THE SEPARABLE CONVEX QUADRATIC KNAPSACK PROBLEM *

TIMOTHY A. DAVIST, WILLIAM W. HAGER}, AND JAMES T. HUNGERFORD#

Abstract. This paper considers the problem of minimizing a convex, separable quadratic func-
tion subject to a knapsack constraint and a box constraint. An algorithm called NAPHEAP is
developed for solving this problem. The algorithm solves the Karush-Kuhn-Tucker system using a
starting guess to the optimal Lagrange multiplier and updating the guess monotonically in the di-
rection of the solution. The starting guess is either computed using a Newton-type method (variable
fixing method, secant method, or Newton’s method) or is supplied by the user. A key innovation
in our algorithm is the implementation of a heap data structure for storing the break points of the
derivative of the dual function. Given a starting guess, the heap is built with about n compar-
isons, where n is the problem dimension. Each subsequent iteration amounts to an update of the
heap, which can be done in about logy n comparisons. Hence, when the starting guess is sufficiently
good, the cost of the iteration updates can be a small multiple of log, n comparisons. In contrast,
Newton-type methods can require O(n) operations per iteration, even when the starting guess is
near the solution. Hence, a hybrid algorithm that uses a Newton-type method to generate a starting
guess, followed by the heap-based monotone break point searching scheme, can be faster than a
Newton-type method by itself. Numerical results are presented.

Key words. continuous quadratic knapsack, nonlinear programming, convex programming,
quadratic programming, separable programming, singly-constrained quadratic program, heap, sup-
port vector machines

AMS subject classifications. 90-08, 90C20, 90C25, 90C35, 90A80

1. Introduction. We consider the following separable convexr quadratic knapsack
problem:

: _ LT T
min q(x) = Phe Dx -y 'x (1.1)

subject to £ <x<u and TSaTxgs,

where a,y € R", £ € (RU{—00})", u € (RU{oo})", r,s € R, and D € R"*" is a
positive semidefinite diagonal matrix with diagonal d. Without loss of generality, we
assume that £ < u. Problem (1.1) has applications in quadratic resource allocation [1,
2,9, 17], quasi-Newton updates with bounds [5], multi-capacity network flow problems
[16, 22, 26], continuous formulations of graph partitioning problems [14, 13], and
support vector machines [10].

By introducing an auxiliary variable b € R, we may reformulate (1.1) as:

i : <x< <bh< Tx =b). 1.2
xeﬂr{;ﬂl{r})eR{q(x) L<x<u, r<b<s, ax=b} (1.2)

*October 3, 2013. The authors gratefully acknowledge support by the Office of Naval Research
under grant N00014-11-1-0068 and by the Defense Advanced Research Project Agency under contract
HRO0011-12-C-0011. The views expressed are those of the authors and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. Approved for Public Release,
Distribution Unlimited.

Tdavis@cise.ufl.edu, http://www.cise.ufl.edu/~davis, PO Box 116120, Department of Com-
puter and Information Science and Engineering, University of Florida, Gainesville, FL. 32611-6120.
Phone (352) 505-1546. Fax (352) 392-1220.

thager@ufl.edu, http://www.math.ufl.edu/~hager, PO Box 118105, Department of Mathemat-
ics, University of Florida, Gainesville, FL 32611-8105. Phone (352) 392-0281. Fax (352) 392-8357.

8freerad@ufl.edu, http://www.math.ufl.edu/~freerad, PO Box 118105, Department of Mathe-
matics, University of Florida, Gainesville, FL 32611-8105. Phone (352) 392-0281. Fax (352) 392-8357.

1

Making the substitutions

X B , U , A« , n<—n-+1,
b r s -1

and augmenting y and d by an additional zero entry, (1.2) is transformed into the
following problem:

min{¢(x): £<x<u, a'x=0}

xeR”
Hence, without loss of generality, we may restrict our study to an equality-constrained
version of (1.1):

min {¢(x): £<x<u, a'x=0bh}, (1.3)
xER™
where b € R is given. The constraints of (1.3) are continuous analogues of the con-
straints that arise in the discrete knapsack problem (see [3]).
In quadratic resource allocation, problem (1.3) arises with a = 1 and £ = 0, where
1 and O are the vectors whose entries are all 1 and 0 respectively. The objective is
to minimize the total cost of allocating b resources to n projects, where %dzxf — YT
is the cost function for project 7. The amount of resources allocated to project i is
constrained to lie between ¢; and u;.
In other applications [5, 10, 13, 14, 16, 22, 26], an objective function F' is mini-
mized over a feasible set described by bound constraints and a single linear equality
constraint:

m%%n {F(x): £<x<u, a'x=1b} (1.4)
xeR™

The gradient projection algorithm as formulated in [15] starts with an initial guess
xp € R™ to a solution of (1.4), and for each k > 0, the (k + 1)st iterate is given by

Xp4+1 = X + SpPr, where py = proj(xx — o VF(xy)).

Here si > 0 is the stepsize, a1 is an approximation to the inverse Hessian of F', and
proj(z) is the unique projection, relative to the 2-norm, of z onto the feasible set of
(1.4). That is, proj(z) is the solution of the problem

.1 T
)?elﬁg{2||x z||: £<x<u, a'x b} (1.5)

This projection problem is a special case of Problem (1.3) in which D is the identity
matrix and y = x, — apy VF (x;).

Specialized algorithms for solving (1.3) typically assume D is positive definite
and search for a root of the derivative of the dual function, a continuous piecewise
linear, monotonic function with at most 2n break points (“kinks” where the slope
could change). The first algorithm [16] was based on sorting all the break points and
then sequentially marching through the break points until the optimal multiplier was
found. The worst case complexity of this algorithm is O(nlog,n) due to the sort.
Starting with Brucker [4], linear time algorithms were proposed based on a median
search rather than a sort. Subsequent developments of the median search method
include those in [5, 20, 23].

Separable Convex Quadratic Knapsack Problem 3

In [1], Bitran and Hax proposed a method for solving a generalization of (1.3) in
which the objective function is convex and separable, but not necessarily quadratic.
In their algorithm, which has come to be known as the variable fixing method, each
iteration implicitly computes an estimate for the optimal Lagrange multiplier by solv-
ing a subproblem in which the box constraints are ignored. Based on the sign of the
derivative of the dual function at the multiplier estimate, a non-empty subset of in-
dices is identified for which x; can be optimally fixed at an upper or lower bound. The
fixed variables are removed from the problem and the process repeats until all the
bound components of an optimal solution have been determined. Subsequent devel-
opments of this approach in the context of (1.3) can be found in [3, 18, 21, 24, 27, 28].
An efficient and reliable implementation of the variable fixing method for (1.3), and
a thorough convergence analysis, is given by Kiwiel in [18].

