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A variable-order adaptive pseudospectral method is presented for solving optimal control problems. The method

developed in this paper adjusts both themesh spacing and the degree of the polynomial on eachmesh interval until a

specified error tolerance is satisfied. In regions of relatively high curvature, convergence is achieved by refining the

mesh, while in regions of relatively low curvature, convergence is achieved by increasing the degree of the

polynomial. An efficient iterativemethod is then described for accurately solving a general nonlinear optimal control

problem. Using four examples, the adaptive pseudospectral method described in this paper is shown to be more

efficient than either a global pseudospectral method or a fixed-order method.

Nomenclature

C = path constraint function
D = N � �N � 1� Radau pseudospectral differentiation

matrix
E = maximum absolute solution error
Fd = magnitude of drag force, N
Fg = magnitude of gravity force, N
Fl = magnitude of lift force, N
Ft = magnitude of thrust force, N
g = integrand of cost functional
h = altitude
I = number of grid refinement iterations
J = continuous-time cost functional
K = number of mesh intervals
L = magnitude of lift force, N
L��� = Lagrange polynomial on time domain � 2 ��1;�1�
m = dimension of continuous-time control
N = polynomial degree
Na = number of approximation points
Nc = number of collocation points
Nk = polynomial degree in mesh interval k
Nz = number of nonzero constraint Jacobian entries
n = dimension of continuous-time state
r = geocentric radius, m
Re = equatorial radius of Earth, m
s = dimension of path constraint function
T = CPU time, s
t = time on time interval t 2 �t0; tf�
tf = terminal time
t0 = initial time
t�s = control switch time
X��� = state approximation on time domain � 2 ��1;�1�
x�t� = component of position

x�t� = state on time domain t 2 �t0; tf�
x��� = state on time domain � 2 ��1;�1�
y�t� = component of position
y�t� = general vector function on time domain t 2 �t0; tf�
y��� = general vector function on time domain � 2 ��1;�1�
umax = maximum allowable value of control
umin = minimum allowable value of control
U��� = control approximation on time domain � 2 ��1;�1�
u�t� = control on time domain t 2 �t0; tf�
u�t� = control on time domain t 2 �t0; tf�
u��� = control on time domain � 2 ��1;�1�
v = speed
wj = jth Legendre–Gauss–Radau quadrature weight
� = angle of attack, rad and deg
� = flight-path angle, rad and deg
� = accuracy tolerance
� = load factor
� = orientation angle or longitude, rad
� = trajectory curvature
� = Earth gravitational parameter, m3=s2

	 = bank angle, rad
� = time on time interval � 2 ��1;�1�
� = Mayer cost

 = latitude, rad and deg
� = boundary condition function
 = azimuth angle, rad and deg

I. Introduction

OVER the past two decades, direct collocation methods have
become popular in the numerical solution of nonlinear optimal

control problems. In a direct collocation method, the state is
approximated using a set of trial (basis) functions and the dynamics
are collocated at specified set of points in the time interval. Most
commonly, direct collocation methods for optimal control are
employed using so-called h methods where a fixed low-degree
polynomial (e.g., second degree or third degree) state approximation
is used and the problem is divided into many intervals. Convergence
of the numerical discretization is then achieved by increasing the
number of mesh intervals [1–3]. Grid refinement techniques are
commonly used to obtain a specified solution accuracy by increasing
the number of mesh intervals in regions of the trajectory where the
errors are largest. Excellent examples of h methods for solving
optimal control problems are given in [2–6].

In recent years, pseudospectral methods for solving optimal
control problems have increased in popularity [7–19]. In a
pseudospectral method, the collocation points are based on accurate
quadrature rules and the basis functions are typically Chebyshev or
Lagrange polynomials. In contrast to an hmethod, a pseudospectral
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method is typically employed as a p method where a single mesh
interval is used, and convergence is achieved by increasing the
degree, p, of the polynomial. For problems where the solutions are
infinitely smooth and well behaved, a pseudospectral method has a
simple structure and converges at an exponential rate [20–22]. The
most well-developed pseudospectral methods are the Gauss
pseudospectral method [12,13], the Radau pseudospectral method
(RPM) [17–19], and the Lobatto pseudospectral method [7].

While pseudospectral methods have typically been applied as p
methods [7,8,12,13,18,19], relying on convergence using global
polynomials has several limitations. First, even for smooth problems,
an accurate approximation may require an unreasonably large-
degree global polynomial. In addition, the convergence rate of a p
method on a problem for which the formulation or solution is
nonsmooth may be extremely slow, resulting in a poor approxi-
mation even when a high-degree polynomial is used. A second
limitation of a p method is that the use of a high-degree global
polynomial results in a nonlinear programming problem (NLP) for
which the density grows quickly as a function of the number of NLP
variables. This growth in the NLP density is due to the dense blocks
that arise from the global pseudospectral differentiation matrix.
Thus, apmethod becomes computationally intractable for problems
when an excessively large-degree polynomial is required. While h
methods are computationally more tractable than p methods, they
may require a large number of mesh intervals in order to achieve an
acceptable accuracy because exponential convergence is lost using
an hmethod.Moreover, when theNLP is sufficiently large, it may be
difficult to compute a solution.

To simultaneously improve accuracy and computational
efficiency using pseudospectral methods, we combine the best
features of both an hmethod and a pmethod to form a so-called hp
method. As its name implies, an hpmethod is onewhere the number
of mesh intervals, the mesh interval widths, and the polynomial
degree in each mesh interval is determined algorithmically.
Previously, hpmethods have been developed in the context of finite
elements in mechanics and spectral methods in fluid dynamics. In
particular, [23–27] describe the mathematical properties of h, p, and
hp methods for finite elements. Galvao et al. [28] showed the
application of an hp-adaptive least-squares spectral element method
(LS-SEM) for solving hyperbolic partial differential equations.
Heinrichs [29] developed an adaptive spectral least-squares
collocation scheme for Burgers’s equation. Dorao and Jakobsen
[30] showed how to apply of an hp-adaptive LS-SEM to the
population balance equation, while Dorao et al. [31] developed an
hp-adaptive spectral element solver for reactor modeling. An
overview of hp-adaptive spectral element methods for solving
problems in computational fluid dynamics can be found in [32].

