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Abstract of Thesis Presented to the Graduate School 

of the University of Florida in Partial Fulfillment of the 
Requirements for the Degree of Master of Science 

OPTCON: AN ALGORITHM FOR SOLVING UNCONSTRAINED CONTROL 
PROBLEMS 

 
By 

Shuo Li 

May 2006 

Chair:  William W. Hager 
Major Department:  Mathematics 

Recently, Dr. Hager and Hongchao Zhang developed a new optimization 

algorithm-CG_DESCENT. In this project, we show how CG_DESCENT can be used to 

solve unconstrained optimal control problems. The resulting algorithm is called 

OPTCON. 

This numerical work is meaningful, since optimal control applications appear in so 

many fields, such as aerospace, electronic circuits, heat conduction, energy optimization 

and so on. These problems are usually complicated, with a large number of variables, 

parameters and initial values. Therefore, without a good numerical method, we barely can 

solve them by hand. This urges us to search for a fast yet stable method with less memory 

requirement and high accuracy.  

Comparisons with another conjugate gradient method will be provided. 

 



1 

CHAPTER 1 
INTRODUCTION 

Based on the recent research of Dr. William W. Hager and Hongchao Zhang, a new 

conjugate gradient method CG_DESCENT was produced. (See the related paper [1].) 

This method can obtain even higher convergence speed than the ordinary conjugate 

gradient method and has relatively low memory requirement during the computation. In 

this master’s thesis, we will employ the new conjugate gradient method to obtain a new 

method-OPTCON for solving nonlinear optimal control problems.  

1.1 Terminology 

We first define several terms that are used throughout this thesis. Consider an 

unconstrained optimal control problem of the form: 

(1.0.1)   minimize ))(( ftxJ φ=  

(1.0.2)   subject to: )),(),(()( ttutxftx = , ],[ 0 fttt ∈  

(1.0.3)   α=)( 0tx , 

where nxtx R∈)( , )(tx  means x
dt
d , and nctu R∈)( , nxncnxf RRR →×: , and 

RR →nx:φ . 

J  is a function that evaluates the system performance or system cost. (1.0.2) is 

called the system dynamics, which is a group of differential equations for nxtx R∈)( , the 

state variable. The variable )(tu  is the control variable, which is used to optimize the 

system cost. The system has an initial time 0t , and a final time ft . Our numerical work 
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only focuses on problems for which the initial condition (1.0.3) is given. Note that some 

problems have a final condition ( ff xtx =)( ).  

1.2 Overview  

The organization of the thesis is as follows: 

In Chapter 2, we will first provide a study of the numerical technique that we used to 

solve the optimal control problem. Then, we will discover why CG_DESCENT method is 

a good option for the optimization. In Chapter 3, I will introduce a C program called 

OPTCON, which is the software developed for solving the practical problems with the 

new method. Comparison will be made for the performance of this new method relative 

to other conjugate gradient method. In Chapter 4, we will do some numerical experiments 

with the new method by perturbing the parameters in OPTCON to obtain the best 

performance for the sample problems.  
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CHAPTER 2 
OPTIMAL CONTROL PROBLEMS  

2.1 Discrete-time Systems And Runge-Kutta Discretization  

In [2], a Runge-Kutta discretization and its convergence were analized for 

unconstrained control problems. To discretize the unconstrained optimal control problem 

(1.0.1)-(1.0.3), we use the uniform mesh of time interval, which has the length 

N
tt

h f 0−
= , N∈N . Now, if we apply an stages −  Runge-Kutta integration scheme [3] 

with coefficients ija  and ib , sji ≤≤ ,1  to the system dynamics (1.0.2), it becomes:  

(2.1.1)   ∑
=

=′
s

i
kiiik uyfbx

1
),( ,  

where   
h

xx
x kk

k
−

=′ +1 ,  

(2.1.2)   ∑
=

+=
s

j
kjjijki uyfahxy

1
),( , si ≤≤1 , 10 −≤≤ Nk . 

Therefore, the discrete control problem is the following: 

(2.1.3)   minimize )( NxJ φ=  

(2.1.4)   subject to ∑
=

=′
s

i
kiiik uyfbx

1
),( , where α=0x ,  

   ∑
=

+=
s

j
kjjijki uyfahxy

1
),( , si ≤≤1 , 10 −≤≤ Nk .  