In [10], Dai and Fletcher develop a method in which each multiplier estimate
is the root of a secant approximation to the derivative of the dual function (with
additional modifications for speeding up convergence). In [7], a method is proposed by
Cominetti, Mascarenhas, and Silva which uses semi-smooth Newton steps for updating
multiplier estimates, with a secant safeguard. Numerical experiments showed that the
semi-smooth Newton method was faster than the variable fixing method, the secant
method, and a median based method on a standard test set of randomly generated
problems. As we explain in Section 3, Newton’s method is not very well suited for
problems where d is small relative to y since the derivative of the dual function is
nearly piecewise constant and the Newton iterates near a flat piece jump towards toco.
As shown in [7], if a > 0 and u = oo or £ = —oo, the variable fixing method and
Newton’s method can generate identical iterates. This result is generalized in Section
2.

In this paper we develop an algorithm called NAPHEAP built around a monotone
break point searching algorithm implemented using a heap data structure. Given a
starting guess A for an optimal dual multiplier A* associated with the knapsack con-
straint, the break points on the side of A containing A* are arranged in a heap. Build-
ing the heap requires about n comparisons, while updating the heap after removing
a break point takes about log, n comparisons. Hence, if A is separated from A* by
m break points, then * can be found using about n + mlogyn comparisons. If m
is small, then the heap-based algorithm is fast. One situation where a good starting
guess is often available is when the gradient projection algorithm is applied to (1.4).
In this situation, we compute a series of projections, and the multipliers associated
with the linear constraint approach a limit. Hence, the multiplier arising in one pro-
jection is usually a good starting guess for the multiplier associated with the next
projection. Currently the only algorithms which are able to take advantage of such a
starting guess are the secant-based algorithm and the semi-smooth Newton method.
In [7], numerical comparisons were made between algorithms for solving sequences of
projection problems arising in Support Vector Machine applications. When hot starts
are allowed, the Newton method was shown to be faster than the other methods.

We use the expression “Newton-type method” to refer to the class of meth-
ods which includes the variable fixing algorithm, Newton’s method, and the secant
method. If the knapsack problem is not connected with a convergent algorithm like
the gradient projection algorithm, a few iterations of a Newton-type method may yield
a good starting guess. Let x* denote an optimal solution of (1.1), assuming it exists.
When O(n) components of x* satisfy ¢; < x} < w;, each iteration of a Newton-type
method requires O(n) operations. Even if the multiplier iterates are very close to A*,

4

the time for each iteration is still O(n). On the other hand, NAPHEAP only requires
logn comparisons as it passes by each break point on the path to A*. As we will
show in the numerical experiments, a hybrid algorithm in which we perform between
1 and 4 iterations of a Newton-type method followed by the heap-based method (until
convergence) can be much faster than a Newton-type method by itself.

Our paper is organized as follows. In Section 2 we give an overview of algorithms
for solving (1.3) when D is positive definite, and we identify the elements these algo-
rithms have in common. Section 3 studies the complexity of Newton-type methods,
both in theory and in experiments. An example is constructed that shows the worst-
case running time of a variable fixing algorithm could grow like n2. Section 4 presents
our heap-based algorithm for solving (1.3) in the case where the diagonal matrix D
is positive semidefinite. Finally, Section 5 compares the performance of our hybrid
NAPHEAP algorithm to Newton-type methods.

Notation: 0 and 1 denote vectors whose entries are all 0 and all 1 respectively,
the dimensions should be clear from context. If S is a set, then |S| denotes the number
of elements in S, and S¢ is the complement of S. A subscript k is often used to denote
the iteration number. Thus x; is the k-th iterate and xy; is the i-th component of
the k-th iterate.

2. Overview of algorithms. For ease of exposition, it is assumed throughout
the paper that a > 0. Note that if a; = 0, then z; does not appear in the knapsack
constraint and the optimal x; is any solution of

mln{5xfdz — YTy : fi S €Z; S ui},

and if a; < 0, then we can make the change of variables z; = —x; to obtain an
equivalent problem with a; > 0. In this section, we also assume that d > 0, while in
the next section we take into account vanishing diagonal elements.

The common approach to (1.3) is to solve the dual problem. Let £ denote the
Lagrangian defined by

1
L(x,\) = QXTDX —y'x+Ma'x—b),

and let L denote the dual function

L(\) = min{L(x,\) : £ < x < u}. (2.1)
The dual problem is
max L(N). (2.2)

Since d > 0, it follows that L is differentiable (see [6, Thm. 2.1] or [11]), and
L'(\) =a'x(\) — b,
where x(\) is the unique minimizer in (2.1) given by
x;(A) = mid(4;, (y; — Aa;)/diyui), i =1,2,...,n, (2.3)

where mid(a, b, ¢) denotes the median of a, b, and ¢. The following result is well-known
(for example, see [4]):
PROPOSITION 2.1. Suppose d > 0 and (1.3) is feasible.

Separable Convex Quadratic Knapsack Problem 5

1. L is concave and L' is non-increasing, continuous, and piecewise linear with
break points given by the set

A = U {yi_gidi,yi_uidi}. (2.4)

a; a;
1<i<n g v

2. (2.2) has a solution * € R and L'(A*) = 0.
3. If L'(*) = 0, then x(*) defined in (2.3) is the unique solution of (1.3).
Even in the case where A is not an optimal multiplier, one can still use the sign
of L'(X\) to determine some bound components of the optimal solution to (1.3) (for
example, see [28, Thm. 6]):
ProposiTION 2.2. Ifd > 0, a > 0, and X* is a solution of (1.3), then for any
A € R, we have the following:
1. If L'(A) > 0, then xf = {; for every i such that z;(\) = ¢;.
2. If L'(X\) <0, then x} = u; for every i such that xz;(\) = u;.
Proof. If L'(\) > 0, then since L’ is non-increasing, it follows that A < A* for
any A* which satisfies L'(A*) = 0. If x;(A\) = £;, then by the definition of x()), we
conclude that (y; — Aa;)/d; < ¢;. And since a; > 0 and * >)\

yi —Aai _ yi — Mgy
< <.
d; B d; -

This implies that

The case where L'(A) < 0 is treated similarly. O

The specialized algorithms that have been developed for (1.3) have the generic
form shown in Figure 2.1. The algorithms start with an initial guess A1 for the optimal

Step 0. Initialization: Set k =1 and By = 0.
Step 1. Iteration: Generate Ag.
Step 2. Stopping Criterion: If L'(A\g) = 0, set x* = x(\x) and stop.
Step 3. Variable fizing (optional): If L'(\;) > 0, then
Bi4+1 = B U {Z € B : l‘i()\k) = éi} and z] = {; if i € B4 \ B (2.5)
If L'(\;) < 0, then
Bit1=BrU{i € B} :x;i(A\r) =u;} and 2] = u; if i € Br1 \ Br. (2.6)

Step 4. Update: Set k =k + 1 and go to Step 1.

