand corner of the

data shown in Fig. 3f. Next, Figs. 3c–3d show the mesh refinement history for both the hp and

the ph− (3, 8) method (where the ph− (3, 8) method is the best performing of the ph methods on

this example). First, it is seen that the ph− (3, 8) method introduces more mesh intervals during

the first few mesh refinements when compared with the hp method. Furthermore, the ph− (3, 8)

method takes one more mesh refinement to meet the accuracy tolerance and the mesh points

are less concentrated near the discontinuities when compared with the hp method. Finally, Ta-

ble 1 that, while the total number of collocation points using the hp method is slightly larger

using the hp method than it is for most of the ph methods, the hp method meets the mesh re-

finement accuracy tolerance in many fewer mesh refinements when compared with most of the

ph methods. Finally, it is seen that the number of collocation points required by the hp method

is significantly less than the number of collocation points required by either the h − 2 or h − 3

methods and is comparable in size to the mesh produced by the h− 4 method. It is noted, how-

ever, that the h− 4 method is still less computationally efficient than the hp method. In addition,

the hp mesh refinement method of this paper is compared with the mesh refinement method

used in the Sparse Optimization Suite (SOS) [46]. It is noted that 128 grid points and six mesh

refinement iterations were required to solve the problem using (SOS) to meet a relative error

accuracy tolerance ǫ = 10−6. Thus, the final SOS grid is approximately 1.5 times larger than the

final mesh obtained using the method of this paper while SOS required approximately twice the

number mesh iterations when compared with the method of this paper. Finally, it is noted that

the SOS computation times are not compared with those obtained in this research because the

SOS NLP solver is different from SNOPT (used in this research), SOS is written in FORTRAN 95

(whereas the work of this research was performed using MATLAB), and the machine on which

SOS was used to perform the computations is completely different from the machine on which

the computations in this research were performed.
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Figure 3: Mesh Refinement History of Example 1 When Using the hp and ph− (3, 8) Methods.
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Table 1: Mesh Refinement Results for Example 1 Using hp and Various ph−(Nmin, Nmax) Methods.

Method Nmin Nmax CPU Time (s) N K M

hp – 14 0.15 87 15 3

h 2 2 0.29 170 81 3
h 3 3 0.26 100 32 4
h 4 4 0.24 80 20 4

ph 3 8 0.19 78 18 4
ph 3 10 0.42 76 19 6
ph 3 12 0.57 88 22 7
ph 3 14 0.58 84 18 9
ph 4 8 0.27 86 18 4
ph 4 10 0.50 82 16 6
ph 4 12 0.42 84 19 6
ph 4 14 0.52 82 16 8
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Example 2

Consider the following hyper-sensitive optimal control problem taken from Refs. [22] and [42].

Minimize the cost functional

J = 1
2

∫ tf

0

(y2 + u2)dt (54)

subject to the dynamic constraint

ẏ = −y + u (55)

and the boundary conditions

y(0) = 1.5,

y(tf ) = 1,
(56)

where tf is fixed. The exact solution to the optimal control problem of Eqs. (54)–(56) is





y∗(t)

u∗(t)



 =





1 1

1 +
√
2 1−

√
2









et
√
2c1

e−t
√
2c2



 ,





c1

c2



 =
1

e−tf
√
2 − etf

√
2





1.5e−tf
√
2 − 1

1− 1.5etf
√
2



 . (57)

The exact solution for tf = 10000 is shown in Figs. 4a and 4b, while Figs. 4c and4d shows the

state in the initial decay segment t ∈ [0, 50] and in the terminal growth segment t ∈ [9950, 10000].

It is seen that the solution has an initial rapid decay segment followed by a long constant middle

segment and a rapid terminal growth segment. Next, Fig. 5a shows the mesh point history along

with the regions where R > R̄. Two key features of the hp method emerge from this example.

First, on the early meshes it is found that the hp method correctly assesses that the solution

is much less smooth (R > R̄) near the initial and terminal time, while the solution is smooth

(R < R̄) in the long constant middle segment. Next, the mesh interval merging procedure

works well in that the hp method drastically reduces the size of the mesh in the middle constant

segment while retaining the mesh points in the initial and terminal segments. Specifically, it is

seen from Fig. 5a that, upon reaching the 5th mesh refinement (that is, M = 5), the collocation

points are concentrated in extremely small segments near t = 0 and t = tf .

The hp mesh refinement method is now compared against various h methods and the pre-

viously developed ph mesh refinement method of Ref. [22]. Figures 5a-5d show the mesh re-

finement history for both the hp and the h − 3 method (where the h − 3 is the best performing

of the methods other than the hp method on this example). It is seen from Figs. 5c and 5d that

the h − 3 improves accuracy by increasing significantly the number of collocation points and
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the number of mesh intervals in the initial decay segment whereas the hp method improves ac-

curacy by reducing the mesh size in these segments and concentrating the mesh points only in

small segments near t = 0 and t = tf . Next, Tables 2a–2c provides a comparison between the hp

and h methods for increasing values of tf . First, it is seen that the mesh size using the hp method

is much smaller than either the h or the ph methods for all values of tf . Next, it is seen that the

hp mesh size remains the same as tf increases, while the h and ph mesh sizes grow significantly

as tf increases. In fact, the difference in the computation times for different values of tf using

the hp method is due mostly to the increase in the number of mesh refinement iterations (where

M = (5, 6, 7) for tf = (10000, 100000, 1000000), respectively). More importantly, the gap between

the hp computation time and the (ph, h) computation time grows significantly as tf increases.