Since 
h

xx
x kk

k
−

=′ +1 , Nx  in (2.1.3) is obtained by solving the state equation:  
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(2.1.5)  ∑
=

+ +=
s

i
kiiikk uyfbhxx

1
1 ),( , where ∑

=

+=
s

j
kjjijki uyfahxy

1

),( ,  

   si ≤≤1 , 10 −≤≤ Nk , and α=0x . 

Now, we explain how to compute the gradient of the cost function )( Nxφ  with 

respect to the discrete control. To start we introduce the associated costate equation: 

(2.1.6)   )(   ,),(
1

1 NxN

s

i
kiixiikk xuyfbh φψχψψ ∇=∇+= ∑

=
+  

(2.1.7)   where ∑
=

+ +=
s

j
j

i

ji
ki b

a

1
1 λψχ ,  

(2.1.8)   ),( kjjxjjj uyfhb ∇= χλ .  

As shown in [2],  

(2.1.9)   ),()( kjjujju uyfhbu
kj

∇=∇ χφ . 

Above formulas are employed in our OPTCON to evaluate the function cost and 

function gradient. For our numerical work, we assume the Runge-Kutta scheme is 

explicit. The conditions for the explicit 2nd, 3rd, and 4th order of a Runge-Kutta 

discretization can be found in [2] (Table 1). 

2.2 Numerical Solution Methods  

Analytic solution or accurate solution of optimal control problem is hard to obtain 

due to the complexity of the cost function )(uJ  and the system dynamics )),(),(( ttutxf . 

In most practical problems, numerical optimization method must be used. Basically, the 

flow chart for solving the optimal control problem is the following:  
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Figure 2-1. Flow chart of solving optimal control problems 

There are many methods can be applied in the optimization process. Gradient or 

steepest descent method is one of the oldest and most obvious methods, but experience 

has shown that this method can be extremely slow. Conjugate gradient method such as 

feasible direction method and gradient projection method can be applied to our project. 

We will compare gradient projection method with Dr. Hager and Hongchao Zhang’s 

CG_DESCENT method in Chapter 3. 
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2.3 An Introduction Of CG_DESCENT Method 

CG_DESCENT (refer to [1] and [4]) is a conjugate gradient method for solving an 

unconstrained optimization problem: 

}:)(min{ nRxxf ∈ , 

where RRf n →:  is continuously differentiable. The variable kx satisfies the 

recurrence: kkkk dxx α+=+1 . kα  is the step size and is positive. kd  is called the 

searching direction. It’s generated by the following rule: 

(2.3.1)   .     , 0011 gddgd kkkk −=+−= ++ β  

In CG_DESCENT method, a special choice for the parameter kβ  was developed:  

},max{ kkk B ηβ = , where 
},min{

1

kk
k gd η

η −= , and 

1

2

)2(1
+−= k

T

k
T
k

k
kk

k
T
k

k g
yd

y
dy

yd
B . 

η  is a positive constant and kα  is updated by a line search procedure. It uses secant and 

bisecant steps for faster convergence rate. This procedure will stop as soon as the Wolfe’s  

conditions are satisfied. The Wolfe’s conditions are: 

(2.3.2)   
k

k

α
φαφ

φδ
)0()(

)0(
−

≥′  and )0()( φσαφ ′≥′ k , 

where )()( kk dxf ααφ += . Note that δ  and σ  are positive constants satisfying 

10 <≤< σδ . 

The disadvantage of using the Wolfe’s condition is that when the variable kx  is 

close to the local minimum, the term )0()( φαφ −k  becomes relatively inaccurate. Hence, 

in [1], (2.3.2) is replaced by the approximate Wolfe conditions:  
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(2.3.3)   )0()()0()12( φσαφφδ ′≥′≥′− k ,  

where 1 and 2/10 <≤<< σδδ . This condition will be used only when the function 

value reaches some neighborhood of a local minimum.  

By default, this method will apply approximate Wolfe condition. User can compute 

with the standard Wolfe conditions by setting AWolfe parameter to FALSE in the 

CG_DESCENT parameter file.  