In this paper, we develop a new hp-adaptive pseudospectral
method for solving optimal control problems. In the method
developed in this paper, the accuracy of the solution is improved
either by increasing the degree of the polynomial within a mesh
interval or by refining the mesh. The decision to increase the
polynomial degree or refine the mesh is based on the relative
curvature in each mesh interval. If the ratio between the maximum
curvature and the average curvature is sufficiently large on an
interval, then the accuracy is increased by refining the mesh and by
using low-degree polynomials in the newly created mesh intervals.
Otherwise, the accuracy is improved by increasing the degree of
approximating polynomial within a mesh interval. The method is
demonstrated on four examples of varying complexity and is found
to be a viable method for efficiently and accurately solving complex
optimal control problems.

It is noted that [33] also develops an hp-adaptive pseudospectral
method for solving optimal control problems. The method of [33]
starts with a global approximation. The accuracy is then improved by
increasing the degree of the polynomial within amesh interval until it
is deemed necessary to refine the mesh. The mesh is refined only
when exponential convergence is lost within an existing mesh
interval. As a result, the method of [33] more closely resembles a p
method because it can result in relatively large-degree polynomials
within a mesh interval. On the other hand, the method of this paper

starts with a coarse mesh and uses low-degree polynomials in each
mesh interval. The degree of the polynomial within amesh interval is
then increased only if the solution in that mesh interval is sufficiently
smooth. Consequently, in the algorithm developed in this paper
more closely resembles an h method because the degree of the
approximating polynomial in a mesh interval is kept relatively small.
The method of [33] may be preferable over the method of this paper
for problems for which the solutions are known a priori to be smooth
with the exception of a few isolated points, while the method of this
paper is preferable for problems for which the solution structure is
not known a priori.

We also compare our method to [3], where low-degree Runge–
Kutta intervals are used. In [3], the mesh is refined globally based on
the integral of the curvature. In our hp scheme, on the other hand, the
refinement technique of [3] is applied locally to each mesh interval
where refinement is deemed necessary. As a result, mesh interval
changes are more local in the method of this paper as compared with
themethod of [3]. Furthermore, the algorithm of this paper allows for
a different degree polynomial approximation in each mesh interval.
Finally, the growth rate of the mesh in our algorithm is a function of
the error in the current solution and the desired user prescribed
accuracy.

This paper is organized as follows. In Sec. II, we define the Bolza
optimal control problem of interest in this paper. In Sec. III, we
formulate a multiple-interval discretization of the Bolza optimal
control problem using the RPM. In Sec. IV, we provide two
motivating examples for the use of an hp-adaptive pseudospectral
method. In Sec. V, we present our variable-order hp-adaptive
pseudospectral method. In Sec. VI, we provide four examples of the
method using optimal control problems of varying complexity.
Finally, in Secs. VII and VIII, we provide a discussion of the results
and conclusions.

II. Bolza Optimal Control Problem

Consider the following fairly general optimal control problem in
Bolza form. Minimize the cost functional

J	��x�t0�; t0;x�t0�; tf� �
Z
tf

t0

g�x�t�;u�t�; t� dt (1)

subject to the dynamic constraints

dx

dt
	 f�x�t�;u�t�; t� (2)

the inequality path constraints

C �x�t�;u�t�; t� 
 0 (3)

and the boundary conditions (i.e., the event constraints)


�x�t0�; t0;x�t0�; tf � 	 0 (4)

where x�t� 2 Rn is the state, u�t� 2 Rm is the control,
C�x�t�;u�t�; t� 2 Rs represents the control and state constraints,
and t is time. For convenience, all quantities will be treated as row
vectors; that is, if y�t� 2 Rq, then y�t� � � y1�t�; � � � ; yq�t� �.

Suppose now that the time interval t 2 �t0; tf� is divided into a
mesh consisting of K mesh intervals [tk�1, tk], k	 1; . . . ; K, where
(t0; . . . ; tK) are the mesh points; the mesh points have the property
that t0 < t1 < t2 < � � �< tK 	 tf. In each mesh interval t 2 �tk�1; tk�,
we make the change of variables

� 	 2t� �tk � tk�1�
tk � tk�1

; �tk�1 < tk� (5)

Using the change of variables given in Eq. (5), the interval t 2
�tk�1; tk� is transformed to � 2 ��1;�1�. Moreover, we have

d�

dt
	 2

tk � tk�1
; �k	 1; . . . ; K� (6)
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Next, let x�k���� and u�k���� be the state and control in the kth mesh
interval as a function of � 2 ��1;�1�. Using Eq. (6), the Bolza
optimal control problemofEqs. (1–4) can bewritten as follows. First,
the cost functional of Eq. (1) can be written as

J	��x�1���1�; t0; x�K���1�; tf �

�
XK
k	1

tk � tk�1
2

Z �1
�1

g�x�k����;u�k����; �; tk�1; tk� d� (7)

Next, the dynamics of Eq. (2) and the path constraints of Eq. (3) are
given in terms of � in mesh interval k 2 �1; . . . ; K�, respectively, as

dx�k����
d�

	 tk � tk�1
2

f�x�k����;u�k����; �; tk�1; tk� (8)

0 
 C�x�k����;u�k����; �; tk�1; tk� (9)

Furthermore, the boundary conditions of Eq. (4) are given as

� �x�1���1�; t0;x�K���1�; tf� 	 0 (10)

Finally, it is required that the state be continuous at the interface of
mesh intervals; that is, x�t�k � 	 x�t�k �, k	 1; . . . ; K � 1.

III. Radau Pseudospectral Method

The hp method in this paper is developed by discretizing the
multiple-interval form of the Bolza optimal control problem, given in
Sec. II, using the previously developed RPM, as described in [18]
While we choose the RPM to discretize the optimal control problem,
with only slight modifications, the hp-adaptive method described
this paper can be developed using other pseudospectral methods
(e.g., the Gauss [12,13,15] or the Lobatto [7] pseudospectral
method). An advantage of using the Radau scheme is that the
continuity conditions x�t�k � 	 x�t�k � across mesh points are
particularly easy to implement.

