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Abstract. We consider existence, uniqueness, and computation of mini-
mum drag shapes for projectiles subjected to both Newtoman pressure drag
and skin friction drag. Critical values of the drag coefficients are determined
where the optimal shape changes from perfectly blunt to conical to partially
blunt. The existence proof, based on duality theory, provides an efficient
algorithm for computing the optimal shape.

I. Introduction

For projectiles traveling at zero angle of attack, we consider the existence,
uniqueness, and computation of minimum drag shapes. We assume that the
projectile is a solid of revolution (possibly nonslender) subjected to both Newto-
nian pressure drag and skin friction drag; our results differ from earlier work in
the following aspects: Kennet [4] and Miele, Hull [S] only consider slender
bodies while Eggers [1] ignores skin friction. Also our work is more mathemati-
cally oriented since we prove rigorously the existence and uniqueness of an
optimal shape. The behavior of the optimal shape relative to the pressure and
friction coefficients is studied, and we determine the critical values of the
coefficients where the optimal shape changes from perfectly blunt to conical to
partially blunt.

Our approach, fundamentaily different from earlier work, is based on
Lagrange duality theory for convex control problems developed by Hager and
Mitter [2]. 1f the skin friction is sufficiently large, the optimum shape can be
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determined analytically; however, for sea level conditions, the shape must be
computed numerically. The usual algorithms for calculus of variation problems
involve iterative procedures for either solving a related two-point boundary-
value problem or evaluating the constant in the first integral equation. The
algorithm presented below, on the other hand, is essentially direct—one differen-
tial equation is integrated to determine the value of a dual multplier and a
second equation is integrated to obtain the optimal shape.

II. Problem Statement and Principal Results

The following variational problem is considered:

D14 (x)?

inf D(r)=2f [c M+czr(x) 1+ 7 (x) |dx 2.1
0

subject to r(0)=0, r(¢)=r,, ¥ >0, r’ essentially bounded, where { and r, are the
given length and radius of the projectile, x is the axial coordinate, and r(x) is the
projectile radius. The two terms in (2.1) correspond to Newtonian pressure drag
and skin friction drag respectively. Omitting the constraint »' >0, the shape
shown in Figure 2.1 may possess smaller “drag” than any feasible shape for (2.1)
above. However, this shape is physically nonoptimal since Newtonian theory is
invalid wherever r'(x)<0. It can be shown that the physically optimal shape
satisfies ' > 0 if base drag can be ignored. From a design viewpoint, base drag is
significant, and a separate report [3] analyzes numerically the effect of base drag
and projectile afterbodies. Nonetheless, even if base drag is included, the
minimum drag problem must be decomposed into a forebody problem (like
(2.1)) and an afterbody problem. Hence the results below apply to the forebody.

Although we constrain r(0)=0, a blunt nose shape can be achieved as the
limit of a sequence of shapes satisfying (0)=0. The blunt nose shape could also
be treated by adding another term to the extremand in (2.1) corresponding to
the nose radius and removing the constraint r(0)=0; however, the analysis is
easier using the formulation (2.1).

Let D* denote the infimum in (2.1). We say that r* solves (2.1) if there exists
a sequence of feasible shapes {r,} such that both r,(x)—r*(x) for almost every

r{x)

» x Fig. 2.1. A low drag shape for (2.1)
Y omitting the constraint »' > 0.
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Fig. 2.2. Minimum drag shapes. Partially blunt nose: A > @/rq

x€[0,¢] and D(r,)— D*. Defining the constant

2¢,\2/3
A= (—) -1, (22)

]
our principal theorem is the following:

Theorem 2.1. For all values of c¢,,c, > 0, there exists a unique solution to (2.1). If
¢,/ ¢, <1/2, r*(x)=0 for x€[0,0) and r*(£)=r, (perfectly blunt nose). If 0 <A<
t/r,, then r*(x)=0 for x€[0,0 ~Ar] and

a1 -
—d;(x)——x Jor x€[t—Ar, 0] (2.3)

(conical shape). If A\>10/r,, the nose of the optimal shape is partially blunt (see
Figure 2.2).