The slow growth in computation time using the hp method is also seen in Tables 2a-2c and in

Fig. 5e where the hp computation times are (4.92, 12.84, 18.68) s for tf = (10000, 100000, 1000000),

respectively. The computation times using using the h and ph methods, however, change by

almost two orders of magnitude as tf increases from 10000 to 1000000. Finally, Table 2d provides

a comparison between the hp mesh refinement method of this paper and the mesh refinement

used in the optimal control software Sparse Optimization Suite (SOS). It is seen for tf = 10000 that

the final SOS mesh is three times as large as the mesh obtained using the hp method. Further-

more, for tf = 100000 and tf = 1000000 the SOS meshes are approximately 5 and 22 times larger

than the hp meshes.
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Table 2: Mesh Refinement Results for Example 2 Using hp and Various ph−(Nmin, Nmax) Methods.

(a) tf = 10000.

Method Nmin Nmax CPU Time (s) N K M

hp – 14 4.92 91 15 5

h 2 2 7.69 638 315 5
h 3 3 7.55 421 139 6
h 4 4 10.85 380 95 7

ph 3 8 12.98 371 94 6
ph 3 10 11.32 348 77 5
ph 3 12 10.33 343 59 5
ph 3 14 10.09 294 39 4
ph 4 8 8.85 324 66 6
ph 4 10 9.30 311 56 6
ph 4 12 7.92 290 43 5
ph 4 14 10.44 304 39 7

(b) tf = 100000.

Method Nmin Nmax CPU Time (s) N K M

hp – 14 12.84 91 17 6

h 2 2 58.10 732 362 6
h 3 3 42.07 508 168 8
h 4 4 26.34 452 113 9

ph 3 8 46.03 456 121 7
ph 3 10 37.49 431 101 7
ph 3 12 34.95 418 80 6
ph 3 14 46.66 385 56 6
ph 4 8 32.77 397 83 8
ph 4 10 34.79 371 69 7
ph 4 12 27.59 356 49 8
ph 4 14 26.53 357 48 8

(c) tf = 1000000.

Method Nmin Nmax CPU Time (s) N K M

hp – 14 18.68 92 17 7

h 2 2 260.31 814 401 7
h 3 3 95.02 593 196 10
h 4 4 109.37 568 142 10

ph 3 8 115.56 532 144 8
ph 3 10 103.54 517 129 9
ph 3 12 77.63 492 106 7
ph 3 14 67.04 450 70 7
ph 4 8 106.30 476 102 9
ph 4 10 79.74 461 90 9
ph 4 12 76.42 436 67 8
ph 4 14 82.06 416 57 9

(d) SOS Mesh Refinement Summary.

tf Nmin Nmax CPU Time (s) N K M

10000 – – – 313 – 11
100000 – – – 609 – 13

1000000 – – – 2284 – 15
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6 Discussion

Each of the examples illustrates different features of the hp mesh refinement method. The first

example demonstrates the ability of the method to accurately determine locations of disconti-

nuities in the solution by predicting correctly the segments where the solution is not smooth.

The second example highlights the ability of the hp method to significantly reduce the size of

the mesh by eliminating collocation points and merging mesh intervals in regions where the

solution does not change appreciably and shows that the method concentrates the collocation

points in the region where the solution changes rapidly. In contrast, the ph method of Ref. [22]

does not allow for mesh size reduction and the mesh can only grow to satisfy the accuracy crite-

rion. It is important to note that the performance of the ph method depends upon the choice of

the parameters Nmin and Nmax while the performance of the hp method depends more strongly

upon the choice of R̄ and more weakly upon the choice of Nmax (because the maximum number

of collocation points is attained only in rare cases). Furthermore, the numerical results indicate

that, for an appropriate choice of R̄, the hp method can be more computationally efficient than

the ph method for almost any choice of Nmin and Nmax. Finally, it is noted that, as with any mesh

refinement method, the performance of the hp method depends upon the initial mesh.

7 Conclusions

A variable-order adaptive mesh refinement method for solving optimal control problems has

been developed. The method has the ability to both increase and decrease the mesh size. The

mesh refinement is guided by a previously derived convergence rate. Mesh interval refinement

is performed in regions where the solution is nonsmooth, while the polynomial degree is in-

creased in regions where the solution is smooth. Furthermore, the size of the mesh can be de-

creased either by dropping the negligible terms in a power series representation of the state or

by combining mesh intervals that share the same polynomial approximation. The method is

described in detail and applied successfully to two examples from the open literature. The re-

sults obtained in this research show that the method out performs fixed-order methods and a

previously developed variable-order method.
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