2.4 Applying CG_DESCENT In Optimal Control Problem 

First we initialize the control variable n
kktu 0)}({ = : n

kktuu 000 )}({ == . Then, we update 

the control by kkkk duu α+=+1 , where kα  is the searching step size and kd  is the 

searching direction generated by (2.3.1). The step size kα  is computed with the same 

fashion as in Section 2.3. The updating of the controller will terminate if:  

tolerancegradientxNu  )( ≤∇ φ . 

This method has been implemented in C. The program is called OPTCON.C. 
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CHAPTER 3 
IMPLEMENTATION OF OPTCON 

3.1 Introduction Of OPTCON 

OPTCON is a C program for solving the problems (1.0.1)-(1.0.3). It can be 

downloaded at http://www.math.ufl.edu/~lishuo/optcon.html.  

In OPTCON, we provide the routine that evaluates the gradient )(~ uJ∇  and the 

routine that evaluates the objective cost )(~ uJ . The optimization is performed using Dr. 

Hager and Hongchao Zhang’s CG_DESCENT. The main components of OPTCON are 

shown in Figure 3-1. 

 
Figure 3-1. Main components of OPTCON  

To use this program, user needs to provide a driver code, with the following 

routines: 

• The routine that evaluates ))(( ftxφ  

• The routine that evaluates ))(( ftx
dx
dφ  
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• The routine that evaluates nxRtuxf ∈),,(  

• The routine that evaluates nxnxRtux
x
f ×∈
∂
∂ ),,(  

• The routine that evaluates ncnxRtux
u
f ×∈
∂
∂ ),,(  

How to use OPTCON package and the sample problems can be found in the Appendix A. 

3.2 Comparison Of Performances 

For evaluate the performance of OPTCON, we compare with another code GP.C, 

which uses the gradient projection method [5], with an Armijo rule for step and then 

applies the conjugate gradient method with Polak-Ribiere update of the search direction. 

The source code can be found and downloaded at: 

http://www.math.ufl.edu/~lishuo/optcon.html. 

We compare the performances using problem 1 and problem 2 in the Appendix A. 

Note that in these two codes we apply the same Runge-Kutta scheme, time mesh 

intervals, initial guess, and gradient tolerance. Since problem 2 is solved by penalty 

approach, we also apply the same penalty factor. The results are as follows: 

Table 3-1.  Comparison of performance for problem 1 
Optimization 

method 
Cost evaluation Gradient 

evaluation 
CG iterations CPU time 

CG_DESCENT 32 times 34 times 20 0.11 sec. 
Gradient 

Projection 
170 times 170 times 47 0.24 sec. 

 

Table 3-2.  Comparison of performance for problem 2 
Optimization 

method 
Cost evaluation Gradient evaluation CG iterations CPU time 

CG_DESCENT 2616 times 3379 times 1367 18.00 sec. 
Gradient 

Projection 
25815 times 23947 times 2736 139.00 sec. 



10 

 

It’s clear that OPTCON with the new CG_DESCENT method runs much faster than the 

previous conjugate gradient method. 
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CHAPTER 4 
SURVEY AND ANALYSIS 

This method can perform differently upon different choice of parameters and 

schemes. In this chapter, we will discuss performance relative to the parameters of 

CG_DESCENT and the Runge-Kutta schemes. Note that the sample problems we use in 

this Chapter can be found in Appendix A. 

4.1 Penalty Factor 

Let’s use the problem 2 in Appendix A. We solve this problem by using a penalty 

approach. Since the problem provides the final-time boundary condition: 0)(2 =ftx  and 

)(
)(

1
3

f
f tx

tx µ
= , we try to minimize the terms: 0)(2 −Ntx  and 

)(
)(

1
3

N
N tx

tx µ
− . 

Hence, the target cost function becomes: 

(4.1.1)  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−+−=

)(
)(

)(
                       

)(
)()0)(()(),,,,(~

1
3

2

2

1
3

2
21321

N
N

N
T
k

N
NNN

tx
tx

tx

tx
txPtxPtxtxxxJ

µλ

µθ

,  

where P is the penalty factor. The multiplier vector kλ  is updated by: 

(4.1.2)   
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−+=+

)(
)(

)(
2

1
3

2

1

N
N

N

kk

tx
tx

tx
P µλλ .  