During the existence proof, an efficient algorithm is obtained for computing
the partially blunt nose shape.

III. Change of Variables

Let us change variables to express (2.1) in terms of the independent variable

p=r? and the dependent variable g(p)=1/r". In terms of g, the constraint
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r(f)=r,, becomes
f"g(rz)dr=e. (3.1)
0

Replacing ' by 1/g and 2rdr by dp gives us the following equivalent formula-
tion for (2.1):

inf D(g)=j04 [—1+—gl(—p)—2+c2"/g(p)2+l

r2
subject to g >0 and fo o= 12 (p)dp=20.

dp (3.2)

IV. Perfectly Blunt and Conical Shapes

Define the function

C
h(g)=-— +c\1+g%, (4.1)

1+g

the integrand of the extremand in (3.2). It is easy to see that the value of g
minimizing A(g) is given by: g=0 if ¢;/c,<1/2 and g=A if ¢;/c,>1/2 (A
defined in (2.2)). First let us consider the case ¢, /¢, >1/2 and A<t /r,.

Since A(g(p)) > A(A) for all g(-) and all p, we have D* > h(A)ri. In fact, we
show that D*=h(M\)ri. Define the following function:

I‘2

A for —12 <p<r}
2.(0)= ” , (4.2)

,
e—n+)\(l—n) for0<p<—l2
Ty n

Since A < {/r,, both constraints in (3.2) are satisfied. Furthermore,

rt/n’ 0
<f [c,+c2r—n}dp (n large)
0

1

[z, do

_ i
=l +e,— ;2——>O (as n—o0). (4.3)
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On the other hand,

f/ h(g,(0)do=hMri[1=1/n*]>hN)r}  (as n—c). (44)

1/ n

Hence D*= h(A\)r} as claimed. Since g=1/r/, the shapes r,(x) corresponding to
g,(p) converge to the conical shape described in Theorem 2.1. As ¢,/c,—1/2,
A—0 and ' becomes vertical at x={. Hence the optimal shape becomes
perfectly blunt.

The uniqueness proof is slightly technical and can be found in the Appen-
dix.

V. Partially Blunt Nose

Usually A>¢ /r, for caliber 5 projectiles and sea level conditions so g, defined in
(4.2) violates the constraint g>0. We now apply Lagrange duality theory for
convex control problems to the following equivalent formulation of (3.2):

(P) inf{D<g>= fo’%h(g(p»dp}

subject to dw(p)/dp=p~"/?%g(p), w(0)=0, w(r?)=2L. In control theory terminol-
ogy, w and g are the state and the control respectively.

Since the function A(g), plotted in Figure 5.1, is not convex, we must first
convexify our problem. Let A(g) be obtained by taking the convex hull of the
epigraph set for 4 (see Figure 5.2), and let (P) be the same as (P) but with &
replaced by A. Let us define

D (g)=f0r%’?(g(p))dp, (5.1)

hig)

Inflection point

Minimum point

+
o Y

Fig. 5.1. The function A. 9i A
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and let D* be the optimal value for (P). We show below that D*= D*; since
h < h, we see that the optimal functions for (P) are also optimal for (P) On the
other hand, by Lemma 5.1 below, there exists a unique optimum for (P) which
is also optimal in (P) by Lemma 5.3.

First let us recall some results of Hager and Mitter. Define the Lagrangian

H(g.p,p)=h (g)+pgp~ "/ (52)

Since (P) is a convex control problem and the control coefficient (p ~'/?) in the
differential equation is absolutely integrable, Theorems 1 and 3 and Lemma 1 in
Hager-Mitter [2] imply that a feasible control g*(p) is optimal in (P) if and only
if there exists a dual multiplier P such that

H(g*(p).p,p)=inf{ H(g.p,p):g>0} (5.3)

for almost every p€[0,r7].

Lemma 5.1. If G(p,p) is the value of g >0 that minimizes H(g,p,p), then there
exists a unique dual multiplier p=p* such that G (p*,p) satisfies the constraints for

(3.2). (Hence G(p*,p) is the unique solution to (1;)).