In the RPM, the state of the continuous Bolza problem is
approximated within each mesh interval k 2 �1; . . . ; K� as

x �k���� �X�k���� 	
XNk�1
j	1

X�k�j L�k�j ���; L�k�j ��� 	
YNk�1
l	1
l≠j

� � ��k�l
�j � ��k�l

(11)

where � 2 ��1;�1�, L�k�j ���, j	 1; . . . ; Nk � 1, is a basis of

Lagrange polynomials, (��k�1 ; . . . ; �
�k�
Nk
) are the Legendre–Gauss–

Radau (LGR) [18,34] collocation points in mesh interval k, and

��k�Nk�1 	�1 is a noncollocated point. The cost functional of Eq. (7) is
then approximated using a multiple-interval LGR quadrature as

J���X�1�1 ; t0;X
�K�
NK�1; tK�

�
XK
k	1

XNk
j	1

�
tk � tk�1

2

�
w�k�j g�X

�k�
j ;U

�k�
j ; �

�k�
j ; tk�1; tk� (12)

where U�k�i , i	 1; . . . ; Nk, are the approximations of the control at

theNk LGRpoints in the kthmesh interval,X�1�1 is the approximation

of x�t0�, and X�K�NK�1 is the approximation of x�tf�. Differentiating
X�k���� in Eq. (11) with respect to �, we obtain

dX�k����
d�

� _X�k���� 	
XNk�1
j	1

X�k�j _L�k�j ��� (13)

Collocating the dynamics at the Nk LGR points using Eq. (13), we
have

XNk�1
j	1

X�k�j D
�k�
ij �

tk � tk�1
2

f�X�k�i ;U
�k�
i ; �

�k�
i ; tk�1; tk� 	 0;

�i	 1; . . . ; Nk� (14)

where

D�k�ij 	 _L�k�j ��
�k�
i �; �i	 1; . . . ; Nk� �j	 1; . . . ; Nk � 1�

(15)

is the Nk � �Nk � 1� Radau pseudospectral differentiation matrix
[18] in the kth mesh interval. Furthermore, the path constraints of
Eq. (3) in mesh interval k 2 �1; . . . ; K� are enforced at the Nk LGR
points as

C �X�k�i ;U
�k�
i ; �

�k�
i ; tk�1; tk� 
 0; �i	 1; . . . ; Nk� (16)

Finally, the event constraints are approximated as

� �X�1�1 ; t0;X
�K�
NK�1; tK� 	 0 (17)

Continuity across the mesh points is maintained by the condition

X �k�Nk�1 	X�k�1�1 (18)

TheNLP that arises from the Radau pseudospectral approximation is
then to minimize the cost function of Eq. (12) subject to the algebraic
constraints of Eqs. (14–18). In our computer implementation of the

NLP, we use the samevariable for bothX�k�Nk�1 andX
�k�1�
1 . Hence, the

constraint (18) can be eliminated since it is explicitly taken into
account.

It is useful to observe a few key properties of the RPM. First, when
used as a single-interval p method (see Fig. 1a), the state is
approximated at the Nk collocation points plus the terminal point,
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b) Nc and Na for an h–type radau collocation method

a) Nc and Na for for a p–type radau collocation method

Fig. 1 Number of collocation points Nc and number of approximation

points Na for a p- and h-Radau collocation method.
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while the control is approximated at only the Nk collocation points.
For a multi-interval discretization where a Radau scheme is used for
each interval in the mesh, the control is approximated at every point
where the state is approximated with the single exception of the final
point t	 tf (see Fig. 1b). Finally, we comment on the fact that the
RPM described in this section can be written equivalently in either
differential or implicit integral form [18,19]. We choose to use the
differential form (that is, the form described in this paper) because it
has computational advantages over the integral form. See [18,19] for
further details on the equivalence between the differential and
integrals forms of the RPM.

IV. Motivating Examples

In this section, we consider examples that motivate the
development of an hp-adaptive pseudospectral method for solving
optimal control problems. The first example has a smooth solution,
while the second example has a nonsmooth solution. The goal of the
motivating examples is to provide insight intowhen an hmethod or a
p method may be more appropriate.

A. Example 1: Problem with a Smooth Solution

Consider the following optimal control problem [35]. Minimize
the cost functional

J	 tf (19)

subject to the dynamic constraints

_x	 cos���; _y	 sin���; _�	 u (20)

and the boundary conditions

x�0� 	 0; y�0� 	 0; ��0� 	 �� x�tf� 	 0;

y�tf� 	 0; ��tf� 	 � (21)

The solution to the optimal control problem of Eqs. (19–21) is

�x��t�; y��t�; ���t�; u��t�� 	 �� sin�t�;�1� cos�t�; t� �; 1� (22)

where t�f 	 2�. It is seen that the solution to the optimal control

problem given in Eqs. (19–21) is smooth. We will approximate this
solution using a Radau pseudospectral p method, and we will
compare the error to that of a uniformly spaced second-degree Radau
h method. Figures 2a and 2b show the maximum state error as a
function of the number of collocation points and the number of
nonzero constraint Jacobian entries, respectively, for both the p
method and the second-degree hmethod. Because the solution to this
problem is smooth, the p method converges at an exponential rate,
while the second-degreehmethod converges at a significantly slower
rate as compared with the pmethod. Consequently, in this example,
convergence is achieved much more rapidly using a p method. In
particular, for any given desired solution accuracy, the overall size of
the NLP resulting from the p method is much smaller than the size
from the h method, thus making the NLP of the p method much
easier to solve.

B. Example 2: Problem with a Nonsmooth Solution

Consider the following optimal control problem of a soft lunar
landing, as given in [36]. Minimize the cost functional

J	
Z
tf

0

u dt (23)

subject to the dynamic constraints

_h	 v; _v	�g� u (24)

the boundary conditions

�h�0�; v�0�; h�tf�; v�tf�� 	 �h0; v0; hf; vf� 	 �10;�2; 0; 0� (25)

and the control inequality constraint

umin 
 u 
 umax (26)

where umin 	 0, umax 	 3, g	 1:5, and tf is free. The optimal
solution to this example is

�h��t�; v��t�; u��t��

	
(
��3

4
t2� v0t� h0;�3

2
t� v0;0�; t < t�sh

3
4
t2���3t�s � v0�t� 3

2
t�2s � h0; 32t���3t�s � v0�;3

i
; t > t�s

(27)

where t�s is

t�s 	
t�f
2
� v0

3
(28)

with

t�f 	 2
3
v0 � 4

3

��������������������
1
2
v20 � 3

2
h0

q
(29)

For the boundary conditions given in Eq. (25), we have t�s 	 1:4154
and t�f 	 4:1641. As seen in Eq. (27), the optimal control u��t� for
this example is bang–bang. As a result, the control is discontinuous
and the state components h�t� and v�t� are nonsmooth [in this case,
h�t� is piecewise quadratic and v�t� is piecewise linear, as seen in
Eq. (27)].