Fi1G. 2.1. Generic algorithm for the separable quadratic knapsack problem with a > 0 (1.8)

dual multiplier and update A\ until L'(A;) = 0. The solution x* to (1.3) is the vector
x(\g) constructed using (2.3). In Step 3, which is optional, Proposition 2.2 may be
used to “fix” the values of some components of x* at each iteration.

Algorithms for solving (1.3) differ primarily in how they choose A, in Step 1. For
example, in a break point search [16], Ay is the next break point between A\;_; and

A* if such a break point exists. Otherwise, A\, = A* is found by linear interpolation.
In the median search methods of [4, 5, 20, 23], the iteration amounts to selecting Ay
as the median of the remaining break points. Based on the sign of L’ at the median,
half of the remaining break points can be discarded. In the secant-based algorithm
of Dai and Fletcher [10], Ak is the root of a secant based on the value of L’ at two
previous iterates (with additional modifications for speeding up convergence).

In the variable fixing methods [1, 3, 18, 21, 24, 27, 28], each iteration k > 2 solves
a subproblem over the remaining unfixed variables:

1
min{ Z idlx? — YT Z a;x; = bk} , (2.7)

1€Fy 1€F

where Fj, = B, and

b =b— Y a}. (2.8)

1EB

The iterate Ay is the optimal multiplier associated with the linear constraint in (2.7),
and is given by

A= —bk + D e r, @iYi/di
Zie]—'k ag/dl

While the method may begin with an arbitrary guess \; € R, many implementations
compute A\; using the formula (2.9) with F; = {1,2,...,n}.

The recent method of Cominetti, Mascarenhas, and Silva [7] updates the multi-
plier by taking a semi-smooth Newton step in the direction of A*:

(2.9)

LAGTS DR

MY = Mt = > 2,
k k—1 Ll:It(Ak—l) =

(2.10)

for some starting guess Ay € R. Here, L (A\;_1) denotes either the right or left side
derivative of L’ at A\;_; (the side is chosen according to the sign of L). Equivalently,
)\éV is the maximizer of the second-order Taylor series approximation to L at Ag_1
in the direction of A* (in the case where A\,_; is a break point, the Taylor series
approximation depends on the direction in which we expand). If the Newton step is
unacceptably large, then \j is either computed using a secant approximation or by
simply moving to the next break point in the direction of A*. These modifications
also prevent the iterates from cycling.

The Newton algorithm [7] and the variable fixing algorithm [18] are closely related.
Both algorithms employ the variable fixing operation, and the iterate Ay has the
property that A\x € (ag—1,8k—1), where

a; =sup{\; : L'(\;) >0 and i < j} and (2.11)
ﬁj = 1nf{)\l : L/()\z) <0Oand i < j},

where we use the convention that sup) = co and inf) = —oo. For the variable fixing
algorithm, this is a consequence of the formula (2.9) — see Lemma 4.1 in [18]. For
Newton scheme in [7], this property is ensured by replacing the Newton iterate by a
secant iterate when the Newton iterate is not contained in (ag_1, Bx—1)-

Separable Convex Quadratic Knapsack Problem 7

Any algorithm of the form of the generic algorithm in Figure 2.1 that includes
the variable fixing step and which produces iterates \; € (ag—1, Bk—1), also has the
property that

xi(A\g) =] for all i € Bj4q. (2.12)

In particular, if i € Bi41 \ By, then by (2.5)-(2.6), z;(\x) = «}. If ¢ € By, then it
entered By at an earlier iteration from either of the updates (2.5) or (2.6). To be
specific, suppose that for some j < k, we have L'();) > 0 and x;(\;) = ¢; = z}. Since
a1 is expressed as a maximum in (2.11), it follows that A\; < ay_1. Since a; > 0,
x;(\) is a decreasing function of A with x;(\) > ¢; for all A. It follows that

xp =4 =x;(Nj) > zi(o—1) > (M) > 0,

which yields (2.12). The case L'(\;) < 0 and x;()\;) = u; = « is similar.
Another interesting connection between these two algorithms, established below,
is that both)\,f and)\fy maximize a quadratic approximation to L of the form

Lp(A\) = min{L(z,\) : z € R", z; = x;(A\x,—1) for all i € B}, (2.13)
for some choice of B C A(x(A,—1)), where A(x) denotes the set of active indices:
Ax)={i:z; =¥ or x; = u;}
LEMMA 2.3. Assume either that k = 1, or that k > 2 and L'(Ay—1) # 0. Then
the variable fizing iterate AL in (2.9) is the unique mazimizer of Lg, ().

Proof. By (2.12), z;(Ay—1) = z} for all i € By, (if &k = 1, then By = 0, so this is
vacuously true). Hence, Lp, can be expressed

Lp, (N) =min{L(z,\) : z € R", z; = x] for all i € By}

Consequently, Lg, is the dual function associated with the optimization problem
1
min {QZTDZ —y'z:a'z=0b, z = z; forall i € Bk} . (2.14)

Since either & = 1 or L’(Ax_1) # 0, we have that Fj is nonempty; hence, the max-
imizer of Lp, is unique since it is strongly convex. Since the optimization problem
(2.7) is the same as (2.14), the maximizer of Lg, is the same as the optimal multi-
plier associated with the linear constraint of (2.14), which is the same as the optimal
multiplier associated with the linear constraint of (2.7). O

Next, let us relate the Newton iterate to the maximizer of a dual function Ly for
some choice of B.

LEMMA 2.4. Let k > 2 and suppose that L' (Ax—_1) # 0. Let Ay be defined by
i — Ak—104

i — Ak—10; . i
g {i:ykla:zi if L'Vee1) < 0 and 2 o

4. = U, ifL/()\k_l) >0}.

Then Ay is the unique mazimizer of Lg(\), where B = A(x(Ag—1))\Ao-
Proof. Assume without loss of generality that L'(A;—1) > 0. By definition, A} is
the maximizer of the second-order Taylor series

LOk—1) + L' 1) (X — Ape1) + %L;’(Ak_l)(x —Ao1)? (2.15)

8

Hence, we need only show that for B = A(x(A;—1))\Ao, La(A) is equivalent to the
expression (2.15). Since Lg(A) is a quadratic function of A, we need only show that
LB()\kfl) = L(Ak,1)7 LIB(Akfl) = L/()\kfl), and Llé(Akfl) = Ll()\kfl)

For each A, let z(\) denote the unique solution to (2.13). We claim that z(A;_1) =
x(Ag—1). If ¢ € B, then z;(Ay—1) = x;(Ax—1) by the constraint in (2.13). If ¢ € B,
then either i € A(x(Ak—1))¢ or i € Ap. In either case, it follows from (2.3) that

= Af_10;

l‘i(Ak_l) = %
i

By direct substitution, we obtain

0
al’i

L(x(Ar—1); Ak—1) = 0.