Remark 5.2. It can be shown that G(p,p) is uniquely defined for all p#ﬁ,
where p (computed later) depends on ¢, ¢,, and p. Furthermore, G(p,") is
infinitely differentiable for all p#%p and G (p, -) jumps from g to zero at p=p.
Also we can prove that 2” only vanishes for g=0 or g, where 0<g; <A (see
Figure 5.1); hence 4”(g) >0 for g > g;. Referring to Figure 5.2, we see that h=h
on [g, ) and g>g;; thus A" >0 on [ g, c0).

Proof of Lemma 5.1. We must prove the existence and uniqueness of p such
that

[o7 6 (pp)do=21. (5.4)
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To begin, (5.4) is simplified. Introduce the variable z=p'/2/p so that (5.2)
assumes the form

H(g2)=h(g)+g/z (5.5)

and let G (z) minimize H (g,z) over g > 0. Changing variables in (5.4) from p to
z, we obtain

"/p

foc;(z)dz=e/p or j(;BG(z)dz=(;el-)B (5.6)

where 8=r,/p.
We claim that (5.6) has no solution for 8<0: Since A'(g) <0 for 0<g<A
and A'(g)>0 for g > A, any solution to

digH(g,z)=i;’(g)+%=0 (5.7)

satisfies g >A for z <0. Since A>f /r|, we have

UOBG(z)dz

4
>|BM>1%!, (58)

and the claim is established. ' 0O
In Figure 5.3, we plot H(g,z) for various values of z. We see that there
exists a critical value z such that

h(0)=minimum{ H (g,z):g>0} forall0<z<z (59)
h(g)=minimum{ H (g,z):g>0}. '

That is, G(z)=0 for all 0<z<Zz and G(z)=g. Hence (5.6) gives us the
equation:

L(B)ELBG(z)dz—ril,8=0. (5.10)

Since 4" >0 on [ g, ©0), the solution g= G (z) to the equation A'(g)= —z'is
an increasing function of z > z. Furthermore, since #'(A\)=0, we see that G(z)—A
as z—o0. Combining these results, we have L(z)<0, L'(B)=G(B)—t/r,
monotone increasing, and

lim L'(8)=A— 2 >0. (5.11)
B—o0 r

Hence L(B)=0 has a unique, positive solution. (Note that 8=0 is a trivial
solution to (5.6), but p=r,/B is undefined for §=0).
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z Decreasing

™9 Fig. 53. H(g,z) for various
values of z.

Q) 1+

Lemma 53. D(G(p*,-))=D(G(p*,")).

Proof. As can be seen from Figure 5.3, G(z)>g for z>Z and G(z)=0 for
z<Zz. But h(g)=Hh(g) for g=0 or g > §. Hence h(G(2))=h(G (2)) for z#Z and
the proof is complete since G (p*,p)=G(z=p'/?/p*). O

By Lemma 5.1, Lemma 5.3, and our earlier remarks, there exists a unique
solution to (2.1) for A> 0 /r,.

Remark 54. The Pontryagm maximum principle is not immediately applicable
to the problems (P) or (P) since the system dynamics are discontinuous. In the
Lagrange duality paper [2], the usual continuity and smoothness assumptions
were replaced by convexity assumptions; hence the duality theory could be
applied directly to (P).

VI. Computation of the Optimal Dual Multiplier

To solve (5.10), z must be computed. Observe that g, shown in Figures 5.2 and
5.3, has the following property: h’(g) agrees with the slope of the secant
connecting (0,4(0)) and (g,A(g)). That is,
h(g)—h(0) _
———=k(g). (6.1)
Defining a =11+ g* and omitting some algebra, (6.1) is equivalent to

(e, + cp)at—c,a® —3c,a*+2¢,=0. (6.2)
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K_ngwing g, we hav_e hW(g)+1/z=0 or z=—1/k'(g). Equation 6.2 has the
trivial root a=1 or g=0. As g0, the left side of (6.1) defines the derivative at
zero. Dividing out this trivial root, we obtain the equation:

)
m(a)E(l+c—)a3+a2—2a—2=0. (6.3)

1

By the following relations, we see that m(a) has a unique positive zero:
m(0)<0, m” >0 on [0, ), and m”(a)—>o0 as a—>o0. For 0< ¢,/ ¢, <2 (nose not
perfectly blunt), we have m(1)<0< m(V2). Hence the positive zero of m(a)
lies on [1,V2 ]; since m” >0 for a>0, it is well known that Newton’s method
converges quadratically to the positive zero from any non-negative starting
condition. Omitting the algebra, we have:

Zl = —K(g)=2[2¢,~c0*). (6.4)

To determine p* or equivalently the root 8*=r,/p* to the equation L( )=
0, we numerically integrate G (z) in (5.10) until L( 8)=0. Since G (z) is changing
rapidly for z near z and slowly for z>>Z, it is more efficient to integrate G(z)
using an exponentially growing step size rather than a uniform step size.

Note that G(z)=g. As z increases incrementally in the integration process,
G (2) changes incrementally and hence G(z) is easily computed using any
equation solver for the equation #'(g)= —1/z. In particular, Newton’s method
was found to work well. After p* has been determined, the corresponding
optimal shape is found by integrating the equation:

dr(x) 1
dx r(x))’
(%)

p

where p*Z is the radius of nose bluntness (recall that z=p'/2/p=r/p and 7 is
the value of z where G(z)=1/r jumps from zero to a positive value).

r(x=0)=p*z (6.5)

Remark 6.1 (Behavior near nose). Observe that for ¢,/ ¢, =2, the corresponding
positive root a, of m(a) is 1; and as c¢,/c, approaches zero, a, moves
monotonically to V2 . The slope of the nose, given by r'(0)=(a% —1)7'/2, is
plotted in Figure 6.1 as a function of ¢, /¢,.

In Section 5 we saw that G (z) was an increasing function of z > z. Thus the
optimal slope is a decreasing function of x. Potentially, the nose bluntness can
be a large percentage of r,. For example, if ¢, =0, the radius of the nose satisfies
r(0) > r; — ¢ since the optimal slope is < 1. Hence the nose radius approaches r,
as {—0. On the other hand, for caliber 5 projectiles, traveling at sea level
conditions, the nose radius (computed numerically) is at most (.01)r,.
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Fig. 6.1. Drag coefficients versus nose slope for partially blunt nose.

Appendix: Uniqueness of solution for perfectly blunt and conical geometry

For¢;/c,>1/2 and A< {/r,, we now prove the unique optimality of the conical
shape given in Theorem 2.1. Let { g,} be any minimizing sequence for (3.2), let
€>0 be a small constant, and define N,={p:|g,(p)—A|>¢€}. Since D(g,)—D*
and h(g,(p)) > ~(A), we have measure (N,)—0 as n—o0 and

fo"z[h(g,,(p))—h(x)]dp_»o as n—so. (A1)

Let k>0 be a large constant and define M, ={p:|g,(p)—A| >k} CN,. Observe
the following relations:

D*= lim D(g,)> lim h(g,(p))dp
n—oo n—c0 [0, r[Z] — M,.
> lim A (V[ ri —measure (M, ) | = D* (A2)

Hence all the inequalities in (A.2) must be equalities. Combining (A.1) and (A.2)
gives us:

Jim [ h(g,(p))dp=0. (a3)
[eo] Mn
Since lim,_, .|#(g)— ¢, g|=0, (A.3) implies that

f g,(p)dp<e (A.4)
M,

for all k,n sufficiently large.
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Observe that the shape x,(p) corresponding to g,(p) is given by

x,(0)="0— f 10112, (o) dp. (A5)

o

Since measure (N,)—0 as n—o0 and € >0 was arbitrary, (A.4) and (A.5) imply
that:

Jim x,,(p)=l3—fr'%p"/2>\dp for r2>p>0. (A.6)
p

Since { g,} was an arbitrary minimizing sequence, the conical shape (A.6) is the
unique optimum. The perfectly blunt geometry is treated similarly.
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