We will recursively apply OPTCON, and update the multiplier vector kλ  in each 

iteration. Now, let’s try different values of penalty factor. Table 4-1 shows the infinity 
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norm of the state error and the total CPU time for different choice of penalty factors. 

Note: we apply time mesh size 500=N , Runge-Kutta scheme 2 (see Table A-1 in 

Appendix A) and 510_ −=tolgrad  for all iterations. 

Table 4-1.  Discrete state error in ∞L  and CPU time with different penalty factors  
Iterations P = 1000 P = 5000 P = 10000 P = 50000 P = 500000 

1 5.87e-003 1.43e-003 7.38e-004 1.52e-004 1.53e-005 
2 1.52e-003 1.35e-004 3.84e-005 1.71e-006 1.76e-008 
3 6.30e-004 1.66e-005 2.51e-006 2.37e-008 2.21e-011 
4 2.59e-004 2.04e-006 1.64e-007 3.39e-010 3.61e-011 
5 1.06e-004 2.49e-007 1.07e-008 1.78e-011 CPU time: 

36 sec. 
6 4.37e-005 3.05e-008 6.56e-010 3.49e-011  
7 1.79e-005 3.66e-009 9.49e-011 CPU time: 

33 sec.  

8 7.37e-006 4.97e-010 2.33e-011   
9 3.03e-006 1.13e-010 2.33e-011   
10 1.24e-006 2.16e-011 CPU time: 

27 sec.   

11 5.11e-007 1.78e-011    
12 2.10e-007 1.78e-011    
13 8.62e-008 CPU time: 

20 sec.    

14 3.53e-008     
15 1.46e-008     
16 5.95e-009     
17 2.41e-009     
18 1.34e-009     
19 4.10e-010     
20 3.71e-010     
21 1.65e-010     
22 1.70e-010     
 CPU time: 

14 sec.     

Greater penalty factor yields faster convergence rate. However, higher convergence 

rate is sacrificed with longer CPU time. Note that when you choose penalty factor P less 

than 1000, this method will not converge. 
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4.2 A Study Of The Gradient Tolerance Factor– c  

For each of (4.1.2) we solve the discrete problem (4.1.1) to level of accuracy using 

CG_DESCENT. The convergence criterion in CG_DESCENT is based on the norm−∞  

of the gradient. The code terminates when this norm−∞  is less than an input parameter 

grad_tol. 

We apply 510_ −=tolgrad  at the first iteration. Then, we compute the error 

∞
− )()( fN txtx , and set 

∞
−⋅= )()(_ fN txtxctolgrad  for the next iteration. Table B-1 

to Table B-9 in Appendix B provide the performance data when we choose different 

value of c. From these data, we obtain: 

Table 4-2.  Performance of OPTCON using different value of gradient tolerance factor 
Factor c CPU time 

∞
− )()( fN txtx  CG iterations 

100,000 Unbounded   
10,000 20.00 sec. 4.47e-011 1693 
1,000 22.00 sec. 6.76e-012 1917 
100 24.00 sec. 2.36e-011 2119 
10 29.00 sec. 2.53e-011 2578 
1 31.00 sec. 2.63e-011 2548 
0.1 35.00 sec. 9.18e-012 2842 
0.01 36.00 sec. 3.17e-011 3053 
0.001 36.00 sec. 3.17e-011 3053 



14 

 

Based on the total CPU time listed in Table 4-2, we obtained Figure 4-1: 

 
Figure 4-1. The relation of gradient tolerance factor c and CPU time 

Comparing the performance with the different value of c, we can conclude that: 

1. Very large c will not work. In this case, when 100000=c  the computation does not 
converge. CPU time ∞→  as 100000≥c . 

2. Choosing smaller c can take longer CPU time. 

3. The largest c such that computation converges provides the best CPU time. 

4.3 A Study of Line Search Parameters 

In the previous computation, we always used an approximate Wolfe line search [1]. 