The convergence rates for this problem using a Radau p method
and an equally spaced Radau h-2 method are now analyzed.
Examining Fig. 2c, it is seen that the p method and the h-2 method
converge erratically and much more slowly than was the case for
example 1. Although the convergence of both methods appears to be
erratic, it turns out that the asymptotic convergence rate for both
methods is log linear. In other words, the error is bounded by
the product of a constant with the inverse of the degree of the
approximating polynomial (in the case of the p method) or the
product of a constant and the inverse of the number of mesh intervals
(in the case of the hmethod). Moreover, the convergence rate for the
hmethod in Fig. 2c is strongly influenced by the distance between the
switch time of the continuous-time optimal solution and the closest
mesh point, and this distance depends in a complicated way on the
number of mesh intervals.

To see more clearly the underlying log linear asymptotic
convergence rate of the p and h-2 methods, consider the following
equivalent fixed-time formulation of the optimal control problem
given in Eqs. (23–26). Minimize the cost functional

J	 h2�tf� � v2�tf� �
Z
tf

0

u dt (30)

subject to the dynamic constraints given in Eq. (24), the boundary
conditions

�h�0�; v�0�� 	 �h0; v0� 	 �10;�2� (31)

the control inequality constraint given in Eq. (26), and tf 	 t�f [where
t�f is given by Eq. (29)]. The modified optimal control problem was

solved for 2j (j	 1; . . . ; 8) collocation points where, in this case,
eachmesh has twice the number of intervals as the previousmesh. As
a result, the distance between the closest mesh point and the optimal
switch point t�s decreases to zero monotonically as a function of j. In
contrast, when all possible equally spaced meshes are considered (as
shown in Fig. 2c), the distance between the closest grid point and the
switching point does not decrease monotonically as a function of the
number of mesh intervals. Figure 2d shows the base-10 logarithm of
the maximum absolute error as a function of the base-2 logarithm of
the number of collocation points. As seen in Fig. 2d, the asymptotic
convergence rate of both methods is log linear. Because the
asymptotic error in both the p and h-2 method are similar, their
efficiency depends on the relative time it takes to solve discrete
problems of similar dimensions. As seen in Figs. 2e and 2f, the
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sparsity and the solution time of the h-2 method grow much more
slowly than the sparsity and solution time of the p method.
Consequently, for this example, where the optimal solution has a
bang–bang control, the h-2 method is much more computationally
efficient.

C. Discussion of Motivating Examples

The results of the motivating examples point to the fact that, in
general, the character of the solution to an optimal control problem
will change in different regions of the solution. In example 1, it was
seen that rapid convergence was achieved simply by increasing the
degree of the polynomial. On the other hand, in example 2, it was
seen that when the degree of the approximating polynomial is fixed,
the rate of convergence can be improved by placing the mesh points

at the appropriate locations. The solution of a general optimal control
problem will require a combination of choosing the appropriate
polynomial degree and the appropriate locations of the mesh
intervals. In a regionwhere the solution iswell behaved, it is expected
that convergence will be achieved fastest by increasing the degree of
the approximating polynomial. In a region where the solution is
either not smooth or is not accurately approximated using a
reasonably low-degree polynomial, refining themesh at the locations
of the nonsmoothness and using a polynomial of an appropriate (but
relatively low) degree in each mesh interval would appear to be the
best choice. Because the behavior of the solution to an arbitrary
optimal control problem is not known a priori, it is useful to allow for
both the polynomial degree to be different in each mesh interval and
for the number and locations of the mesh intervals to be determined.
Combining these last two features leads to a so-called hpmethod. In
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Fig. 2 h-method and p-method errors for motivating examples 1 and 2.

DARBY, HAGER, AND RAO 437



this paper, we develop an hp method for solving optimal control
problems using pseudospectral methods where higher-order
polynomials are used in regions where the solution is smooth and
larger numbers of low-degree polynomials are used in regions where
the solution is not well approximated by polynomials of a reasonable
degree.

V. Variable-Order hp-Adaptive Algorithm

A. Assessment of Approximation Error in a Mesh Interval

Consider again a K-interval Bolza optimal control problem, as
defined in Sec. II, on the time interval t 2 �t0; tf�. Let [tk�1, tk] be the
kth interval and suppose that the solution is collocated atNk points on
this interval. The goal of the hp-adaptive algorithm is to improve the
accuracy of the solution in a computationally efficient manner by
determining if a particularmesh interval in the currentmesh hasmet a
specified accuracy tolerance. If a mesh interval has not met the
accuracy tolerance, then the number and distribution of collocation
points needs to be modified either by increasing the degree of the
approximating polynomial in the mesh interval and/or refining the
mesh.

Let � be an accuracy tolerance for the discretized differential-
algebraic constraints (that is, the discretized dynamic and path
constraints). The kth mesh interval is considered to be within the
accuracy tolerance if the maximum violation in the differential-
algebraic equations on [tk�1, tk] is below �. Unlike the state, which
has a polynomial approximation, as given in Eq. (11), the control has
no such defined approximation. While any interpolating function for
which the value matches the approximation for the control at the Nk
LGR collocation points in mesh interval k is acceptable, as far as the
solution of the NLP is concerned, in this paper, the following Nkth-
degree Lagrange polynomial is used to approximate the control in
mesh intervals 1; . . . ; K � 1:

U �k���� 	
XNk�1
i	1

U�k�i L̂�k�i ���; L̂�k�j ��� 	
YNk�1
i	1
i≠j

� � ��k�i
�j � ��k�i

(32)

Because the final time tf is not collocated, the following (Nk � 1)th-
degreeLagrange polynomial is used to approximate the control in the
final mesh interval K:

U �k���� 	
XNk
i	1

U�k�i ~L�k�i ���; ~L�k�j ��� 	
YNk
i	1
i≠j

� � ��k�i
�j � ��k�i

(33)

It is noted in Eq. (32) that, for k 2 �1; K � 1�, the support points of the
Lagrange basis L̂�k���� are theNk LGR points plus the noncollocated
point � 	�1, whereas in Eq. (33), the support points of the

Lagrange basis ~L�k���� are the Nk LGR points.
To estimate the error in the differential-algebraic equations, we

insert the current state and control polynomials in the equations and

evaluate them at L points ��t�k�1 ; . . . ; �t
�k�
L � 2 �tk�1; tk� in each mesh

interval k 2 �1; . . . ; K�:

j _x�k�i ��t
�k�
l � � f

�k�
i �X

�k�
l ;U

�k�
l ; �t

�k�
l �j 	 a

�k�
li (34)

C �k�j �X
�k�
l ;U

�k�
l ; �t

�k�
l � 	 b

�k�
lj (35)

where 1 
 l 
 L, 1 
 i 
 n, and 1 
 j 
 s. If every element of a�k�li
and b�k�lj is less than � on the current mesh interval, then the specified

error tolerance � has been satisfied on this interval. If any element of

a�k�li or b�k�lj is greater than �, then either the mesh interval will be

refined or the degree of the polynomial on this interval will be
increased.