Hence, x(\,_1) satisfies the first-order optimality conditions for (2.13), and by the
strong convexity of the objective function z(Ax_1) = x(Ax—1). It follows immediately
that Lg(Ak—1) = L(Agk—1). Moreover, by [6, Thm. 2.1], we have

LsMe1) =a'z(M\p1) —b=a"x(\s_1) —b= L' (A\e_1).
Next, let us consider the second derivative of Lg. We claim that for each i,
Zi(Ak—1) = 2i(N). (2.16)
Indeed, if i € B, then i € A(x(Ax—1))\Ao, so by definition of Ag, we have either

Yi — Ae—10; Yi — Ap—10;
< /{; or Y > ;.
d; - d; !

So, 2;(A) = u; or £; if X € [\, A\, + €] with € > 0 sufficiently small. Hence, in the case
i € B, z;()\) is constant on R, and 2/(A,—1) = 0 = z(\;_;). On the other hand, if
1 € B¢, then either i € Ag or ¢; < x;(Ag—1) < u;. In either case, we have

Yi — Aag s

fi < Z‘Z()\) = a < Uj

for A € [Ag—1, A\g—1 + €] and € > 0 Consequently, z/(A\x,—1) = —a;/d; = x;()\gfl). This
completes the proof of the claim (2.16). Thus, we have

L) = [a"200 1) — B = [aTx(N) — B = LY (hea),

which completes the proof. O

The next proposition shows that the iterates AY and)\,ZCV coincide whenever the
active components of x(Ag_1) coincide with By.

THEOREM 2.5. Let k > 2 and assume that L'(Ap—1) # 0. If By, = A(x(Ag—1)),
then AN = \E'.
Proof. Assume without loss of generality that L'(Ax_1) > 0. We prove that Ay =
() by contradiction, where Ay is defined in Lemma 2.4. If i € Ap, then i € A(x(Ax—1))
and
Yi — Ak—10;

zi(Ak—1) = a4 = Uj-

Separable Convex Quadratic Knapsack Problem 9
Since a; > 0, it follows that x;(A) < x;(Ag—1) = u; for every A > A\,_1. Hence, z}
cannot have been fixed by the end of iteration k—1, and i & By. Since i € A(x(Ax_1))
but i & By, we contradict the assumption that By = A(x(A—1)). Therefore, Ay = 0,
and by Lemma 2.4, A\Y is the unique maximizer of Lp for B = A(x(A\z—1)). By
Lemma 2.3, A\f' maximizes Lz for B = By,. So since By, = A(x(A\p_1)), A\ =AF. 0O

Remark. Theorem 2.5 generalizes Proposition 5.1 in [7] in which the semi-smooth
Newton iterates are shown to be equivalent to the variable fixing iterates in the case
where A; satisfies (2.9), a > 0, and u = oco. In this case, it can be shown that the se-
quence A is monotonically increasing towards A*, z;(A\x) is monotonically decreasing,
and whenever a variable reaches a lower bound, it is fixed; that is, at each iteration
k, we have Bj, = A(x(Ay—1)). By Theorem 2.5, \f' = Al.

3. Worst case performance of Newton-type methods. In this section, we
examine the worst case performance of the Newton-type methods such as the semi-
smooth Newton method, the variable fixing method, and the secant method. All
of these methods require the computation of L’(\g) in each iteration. Since this
computation involves a sum over the free indices, it follows that if €(n) components
of an optimal solution are free, then each iteration of a Newton-type method requires
Q(n) flops. Here Q(n) denotes a number bounded from below by ¢n for some ¢ > 0.

Table 3.1 shows the performance of the variable fixing algorithm for a randomly
selected example from Problem Set 1 of Section 5 of size n = 3,000,000. For each
iteration, we give the CPU time for that iteration in seconds, the value of A\i, and the
size of the sets Fi, = B and Byy1 \ Bi. The algorithm converges after 10 iterations.
However, after only 5 iterations, the relative error between A\, and * is already within
0.7%. The time for iteration 10 is smaller than the rest since the stopping condition
was satisfied before completing the iteration. For iterations 5 through 9, the time per
iteration is about 0.03 s and the number of free variables is on the order of 1 million.
In Table 3.2 we solve the same problem associated with Table 3.1, but with the good

k CPU (S) >\k ‘fk| |Bk+1\8k|
1 190 | 0.2560789 | 2153491 846509
2 .066 | 1.5665073 | 1895702 257789
3 .066 | 3.3274053 | 1608655 287047
4 .054 | 4.4810929 | 1248067 360588
b) .032 | 3.8210237 | 1179116 68951
6 .030 | 3.8630132 | 1146762 32354
7 .029 | 3.8475087 | 1143152 3610
8 .029 | 3.8476129 | 1142346 806
9 .028 | 3.8476022 | 1142331 15
10 .014 | 3.8476022 | 1142331 0
TABLE 3.1

Statistics for the variable fizing algorithm applied to an example from Problem Set 1

starting guess A1 = 3.84760, which agrees with the exact multiplier to 6 significant
digits. This starting guess is so good that all the components of the optimal solution
that are at the upper bound can be fixed in the first iteration. Nonetheless, the
variable fixing algorithm still took 8 iterations to reach the optimal solution, and the
time for the trailing iterations is still around 0.03 s when the number of free variables
is on the order of 1 million.

10

k CPU (S))\k |~7:k| |B;€+1\Bk|
1 127 | 3.8476000 | 2606250 393750
2 .096 | 0.1763559 | 1775119 831131
3 .051 | 1.3610706 | 1540751 234368
4 .045 | 2.6162104 | 1321817 218934
5 .036 | 3.5998977 | 1176249 145568
6 .030 | 3.8380911 | 1143634 32615
7 .029 | 3.8475885 | 1142330 1304
8 .014 | 3.8476022 | 1142330 0
TABLE 3.2

Statistics for the variable fixing algorithm applied to the same example shown in Table 3.1 but
with a very good starting guess

L'(N)

—2d=4
—6/l---5=1
_gl|—/0=.25
---93=.0625
-10 w w ‘ ‘ ‘
-2 0 2 4 6 8

F1G. 3.1. A plot of L' for the problems described in (3.1) with four different values for §.

Although Newton’s method, starting from the good guess, would converge in 1
iteration on the problem of Table 3.1, it still requires §2(n) flops per iteration. The
good starting guess helps Newton’s method by reducing the number of iterations,
but not the time per iteration. Newton’s method may also encounter convergence
problems when there are small diagonal elements. To illustrate the effect of small
diagonal elements, we consider a series of knapsack problems of the following form:

di =94, a;=1, y;=rand [-10,10], ¢ =0, u;=1. (3.1)

Here rand [—10,10] denotes a random number between —10 and 10. The series of
problems depends on the parameter §. In Figure 3.1 we plot L’ for four different
values of . When & = 4, the plot is approximately linear, and Newton’s method
should find the root quickly. However, when § decreases to 1, the plot develops a flat
spot, and any Newton iterate landing on this flat spot would be kicked out toward
+o00. When § reaches 0.0625, the graph is essentially piecewise constant, and in this
case, Newton’s method would not work well.