It is noted that Eq. (35) measures the quality with which the path
constraint of Eq. (3) is satisfied inmesh interval k at a point l. If we are
in a region of the trajectory where the jth path constraint is inactive,

b�k�lj will be negative and, therefore, will always be less than �. If we

are in a region where the jth path constraint is active, b�k�lj may have

positive values. If any of these positive values exceeds �, the path
constraint is not satisfied to the desired accuracy tolerance.

Our error estimation process focuses on the error in the constraints.
The accuracy in the first-order optimality conditions in the control
problem is implicitly taken into account when we specify an error
tolerance for the first-order optimality conditions in the NLP solver.

B. Increasing Polynomial Degree or Refining Mesh

If the accuracy in mesh interval k needs to be improved, the first
step is to determine if the mesh should be refined or if the degree of

the approximation should be increased. Suppose that X�k�m ��� is the
component of the state approximation in the kth mesh interval that

corresponds to themaximumvalue of eithera�k�li . The curvature of the
mth component of the state in mesh interval k is given by

��k���� 	 j �X�k�m ���j
j�1� _X�k�m ���2�3=2j

(36)

Let ��k�max and ���k� be the maximum and mean value of ��k����,
respectively, where ��k���� is computed using Eq. (36). Furthermore,
let rk be the ratio of the maximum to the mean curvature:

rk 	
��k�max

���k�
(37)

If rk < rmax, where rmax > 0 is a user-defined parameter, the
curvature is considered uniform in this mesh interval and a larger-
degree polynomial is used to obtain a better approximation to mesh
interval k. If rk > rmax, then there exists a large curvature relative to
the rest of the mesh interval and the mesh is refined.

1. Determination of New Polynomial Degree Within a Mesh Interval

Suppose the result of Sec. V.B is that the polynomial degreewithin
mesh interval k should be increased. LetM denote the initial degree
of the polynomial in this interval. The degreeNk of the polynomial in
mesh interval k is given by the formula

Nk 	M� ceil�log10�e�k�max=��� � A (38)

where A > 0 is an arbitrary integer constant described in Sec. V.D,

e�k�max is the maximum of a�k�li and b�k�lj over l, i, and j, and ceil is the
operator that rounds to the next highest integer.

It is seen from Eq. (38) that the increase in the degree of the
polynomial in the kth mesh interval is based on the ratio between the
maximum error and the specified error tolerance. For a smooth
function, a pseudospectral method exhibit exponential convergence.
Hence, the growth in the polynomial degree is related to the log of the
error. It is hoped that a unit increase in the polynomial degree will
improve the error by one order of magnitude.

2. Determination of Number and Placement of New Mesh Points

Suppose the result of Sec. V.B is that the kth mesh interval should
be refined. The following procedure is then used to determine the
locations of the new mesh points. First, the new number of mesh
intervals, denoted nk, is computed as

nk 	 ceil�Blog10�e�k�max=��� (39)

where B is an arbitrary integer constant, described in Sec. V.D. The
locations of the newmesh points are determined using the integral of
a curvature density function in a manner similar to that given in [3].
Specifically, let ���� be the density function [3] given by

���� 	 c����1=3 (40)

where c is a constant chosen, so thatZ �1
�1

��
� d
	 1
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Let F��� be the cumulative distribution function given by

F��� 	
Z
�

�1
��
� d
 (41)

The nk new mesh points are chosen so that

F��i� 	
i � 1

nk
; 1 
 i 
 nk � 1

In [3], it is shown that distributing the mesh points in this way is, in
some sense, optimal for the piecewise linear approximation of a
curve when the error is measured in the L1 norm. If nk 	 1, then no
subintervals are created. Therefore, theminimum value for nk should
be at least two.

C. hp-Adaptive Algorithm

We now describe our hp-adaptive algorithm that uses the
components described in Secs. V.A, V.B, V.B.1, and V.B.2. The
algorithm starts by forming a coarse mesh, using polynomials of a
fixed degree on each interval, and solving the resulting NLP. Based
on the rules given next, for each interval in the mesh, we either refine
the mesh or increase the degree of the polynomials. When we refine
the mesh, we use a fixed degreeM for the polynomials on each new
mesh interval. When we increase the degree of the polynomials, we
compute the new degree using the formula given in Eq. (38). We
continue the refinement process until the specified error tolerance is
satisfied. In more detail, the refinement process proceeds as follows:

1) Solve the NLP using the current mesh.
Begin: For k	 1; . . . ; K,

2) If e�k�max 
 �, then continue (proceed to next k).
3) If either rk 
 rmax or Nk >M, then refine the kth mesh

interval into nk subintervals, where nk is given by Eq. (39). Set
the degree of the polynomials on each of the subintervals to be
M and proceed to the next k.

4) Otherwise, set the degree of the polynomials on the kth
subinterval to be Nk, which is given in Eq. (38).
End: For k	 1; . . . ; K.

5) Return to Step 1.

D. Remarks

In this algorithm, we alternate between a mesh refinement step in
which the degree of the polynomials are set to M on each of the
refined intervals and a step where we increase the degree of the
polynomial according to Eq. (38). The goal of the hp-adaptive
algorithm of this paper is to use asmany low-degreemesh intervals as
possible and to only use larger-degree polynomials in regions where
the solution is smooth. Even for subdomains of the trajectory where
larger-degree polynomials may be appropriate, the degree of the
polynomial approximation is still small when compared with a p
method. The reason for controlling the degree of the polynomial
approximation is threefold. First, as discussed, the number of
nonzero entries in theNLP constraint Jacobian grows as the square of
the number of collocation points in each interval. Thus, if the degree
of the approximating polynomial in a mesh interval becomes too
large, theNLP becomes increasingly dense and theNLP solver has to
work much harder to compute a solution. Second, the difference
between the number of nonzero constraint Jacobian entries for an h
method and hp method is small, even when the total number of
collocation points is large, provided that the maximum polynomial
degree in any mesh interval is small. Finally, due to the exponential
convergence of a pseudospectral method in amesh interval where the
solution is smooth, it should be possible to obtain an accurate
solution using a relatively small number of collocation points in that
mesh interval. For all of the examples studied in this paper, a seventh-
degree polynomial was the largest ever computed by the algorithm
described in Sec. V.C.