To correct for this poor performance, the authors of [7] implement a safeguard;
whenever the Newton iterate lies outside the interval (ay_1,08k—1), the multiplier
update is computed by either moving to the next break point in the direction of *,
or using a secant step. In either case, convergence may be quite slow. For example,

Separable Convex Quadratic Knapsack Problem 11

I
o Mg Az A \)\k+1 B
\ N k

F1G. 3.2. Potential secant iterates when L' is essentially piecewise constant

Figure 3.2 shows that when the graph of L’ is essentially piecewise constant, the
convergence of a secant iteration based on the function values at ap_q and Bx_1 can
be slow. Similar difficulties may be encountered when using a secant method like the
one given by Dai and Fletcher [10]. In their algorithm, significant modifications had
to be introduced in order to speed up convergence, particularly for problems where
L’ was nearly piecewise constant.

As the data in Table 3.1 indicates, for certain randomly generated problems,
Newton-type methods require a small number of iterations to reach the solution. On
the other hand, the worst case complexity could be O(n?) if the iteration is performed
in exact arithmetic. An example demonstrating this worst case complexity for both
Newton’s algorithm and the variable fixing algorithm was given in [7], where the
authors provide an L’ for which n Newton iterations are needed to find the root.
Here we provide another example that is expressed in terms of the knapsack problem
itself. Let us consider the following special case of problem (1.3):

1
m%@n §XTX —1Tx subjectto £<x<1and1'x=0. (3.2)
xER™

Consider any lower bound £ of the following form:

i o o Ne.
él = €1, éz =€ + Z € (:,L_l J +)Ej ! for all 4 Z 2, (33)
j=2 [hi=i(n—F)

where ¢; is an arbitrary sequence that satisfies 1 > €1 > e > ... > ¢, =0.
LEMMA 3.1. The components of £ given in (3.3) satisfy the following:
1. 1>0>0>...> 4,
2. For each © > 2, the following relation holds:

_ Zz;:ll gm €

Ei— - + 1 .
n—itl L)

m=1

Proof.

12

Part 1: Since the sequence ¢; is strictly decreasing and non-negative, it follows
that for any 2 < j < n, we have

€—(n—j+2)e_1 <€ —€i_1 <O0.

Hence, the terms in the sum in (3.3) are all negative, which implies that the sequence
4; is strictly decreasing and £1 = €; < 1.
Part 2: Substituting ¢, using (3.3), we obtain

1—1 m

b = (i — Der + < J+2)¢1 3.5
ZZZH<> (39

Notice that for each 2 < j < n, the term % appears exactly (i — j) times
k=1\"""

in the sum of (3.5). Hence, equation (3.5) simplifies to

by = (i — 1)eg j+2)€j_1> i—7).
£ o 5 (S o

We make this substitution on the right side of (3.4), the substitution (3.3) on the left,
and multiply by n — ¢ + 1 to obtain

(n—i+1) +Zz< Hn_(j+2))€j 1>(n—i+1):

_ 49 :
—e1(i—1) — Zej (n—j+2)e; Li—5) 4+ — <
j=

[T 10— k) (= k)

In the special case ¢ = 2, this relation remains valid if the products are treated as
1 and the sums are treated as 0 when the lower limit exceeds the upper limit. We
rearrange this relation to get

ne S j+2)63*1= G 3.6
+Z R i 0

Hence, (3.4) is equivalent to (3.6). We prove (3.6) by induction.

If ¢ = 2, then the left hand side of (3.6) is ne; + ea — ne; = €9, which equals
the right hand side. Now suppose that (3.6) holds for some ¢ > 2. By the induction
hypothesis, we have

77,61+Z€J (n]+2)€J 1:6i+1_,(1n_2'+1)6i+ . 26i
j=2 Hk:l(— k) jt (0 — k) j1(n — k)
_ €i4+1
;c;ll(n —k)

But this is exactly the assertion made by (3.6) for ¢ + 1. Hence, the induction step
has been established. O

Inserting 4 = n in (3.4), we conclude that 17£ = 0 since ¢, = 0. Hence, x = £ is
the only feasible point for (3.2). We now show that if the variable fixing algorithm is

Separable Convex Quadratic Knapsack Problem 13

applied to the problem (3.2) with £ chosen according to (3.3), then only one variable
is fixed at a lower bound in each iteration. Since the optimal solution is x* = £, n
iterations are required. Since the time to perform iteration k is Q(n — k), the total
running time is Q(n?).

PROPOSITION 3.2. At iteration k of the variable fizing algorithm applied to (3.2)
with £ chosen according to (3.3), exactly one component of the optimal solution x* is
fized, namely i, = {y,.

Proof. The proof is by induction on k. For k = 1, Fi, = {1,2,...,n}, by = 0,
and the solution of the equality constrained reduced problem (2.7) is x; = 0. Since
{1 = €1 > 0, the first component of x; violates the lower bound: z1; = 0 < ¢;. On
the other hand, we now show that ¢; < xy; < u; for i > 2. Since €3 < €1, we have

ney €1 — ney

€ —
l2:61+27<61+7:61—€1:0:$12.
n—1 n—1

By part 1 of Lemma 3.1, ¢; is a strictly decreasing function of i. Hence, for all ¢ > 2,
b <ly < 0=z <u; =1.

This implies that the first component of x; is the only component that is fixed at
iteration 1; moreover, it is fixed at the lower bound. So By = {1} and xj = ¢;. This
completes the base case.

Proceeding by induction, suppose that for some k > 2, B, = {1,2,...,k — 1}
and z = ¢; for all i < k. We will show that Byy1 = {1,2,...,k} and z} = {,. At
iteration k, the reduced problem is

n n k—1
min{zlx?—xi:Zm:—Z&} (3.7)
i=k i=k =1

The solution is

D D S
Tki AR i>k (3.8)
By (3.4),
T = U — e—k, 1> k. (3.9)

H::@_:ll (n—m)

In particular, zgp < {p.
By the definition (3.3) of £, we have

€ —(n—k+1)e
lpyr = O + =22 k(.) i
Hj:l(n_.])