Next, the algorithm uses the arbitrarily chosen parameters A, as
described in Eq. (38) (where A controls the growth of the number of
collocation points in a mesh interval) and B, as described in Eq. (39)

(where B controls the growth in the number of mesh intervals). It is
important to understand that a tradeoff exists between using large and
small values of either A or B. If either A or B is sufficiently large, the
algorithm will use fewer iterations to converge to an acceptable
solution, but the size of the mesh or the number of collocation points
may grow quickly between iterations. If either A or B is small, the
mesh will grow much more slowly, but the algorithm may require
many more iterations to achieve an acceptable solution.

The parameter rmax is used to determine whether to subdivide the
current interval or increase the degree of approximating polynomial.
For rmax < 1, the strategy to refine the mesh will always occur and,
simply, an h method will be used. If rmax 	1, then for each
inaccurate mesh interval, the first refinement attempt will always be
to increase the degree of approximating polynomial in the interval.
By using a finite value of rmax greater than one, the algorithm will
either subdivide the current mesh interval or increase the degree of
polynomial approximation.

The parameter � specifies the accuracy of the dynamic constraints
and path constraints of the NLP approximation between collocation
points. Specifically, the smaller the value of �, the greater the required
accuracy in the dynamics. In this study, we assume that the problem
has been scaled so that � is less than one. If the control problem is
poorly scaled, then the corresponding NLP may not be solvable.

VI. Examples

The hp-adaptive method of Sec. V is now demonstrated on four
examples. All examples were solved using a modified version of the
open-source softwareGPOPS [16]with theNLP solver SNOPT [37],
using a 2.5GHZCore 2DuoMacbook Pro runningMacOS-X10.5.8
with MATLAB R2009b. Note that algorithmic decisions depend on
the choice of the NLP solver, and if a different solver was used that
better exploits the sparsity of the discretized optimal control
problem, then algorithmic decisions could change. All CPU times
shown include only the time required to solve the NLP on all grids
and do not include the setup time required to generate the grid for the
subsequent mesh iteration. For all examples, the following values
were chosen for the parameters described in Sec. V: A	 1, B	 2,
L	 30, and rmax 	 2. To ensure that the NLP is solved to the same
accuracy as the optimal control problem, the SNOPT feasibility and
optimality tolerances are set to a value smaller than �. Next, no upper
limit was placed on the degree of the polynomial, as computed by
Eq. (38), but a limit ofnk 
 3Bwas placed on the growth of themesh,
as computed by Eq. (39). To obtain consistent results in all
computations, the same stopping criterion is used for all themethods.
In the particular case of a pmethod, if a solution is unacceptable, the
degree of the global polynomial is increased arbitrarily by 10 until a
solution is achieved. Furthermore, in order to ensure a fine sampling
between the collocation points, a value L	 1000 is chosen for a p
method. If a solution is not attained upon reaching a 200th-deg
polynomial approximation, then it is decided that the pmethod was
unable to obtain a solution. The parameter rmax controls the decision
to either refine themesh or increase the degree of the polynomial. For
the hmethod, we set rmax < 1 to force the algorithm to perform only
mesh refinement (that is, the number of mesh intervals can change,
but the degree of the polynomial in a mesh interval cannot change
from its initial value). The terminology h-x denotes an h method of
degree x in every mesh interval, while hp � x denotes an hpmethod
with a minimum polynomial degree of x in each interval. Finally, for
examples 1 and 2, the maximum absolute error shown is the
maximum absolute difference between the NLP solution and the
exact solution at the state approximation points (that is, the LGR
points on each mesh interval plus the terminal point).

A. Example 1

Consider again the motivating example given by Eqs. (19–21). It
was seen in Sec. IV.A that the most rapid convergence was achieved
using a pmethod. Suppose now that we consider the performance of
the p, h-2, and hp-2 methods on this example. In the case of a p
method, the initial mesh was two collocation points, while for the h
method and the hp method, the initial mesh was 10 mesh intervals
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with two collocation points per interval. Table 1 provides a summary
of the results obtained for this example. When using the p method,
the algorithm increased the polynomial degree once in order to meet
the accuracy tolerance of all values of �. In the case of the hp-2
method, it seen for �	 10�3 that the algorithm did not iterate (that is,
the solution on the first grid met the accuracy tolerance).
Furthermore, for � < 10�3, the mesh was never refined; only the
degree of the polynomial was increased in order to satisfy the
accuracy tolerance. Moreover, it is seen for �	 10�3 and 10�4 that
computational performance of the h-2 and hp-2 methods was
similar. Finally, we observe for �	 10�3 and 10�4 that the number of
nonzero entries in the NLP constraint Jacobian using either the h-2
and hp-2 methods was essentially the same.

Suppose now that we analyze the computational performance of
the different methods for � < 10�3 down to �	 10�7. First, it is seen
that for all values of �, from 10�3 to 10�7, that computational
efficiency using the p method and the hp-2 method are essentially
the same, with the p method being slightly more efficient for the
higher accuracy tolerances.Next, it is seen that, as � is decreased from
10�5 to 10�7, the hp-2method ismore computationally efficient than
the h-2 method. We note again that, in the case of the hp-2method,
only the degree of the polynomial was increased in each mesh
interval (that is, mesh refinement was never performed using the
hp-2method), and the accuracy tolerancewas satisfied on the second
grid iteration. The fact that mesh refinement was never employed
using the hp-2method is consistent with the fact that the solution to
this problem is smooth. Interestingly, the maximum value of rk on
anymesh interval of the solution obtained on the initial gridwas 1.32,
well below the chosen value of rmax 	 2. By contrast, using the h-2
method with � < 10�3, the algorithm chose to refine the mesh
substantially. As a result, for higher accuracy tolerances, the h-2
method was less computationally efficient when compared with
hp-2method, while the p method showed minimal improvement in
computational efficiency over the hp-2 method.

B. Example 2

Consider again the example given in Eqs. (23–26). Suppose we
solve this problem using an hp-2 method with an initial mesh
consisting of 10 uniform-width mesh intervals. Figures 3a–3d show
the evolution of the control approximation on various meshes with
�	 10�3, where the interpolation is performed using Eqs. (32) and
(33). On the first mesh, the discontinuity in the control is not captured
accurately. On the subsequent meshes, however, more collocation
points are placed near the location of the discontinuity, thus
improving the accuracy with which the switch in the control is
captured. On the initial grid, rk 	 2:07 for the interval containing the
discontinuity, forcing subdivision of this interval. Figure 3e shows
the difference between the time at which the maximum curvature
occurs, denoted tmax

� , and the optimal switch time of the control t�s as a
function of the iteration number. It is expected that, for an accurate

solution, the location of maximum curvature in the state will occur at
the same time as the discontinuity in the control. It is seen that, except
for the second grid iteration, the maximum curvature in the state
converges to the true location of the discontinuity in the control as the
mesh is refined. Table 2 shows the performance of the algorithm
usingp, h-2, and hp-2methods. First, it is interesting to note that the
pmethod was never able to produce solutions for the given values of
�. When the pmethod was forced to stop at 200 collocation points, it
resulted in a CPU time of 4.84 s and 82,002 nonzero Jacobian entries.
In any case, the CPU time and number of nonzero NLP constraint
Jacobian entries using the p method are significantly greater than
those obtained using either the h-2 method or hp-2 method. Using
either the hmethod or the hp-2method with �	 10�1, the accuracy
tolerance was satisfied on the initial mesh. For �	 �10�2;
10�3; 10�4�, the computational performance of the hp-2 and the h-2
methods was similar.

C. Example 3

Consider the following optimal control problem, which is a
variation of the minimum time to climb of a supersonic aircraft [38–
40]. Minimize the cost functional

J	 tf (42)

subject to the dynamic constraints

_h	 v sin �; _v	 Ft � Fd
m

� Fg sin �; _� 	
Fg
v
�� � cos ��

(43)

the boundary conditions

h�0� 	 0 m; h�tf� 	 19995 m; v�0� 	 129:31 m=s

v�tf� 	 295:09 m=s; ��0� 	 0 deg; ��tf� 	 0 deg (44)

and the inequality path constraints

h 
 0; � 
 �max (45)

To force the flight-path angle path constraint � 
 �max to be active on
the optimal solution, we choose �max 	 45 deg. Additional details
for the vehicle used in this problem can be found in [39,40].

This example was solved using the p, h-x, and hp-x methods,
where the h-x and hp-x methods were initialized with a mesh
consisting of 10 uniform mesh intervals with x collocation points in
each mesh interval and the p solutions were initialized using 20
collocation points on the time interval. Figures 4a–4d show theflight-
path angle on iterations (1, 2, 4, and 8) for the hp-4 method using
�	 10�3. It is seen that the initial mesh does not accurately
approximate the optimal solution in either the takeoff region (from
t	 0 to t� 10 s) or in the region near path constraint (that is, from
t� 20 s to t� 35 s). As themesh refinement progresses, however, it
is seen that the solution in these two regions improves dramatically,
leading tomuch higher accuracy on thefinalmeshwhere themajority
of mesh points and collocation points are placed in the region from
t	 0 to t� 40 s. Finally, in the region t 2 ��50; tf�, it is observed
that the mesh does not change from the second mesh iteration
onwards.

Table 3 shows the computation times and number of nonzero NLP
constraint Jacobian entries for this example using the p, h-2, and
hp-xmethods. It is seen that a solution is obtained using a pmethod
for �	 �10�1; 10�2; 10�3�. No solution was obtained for �	 10�4,
as the p method was stopped at 200 collocation points. Also, using
either the h-2 method or the hp-x methods, it is seen that the initial
mesh satisfies the accuracy tolerance for �	 10�1. For
�	 �10�1; 10�2�, the performance of the h-2, hp-x, and p methods
are similar. For �	 10�3, it is seen that the pmethod is significantly
less computationally efficient, while the h-2 and hp-xmethods have
similar computational performance. No p-method solution was
found for �	 10�4. The resulting CPU time and nonzero Jacobian
entries were 1100.4 s and 123,602, respectively. When �	 10�4, a

Table 1 Summary of accuracy and speed for example 1, using various

collocation strategies and accuracy tolerances

� E Method T, s Nc K I Nz

10�3 2:40 � 10�7 p 0.015 12 1 2 650
5:96 � 10�3 hp-2 0.0091 20 10 1 482
5:96 � 10�3 h-2 0.0091 20 10 1 482

10�4 2:40 � 10�7 p 0.015 12 1 2 650
4:70 � 10�6 hp-2 0.023 40 10 2 1,202
6:66 � 10�4 h-2 0.040 64 32 3 1,538

10�5 2:40 � 10�7 p 0.015 12 1 2 650
1:21 � 10�7 hp-2 0.030 50 10 2 1,652
1:39 � 10�5 h-2 0.089 160 80 3 3,842

10�6 2:40 � 10�7 p 0.015 12 1 2 650
2:59 � 10�9 hp-2 0.030 60 10 2 2,162
5:22 � 10�7 h-2 0.47 480 240 4 11,522

10�7 2:40 � 10�7 p 0.015 12 1 2 650
4:87 � 10�11 hp-2 0.037 70 10 2 2,732
1:98 � 10�8 h-2 4.63 1,568 784 5 37,634
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significant improvement is seen using higher-order hp-xmethods, as
compared with the h-2 method. In comparing the h-2 and hp-2
methods, it is important to observe that allowing the flexibility to
increase the degree of the polynomial from its minimum allowable
value greatly reduces the total number of collocation points.
Furthermore, the hp-4 method showed the best performance for
�	 10�4. Thus, while the hp-4method results in the denser NLP, it
also turns out that the hp-4 method has both the fewest number of
collocation points and the fewest number of nonzero Jacobian
entries. This example again demonstrates the relative ineffectiveness
of the pmethod over either the h-2method or an hp-xmethod when
an active path constraint is present.