Substituting for ¢; using (3.9) yields

Ck+1 — €k .
€k+1:$ki+%<1’ki for i > k.

j=1 (n—j)
By Lemma 3.1, ¢; is strictly decreasing. Hence, for every ¢ > k we have

Uy < hpq1 < apg = o < Ll < 1

14

It follows that x; = ¢ while ¢; < z; < u; for i > k. So Byy1 = By U {k}. This
completes the induction step. O

Remark. Proposition 3.2 is a theoretical result in the sense that the computations
must be performed with exact arithmetic; in finite precision arithmetic, the ¢; sequence
quickly approaches a limit as is seen in Table 3.3.

i £; x 100
1] 99.000000000000000000
2 | —0.010101010101010111
3 | —1.000103071531643038
4 | —1.010102072694119869
5 | —1.010204092701331297
6 | —1.010205144342275242
7 | —1.010205155295680612
8 | —1.010205155410966865
9 | —1.010205155412193141
10 | —1.010205155412206325
11 | —1.010205155412206499
12 | —1.010205155412206499

TABLE 3.3
Values of ¢; in double precision arithmetic when n = 100 and ¢; = 1 — (i/100).

Remark. If Newton’s method is applied to (3.2) starting from the A iterate of the
variable fixing algorithm, then it will generate exactly the same iterates as the variable
fixing algorithm. The equivalence between Newton’s method and the variable fixing
method is based on Theorem 2.5. During the proof of Proposition 3.2, we showed
that the solution xj of the subproblem (3.7) possessed exactly one component Ty
that violated the lower bound constraint xxx > ;. If A; is the multiplier associated
with the constraint in (3.7), then

xl()\k) = mk(/\k) </l <Y

for all ¢+ < k since ¢; is a decreasing function of ¢ by Lemma 3.1. Consequently,
A(Mg) = Biy1, and by Theorem 2.5, Newton’s method produces the same iterate
as the variable fixing method. Hence, Newton’s method has complexity Q(n?) when
applied to (3.2).

4. NAPHEAP. This section develops our algorithm for solving the separable

quadratic knapsack problem (1.3) in the case that d > 0. Assuming L(\) > —oo
(that is, A lies in the domain of L), the set of minimizers X(A) for (2.1) is

X(A) = arg min{L(x,\) : £ <x < u}. (4.1)

Notice that if d; > 0, then the i-th component of x(\) is unique and is given by (2.3).
If d; = 0 and A lies in the interior of the domain of the dual function, then

Iz i a;\ > Yis
X;(\) = arg min {(A\a; —y;)x; 4 <a; <wuib = [Ciyu;] i a A=y,

The interval [¢;,u;] corresponds to the break point A = y;/a;. On either side of the
break point, X;(\) equals either ¢; or w;. Hence, for any d > 0, X(\) is a linear
function of A on the interior of an interval located between break points.

Separable Convex Quadratic Knapsack Problem 15

By [6, Thm. 2.1] or [11], the subdifferential of L can be expressed
L) = [K'(X), L'(A)] (4.2)
where
L'OAT) =min{a™x —b:x € X(\)} and L'(A\7) =max{a'™x —b:xec X(\)}

Since L is concave, it subdifferential is monotone; in particular, if A\; < A9, g1 €
OL(\1), and go € OL(X2), then g1 > go. The generalization of Proposition 2.1 is the
following:

PROPOSITION 4.1. Ifd > 0 and there exists an optimal solution x* of (1.3), then
there exists a maximizer * of the dual function, 0 € OL(*), and x* € X(A*).

Proof. The existence of a maximizer * of the dual function along with the
optimality conditions for A* and x* are well-known properties of a convex optimization
problem (see [19, 25]). O

For any given X and for all sufficiently small € > 0, the sets X(A+¢) and X(\ —¢)
are singletons. We define

X(AT) = lim X(A+¢) and X(A7):= lim X(\+e).

e—0t e—0+t

The following proposition extends Proposition 2.2 to the case d > 0:

ProprOSITION 4.2. Ifd > 0, a > 0, and x* is optimal in (1.3), then for any A
in the domain of L, we have the following:

1. If L'(A\T) > 0, then xf = {; for every i such that X;(A\T) = ¢;.
2. If L'(A\7) <0, then xf = u; for every i such that X;(A\~) = u;.

Proof. Since the proofs of parts 1 and 2 are similar, we only prove part 1. Let
A* maximize L. By Proposition 4.1, 0 € L(*). If L'(AT) > 0, it follows from the
monotonicity of 9L, that A < *.

Case 1. First suppose that A = A* and X;(A") = ¢;. Since 0 € OL(*) =
IL(X\) = [L/(AT), L'(A\7)], we conclude that L'(A\T) < 0. By assumption, L'(AT) > 0.
So it follows that L'(A*) = 0. If d; > 0, then X;(A\) = X;(AT) = ¢;. So since A\ = *,
Xi(A*) = ¢;. And since x* € X(*) by Proposition 4.1, zf = ¢;. If d; = 0, then
since X; (A1) = £;, it follows that Aa; —y; = A*a; —y; > 0. If X*a; —y; > 0, then
xf = X;(\) = 4. I da; —y; = 0, then X;(A) = X;(N*) = [f;,u;]. Since x* is
optimal in (1.3), we have a'x* = b. If 27 > /; and a; > 0, then z} — ¢ > ¢; for
€ > 0 sufficiently small. Hence, x* — ee; € X(*), where e; is the i-th column of
the identity. Since a; > 0, a' (x* — ee;) — b = —ae < 0; it follow from (4.2) that
—ae € OL(N*). This contradicts the fact that OL(*) = [L'(A*T), L'(A*7)] where
L'(A*T) = 0. Consequently, z} = ¢;.

Case 2. Suppose that A < A* and X;(A\T) = ¢;. If d; > 0, then by (2.3),
% < /;. Since a; > 0 and X\ < *, we have

Yi —A'ai Y —Aa
<,
o 4 c

Hence, by (2.3), xf = ¢;. If d; = 0, then since X;(AT) = ¢; and X\ < *, we have
Na;, —y; >Xa; —y; >0

since a; > 0. Again, it follows that X;(A*) = ¢;. O

16

Note that when d = 0, Newton’s method is not defined since L[(A) = 0. On the
other hand, the variable fixing method does make sense when d = 0 since we can set
d; = ¢ > 0in (2.9) and take the limit as ¢ tends to zero to obtain

A — Ziefk aﬂgi.
Eieﬁ. a;
Hence, the variable fixing method can be used to estimate the optimal multiplier
associated with the linear constraint even when d = 0.

The NAPHEAP algorithm has three phases. In the initial phase, we check
whether the problem is feasible, and if it is, then we compute an interval [« 3] contain-
ing an optimal multiplier A*. In the next phase, several iterations of a Newton-type
method are used to shrink our interval [, 5] containing A*. In the final phase, the
monotonic break point searching algorithm is used to find an optimal multiplier A*.

NAPHEAP phase 0. Evaluate the quantities

A:inf{aTX:ESXS u} and B:sup{aszfgxgu}. (4.3)

If b ¢ [A, B], then stop since the problem is infeasible. Otherwise, evaluate the
quantities

amax{yi:diOanduioo},

a;

a;

ﬂ:mln{yldz:()andﬁzz_oo}’

where the maximum and the minimum are defined to be oo and —oo respectively when
the arguments are empty. L is finite on the interval [a,] and A* € [a, §]. Based on
the value of L'(0), and the value of L’(\;) if a starting guess \; is given, the interval
containing A* may be reduced further.

NAPHEAP phase 1. Perform up to K iterations of a Newton-type method
(variable fixing, Newton’s method, or the secant method), updating the interval [, /3]
after each iteration and fixing variables when possible in accordance with Proposition
4.2. Replace Newton’s method by the secant method whenever the current iterate
lies outside the interval containing *.

NAPHEAP phase 2. Arrange the break points A of (2.4) that are contained in
[, B] in a heap. If OL(«) is closer to zero than JL(3), then organize the heap so that
the break points closest to « are at the top of the heap. Otherwise organize the heap
so that the break points closest to 3 are at the top of the heap. March sequentially
through the break points until finding A* for which 0 € OL(*). The solution of (1.3)
is any x* € X(*) for which aTx* = b.

In our code, we employ binary heaps (a tree with two children per node). For a
max heap, the break point associated with any node is greater than or equal to the
break points of the children. The largest break point is the root of the tree. Similarly,
for a min heap, the break point associated with any node is less than or equal to
the break points of the children. The smallest break point is the root of the tree.
Building a heap of size n requires about n comparisons. To update a heap by adding
or deleting a new node takes about log, n comparisons. The running time of phase 0
and phase 1 is O(n) since K is a fixed integer, independent of n. The running time of
the updates in phase 2 is proportional to mlogy n, where m is the number of break
points separating the starting point and A*. For details concerning the construction
and updating of heaps, see [8].

Separable Convex Quadratic Knapsack Problem 17

5. Numerical results. We now investigate the performance of the NAPHEAP
algorithm using the following set of test problems. In these test problems, a statement
of the form C € [A, B] means that C' is randomly chosen from the interval [4, B].

d; € (0,25], a; and y; € [—25,25], ¢; and u; € [—15,15].
a; € [—25,25]; y; € [a; — 5,a; + 5]; d; € [.5lai|, 1.5]a;|]; €, u; € [—15,15].
a; € [—25,25}, Yi = a; + 95, d; = |CLZ'|7 gi, u; € [—15, 15}
a;, =1,y € [—10, 10], di=1,0; =0, u; = 1.
a; € (0,25] NZ,y; € [—10, 10], =1, 0, =0, u; = 1.
d; € (0,25], Yi € [—25,25], a; =1, 4; =0, u; = oco.
d; € (0,1079], y; € [-25,25], a; = 1, £; = 0, u; = 0o.
8. d;=0,y; €[-25,25], a; =1, £; =0, and u; € [0,1].

Problem sets 4, 5, and 6 arise in graph partitioning (see [12, 14]), in multilevel
graph partitioning, and in quadratic resource allocation [1, 2, 9, 17], respectively. b in
the constraint a’x = b was chosen randomly in the interval [A, B] given in (4.3) except
when A = 0 and B = co. In this case, b was chosen randomly in [1,100]. Since similar
results were obtained for all problem dimensions, we focus on problems of dimension
6,250,000 for which the running times were on the order of 0.5 s. NAPHEAP was
programmed in C and the experiments were performed on a Dell Precision T7500
with 96 GB memory and dual six core Intel Xeon Processors (3.46 GZ). Only one
core was used for the experiments.

ootk W

We first investigated the dependence of performance on the number K of Newton-
type iterations. When K is 0, NAPHEAP is simply performing a monotone break
point search starting from either o or 5. As K becomes large, NAPHEAP is simply
performing a Newton-type method. For each value of K, NAPHEAP solves the same
set of 100 randomly generated problems. The CPU times are used to plot performance
profiles. Figure 5.1 shows the plot corresponding to the variable fixing algorithm for
the Newton-type method. The vertical axis gives the fraction P of problems for which
any given method is within a factor 7 of the best time. The percentage of the test
problems for which a method is fastest is given on the left axis of the plot. As 7
tends to infinity, the right side of the plot gives the percentage of the test problems
that were successfully solved by each of the methods. In essence, the right side is a
measure of an algorithm’s robustness. Since the highest curve in a performance plot
corresponds to the method giving the best performance, Figure 5.1 seems to indicate
that K = 4 was the best choice. From K = 0 to K = 4, the performance improves,
while for K =5 and larger, the performance degrades.

The best choices of K are shown in Table 5.1 for each of the problem sets. For
problems in set 6, the monotone break point search by itself was fastest; that is, K =0
was optimal. In these problems, the optimal multiplier was near an extreme break
point (largest or smallest). Hence, the monotone break point search starting from
an end of the interval bracketing the optimal multiplier reached the solution quickly.
A similar situation arises if a good starting guess A; for the optimal multiplier is
provided. In this case, phase 0 of NAPHEAP uses L'(\;) to help determine the
interval [a, 0] containing the optimal multiplier. Typically, either & = Ay or § = Ay,
and phase 2 of NAPHEAP starts from A\; and moves monotonically to the nearby
optimal multiplier.

For problems in sets 1, 2, and 3, the variable fixing algorithm was slightly more
effective than Newton’s method. For problems 4 and 5, Newton’s method was more
effective. Observe that K = 3 or 4 seems most effective with the variable fixing
algorithm, while K = 2 or 3 seems most effective for Newton’s method. Note that

18

Problem 1

Fi1c. 5.1. Performance profile based on time for NAPHEAP and Problem 1. K iterations of the
variable fixing algorithm were performed before switching to the heap-based monotone break point
search.

Problem Variable Fixing Newton’s Method

Number | K min ave max | K min ave max
11 4 0559 0.659 1.280 | 4 0.560 0.687 1.218
21 3 0522 0.560 0.744 | 3 0.523 0.581 0.760
3|1 3 0513 0.540 0.651 | 3 0.533 0.569 0.662
41 4 0422 0449 0499 | 2 0.309 0.350 0.401
5| 4 0458 0.506 0.670 | 3 0.385 0.463 0.858
6| 0 0.257 0.263 0.281 | 2 0.300 0.373 0.417
71 4 0377 0471 0520 | 3 0.298 0.369 0.604
8| 3 0.303 0.347 0.439

TABLE 5.1
The best choice of K in NAPHEAP for each of the 8 test sets. For problem set 8, d = 0 and
Newton’s method could not be applied. The minimum, maximum, and average CPU time in seconds
is shown for 100 randomly generated problems of dimension 6,250,000. The best average time for
each problem set is in bold.

the starting point for Newton’s method was generated by one iteration of the variable
fixing algorithm. Hence, K = 2 or 3 in Newton’s method really amounts to 3 or 4
iterations, the same as the optimal result for the variable fixing method. Although
Table 5.1 indicates that Newton’s method for problem 7 was most effective, it should
be noted that problems in set 7 have small diagonal elements. In this case, it is easy
for Newton iterates to go outside the interval [«, 3], which causes the code to replace
the Newton iterate by a secant iterate. The results for problem 7 essentially show that
a few iterations of the secant method can be very effective, even when the diagonal
elements are nearly 0.