D. Example 4

Consider the following optimal control problem [1] ofmaximizing
the crossrange during the atmospheric entry of a reusable launch
vehicle. Minimize the cost functional
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Table 2 Summary of accuracy and speed for example 2, using various

collocation strategies and accuracy tolerance

� E Method T, s Nc K I Nz

10�1 —— p —— —— —— —— ——

2:74 � 10�2 hp-2 0.097 20 10 1 282
2:74 � 10�2 h-2 0.097 20 10 1 282

10�2 —— p —— —— —— —— ——

4:96 � 10�3 hp-2 0.12 40 20 8 562
7:01 � 10�3 h-2 0.10 28 14 5 394

10�3 —— p —— —— —— —— ——

3:20 � 10�3 hp-2 0.13 50 24 8 718
6:32 � 10�3 h-2 0.096 36 18 5 506

10�4 —— p —— —— —— —— ——

6:97 � 10�4 hp-2 0.29 86 42 11 1222
7:20 � 10�4 h-2 0.20 72 36 8 1010
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J	�
�tf� (46)

subject to the dynamic constraints

_r	 v sin �; _�	 v cos � sin 
r cos


; _
	 v cos � cos 
r

_v	�Fd
m
� Fg sin �; _� 	 Fl cos 	

mv
�
�
Fg
v
� v
r

�
cos �

_ 	 Fl sin 	

mv cos �
� v cos � sin tan


r
(47)

and the boundary conditions

r�0� 	 79248� Re m; r�tf� 	 24384� Re m
��0� 	 0 deg; ��tf� 	 free; 
�0� 	 0 deg


�tf� 	 free; v�0� 	 7803 m=s; v�tf� 	 762 m=s

��0� 	 �1 deg; ��tf� 	 �5 deg;  �0� 	 90 deg

 �tf� 	 free (48)

Further details of this problem, including the aerodynamic model,
can be found in [1]. It is noted that, unlike either of the previous two
exampleswhere either the control was discontinuous or an inequality
path constraint was active, this problem has a much smoother
solution.

This example was solved using the p, h-x, and hp-x methods,
where the h-x and hp-xmethods were initialized with an initial mesh
consisting of 20 uniform mesh intervals with x collocation points in
each mesh interval and the p solutions were initialized using 20
collocation points on the time interval. Figures 5a–5f show the state
obtained using the hp algorithm of Sec. V, where the interpolation is
performed using Eq. (11). Table 4 shows the computational
performance using the p, h-x, and hp-x methods. Because the
optimal solution to this example is smooth, the p method was

successful for all values of �. Furthermore, for �	 �10�4; 10�5�, the
solutions using any of the methods were essentially the same. As the
accuracy tolerance is tightened, however, the h-2 method requires a
very large number of collocation points to meet the accuracy
tolerance. As a result, a significantly larger computation time is
required to solve the NLP using the h-2methodwhen compared with
using the hp-xmethods. In addition, while the pmethod resulted in
solutions with the fewest number of collocation points, the NLP that
results from the use of high-degree polynomials is much more dense
than the NLPs arising from the hp-x and h methods. This increased
NLP density in turn increases the computational time required to
solve the problem. In particular, it is seen for �	 10�6 that the hp-x
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Fig. 4 Flight-path angle � (deg) vs t for example 3 on mesh iterations 1, 2, 4, and 8, using the hp-4 method with an accuracy tolerance of �� 10�3.

Table 3 Summary of accuracy and speed for example 3, using

various collocation strategies and accuracy tolerances

� Method T, s Nc K I Nz

10�1 p 0.20 30 1 2 3,424
hp-4 0.16 40 10 1 1,202
hp-3 0.083 30 10 1 812
hp-2 0.064 20 10 1 482
h-2 0.064 20 10 1 482

10�2 p 0.37 40 1 3 5,522
hp-4 0.32 48 12 3 1,442
hp-3 0.22 35 11 3 977
hp-2 0.51 38 17 10 962
h-2 0.42 46 23 7 1,106

10�3 p 21.45 110 1 10 38,282
hp-4 1.59 95 23 8 2,903
hp-3 2.38 118 38 14 3,248
hp-2 3.03 117 43 14 3,191
h-2 1.35 138 69 7 3,314

10�4 p —— —— —— —— ——

hp-4 7.33 192 46 10 5,906
hp-3 8.09 234 72 10 6,608
hp-2 29.14 245 95 20 6,617
h-2 18.88 334 167 13 8,018
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methods produce solutions using between approximately one-third
to one-half the computation time required by the p method. For
�	 10�7, the hp-3 and hp-4 methods significantly outperform the
h-2 method and are slightly more computationally efficient than the
p method. As a result, while the hp-3 and hp-4 methods use more
than double the number of collocation points used by the pmethod,
the increased sparsity of the hp-3 and hp-4 methods lead to a more
computationally efficient NLP. Furthermore, the hp-3 and hp-4
methods use many fewer collocation points than are used by the h-2
method, again resulting in increased computational efficiency.As the
accuracy requirements are increased on this problem, an hpmethod
outperforms an h method.

VII. Discussion of Results

The application of the hp-adaptive algorithm to the four examples
highlights several key aspects of using the hp-adaptive approach. In
some cases, a strategy biased toward apmethodworks best, while in
others, a strategy biased toward an h method is better. In general, it
will not be possible to accurately capture discontinuities or rapid

changes in the trajectory using apmethod, while an hmethod is less
able to exploit smoothness in the solution. By using an hpmethod, it
is possible to efficiently determine accurate solutions to problems
that may have a variety of different behaviors in different regions of
the solution. In general, it is preferable to start with low-degree
polynomial approximations in each mesh interval, because the
meshes are generated muchmore quickly than would be the case had
a high-degree p method been used for the initial mesh; after a
solution has been obtained on the first mesh, the solutions on the
subsequent meshes are obtained very quickly. In addition, it is seen
that the hp-adaptive method greatly outperforms thepmethod in the
cases of a discontinuity in the control or an active path constraint. For
smoother problems, the hp-adaptive method performs similarly or
better to the pmethod due to increased computational sparsity in the
NLP. Comparing the hp method to an h method, it is seen for low-
accuracy tolerances that the hpmethod is at least as fast, if not faster,
than an h method. When it is required to satisfy a high-accuracy
tolerance, it was found that the speed improvement of the hpmethod
over the h method can be quite significant. This last result indicates
that allowing for a moderate increase in the degree of the polynomial
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Fig. 5 State on the final mesh for example 4, using the hp-3 method with an accuracy tolerance of �� 10�5.
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in a mesh interval can actually reduce execution time, because a
solution can be obtained using a much smaller NLP than may be
required using an h method.

VIII. Conclusions

A variable-order adaptive control algorithm has been developed
for solving optimal control problems using pseudospectral methods.
In the method of this paper, accuracy is improved either by refining
themesh or increasing the degree of the polynomial approximation in
particular mesh intervals. The mesh refinement is based on the inte-
gral of the curvature. The adaptive scheme is demonstrated on four
examples, including a problem for which the solution is nonsmooth
and a problem with an active inequality path constraint. When
compared with a global pseudospectral method or a fixed-degree
method, it is found that the approach of this paper was more efficient
computationally, while the computed solutions were of comparable
accuracy. For problems with a smooth solution, the adaptive method
converged by increasing the degree of the polynomial, while for
problems where the solution was nonsmooth, the adaptive method
refined the mesh in the nonsmooth part of the domain.
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