6. Conclusion. We have presented a new hybrid algorithm NAPHEAP for the
continuous quadratic knapsack problem (1.1) where d > 0. The algorithm is based
on maximizing the dual function L in (2.1), and computing the optimal multiplier
associated with the linear constraint. The algorithm is developed in Section 4 where
we are careful to take into account vanishing diagonal elements d;. The algorithm is

Separable Convex Quadratic Knapsack Problem 19

based on an analysis of the break points; that is, points where L’ is either discontinuous
or has a discontinuous derivative. NAPHEAP arranges a subset of the break points
surrounding the optimal multiplier in a heap, and then marches monotonically through
the break points towards the optimal solution. If a good starting guess for the optimal
multiplier is provided or if the optimal multiplier lies near one of the extreme break
points, then the heap-based monotone break point search is very efficient by itself, as
seen in Table 5.1, problem set 6. Otherwise, we observed in Section 5 (see Figure 5.1)
that a good starting guess could be generated using 3 or 4 iterations of a Newton-type
method.
The superior performance of NAPHEAP, when compared to a Newton-type method

by itself, seems to be related to the fact that the operation count per iteration for a
Newton-type method can be Q(n), even when the iterates are very close to the opti-
mum. On the other hand, a heap of size n can be built with about n comparisons,
and it can be updated with about log, n comparisons. When there is a good starting
guess, the heap size can be much smaller than n, and the number of heap updates
can be small. The hybrid algorithm NAPHEAP can be a very efficient approach for
solving the napsack problem (1.1), even in cases where some or all of the diagonal
elements d; are small or vanish.

20

REFERENCES

G. BITRAN AND A. HAX, Disaggregation and resource allocation using convexr knapsack prob-
lems with bounded variables, Manag. Sci., 27 (1981), pp. 431-441.

K. BRETTHAUER AND B. SHETTY, Quadratic resource allocation with generalized upper bounds,
Oper. Res. Lett., 20 (1997), pp. 51-57.

K. BRETTHAUER, B. SHETTY, AND S. Syam, A projection method for the integer quadratic
knapsack problem, J. Oper. Res. Soc., 47 (1996), pp. 457-462.

P. BRUCKER, An O(n) algorithm for quadratic knapsack problems, Oper. Res. Lett., 3 (1984),
pp- 163-166.

P. CALAMAI AND J. MORE, Quasi-Newton updates with bounds, STAM J. Numer. Anal., 24
(1987), pp. 1434-1441.

F. H. CLARKE, Generalized gradients and applications, Trans. Amer. Math. Soc., 205 (1975),
pp. 247-262.

R. CoMINETTI, W. F. MASCARENHAS, AND P. J. S. SiLvA, A Newton’s method for the contin-
uous quadratic knapsack problem, tech. rep., Optimization Online, August, 2012.

T. H. CorMEN, C. E. LEISERSON, R. L. RIVEST, AND C. STEIN, Introduction To Algorithms,
MIT Press, 2009.

S. COSARES AND D. S. HOCHBAUM, Strongly polynomial algorithms for the quadratic transporta-
tion problem with a fized number of sources, Math. Oper. Res., 19 (1994), pp. 94-111.

Y. H. DA1 AND R. FLETCHER, New algorithms for singly linearly constrained quadratic programs
subject to lower and upper bounds, Math. Program., 106 (2006), pp. 403-421.

J. M. DANSKIN, The theory of maz-min and its applications to weapons allocation problems,
Springer-Verlag, New York, 1967.

W. W. HAGER AND J. T. HUNGERFORD, Optimality conditions for mazimizing a function over
a polyhedron, doi: 10.1007/s10107-013-0644-1, Math. Program., (2013).

———, A continuous quadratic programming formulation of the vertex separator problem, Eu-

ropean J. Oper. Res., (2013, submitted).
W. W. HAGER AND Y. KRYLYUK, Graph partitioning and continuous quadratic programming,
SIAM J. Disc. Math., 12 (1999), pp. 500-523.

W. W. HAGER AND H. ZHANG, A new active set algorithm for box constrained optimization,
SIAM J. Optim., 17 (2006), pp. 526-557.

K. HELGASON, J. KENNINGTON, AND H. LALL, A polynomially bounded algorithm for a singly-
constrained quadratic program, Math. Program., 18 (1980), pp. 338-343.

D. HocHBAUM AND S. HONG, About strongly polynomial time algorithms for quadratic opti-
mazation over submodular constraints, Math. Program., 69 (1995), pp. 269-309.

. C. KiwieL, Variable fixing algorithms for the continuous quadratic knapsack problem, J.
Optim. Theory Appl., 136 (2008), pp. 445-458.

. G. LUENBERGER AND Y. YE, Linear and Nonlinear Programming, Springer, Berlin, 2008.

. MacuLaN, C. SANTIAGO, E. MACAMBIRA, AND M. JARDIM, An O(n) algorithm for projecting
a vector on the intersection of a hyperplane and a box in R™, J. Optim. Theory Appl., 117
(2003), pp. 553-574.

C. MICHELOT, A finite algorithm for finding the projection of a point onto the canonical simplex

of R™, J. Optim. Theory Appl., 50 (1986), pp. 195-200.
S. NIELSEN AND S. ZENIOS, Massively parallel algorithms for singly-constrained convex pro-
grams, ORSA J. Comput., 4 (1992), pp. 166-181.
P. M. PARDALOS AND N. KOVOOR, An algorithm for a singly constrained class of quadratic
programs subject to upper and lower bounds, Math. Program., 46 (1990), pp. 321-328.
G. ROBINSON, N. JIANG, AND C. S. LERME, On the continuous quadratic knapsack problem,
Math. Program., 55 (1992), pp. 99-108.

. T. ROCKAFELLAR, Convex analysis, Princeton Univ. Press, 1970.

. SHETTY AND R. MUTHUKRISHNAN, A parallel projection for the multicommodity network

model, J. Oper. Res. Soc., 41 (1990), pp. 837-842.

. SHOR, Minimization methods for mondifferentiable functions, Springer-Verlag, New York,
1985.

J. VENTURA, Computational development of a Lagrangian dual approach for quadratic net-

works, Networks, 21 (1991), pp. 469-485.

Zg =

z W=