Now, we will use a combination line search where the ordinary Wolfe conditions are 

used until the function value (4.1.1) average is sufficiently small. Then, we switch to 

approximate Wolfe conditions. To do this, we should set “AWolfe” parameter in 

CG_DESCENT_C.PARM to “FALSE”. See Appendix B, Table B-10 to Table B-17. By 

these data we have: 
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Table 4-3.  Performance of OPTCON using a combination line search conditions 
Factor c CPU time 

∞
− )()( fN txtx  CG iterations 

100,000 Unbounded   
10,000 15.00 sec. 5.17e-011 1279 
1,000 18.00 sec. 2.33e-011 1453 
100 21.00 sec. 2.11e-011 1758 
10 23.00 sec. 2.27e-011 1843 
1 26.00 sec. 4.08e-011 2224 
0.1 29.00 sec. 2.76e-011 2401 
0.01 30.00 sec. 4.25e-011 2406 
0.001 30.00 sec. 4.25e-011 2406 

Comparing the performance of OPTCON using combination line search conditions with 

the previous one, we get the following figure: 

 
Figure 4-2. Comparison of CPU time when applying a combination of 

Wolfe/approximate Wolfe  

It is clear that the performance is improved when we applying a combination line search. 

The best CPU time is 15 seconds, one fourth faster than the previous one.  

4.4 Applying Different Runge-Kutta Schemes 

OPTCON provides 6 optional explicit Runge-Kutta schemes (see Appendix A 

Table A-1). Using different schemes results in different performance. For problem 1 in 
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the Appendix A, the discrete state error in L∞ for different choice of Runge-Kutta 

schemes and different time mesh is shown in Table 4-4: 

Table 4-4.  Discrete state error in ∞L  for test problem 1 and schemes 1-6  
time mesh Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 
N=2000 7.0e-008 8.0e-012 1.5e-008 3.5e-008 6.0e-008 1.4e-013 
N=1000 2.8e-007 6.4e-011 6.1e-008 1.4e-007 2.4e-007 1.6e-013 
N=600 7.8e-007 3.0e-010 1.7e-007 3.9e-007 6.7e-007 5.4e-013 
N=320 2.7e-006 2.0e-009 5.9e-007 1.4e-006 2.4e-006 5.9e-012 
N=160 1.1e-005 1.6e-008 2.4e-006 5.5e-006 9.5e-006 9.6e-011 
N=80 4.4e-005 1.3e-007 9.7e-006 2.2e-005 3.8e-005 1.5e-009 
N=40 1.8e-004 1.1e-006 3.9e-005 8.9e-005 1.6e-004 2.4e-008 

Scheme 6 which has the fourth order of accuracy provides the best discretization error for 

this problem. Notice to obtain error on the order of 810− , we need to take N=2000, 160, 

1000, 2000, 2000, 40 for schemes 1-6 respectively.  

Table 4-5 shows the performance of Runge-Kutta schemes 1-6 applying to the 

problem 2 (Appendix A) with respect to 10000=P  and the corresponding N.  

Table 4-5.  Discrete state error in ∞L  and CPU time for test problem 2 and schemes 1-6  
 Scheme 1 

N=2000 
Scheme 2 
N=160 

Scheme 3 
N=1000 

Scheme 4 
N=2000 

Scheme 5 
N=2000 

Scheme 6 
N=40 

∞
− )()( fN txtx  4.2e-011 7.4e-011 9.3e-012 2.6e-011 2.6e-011 7.6e-012 

CPU time 27.00 sec 6.00 sec 69.00 sec 43.00 sec 65.00 sec 1.00 sec 

It shows that scheme 6 provides the best CPU time. Among the third order schemes 

(schemes 2-5), scheme 2 gives the best performance.  
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APPENDIX A 
HOW TO USE OPTCON 

System Requirement 

OPTCON uses GNU gcc complier, which is available on most UNIX systems. 

Availability of memories for running the program depends on the complexity of the 

problem. Once you run OPTCON, it will first check the availability of your computer 

memory. 

Parameter File and Default Values 

There are two parameter files in OPTCON package. One file is cg_descent_c.parm, 

which is used in CG_DESCENT. The meaning of the parameters and their default values 

can be found in [6]. Another parameter file optcon_c.parm is used in OPTCON 

subroutine. The parameters are the following: 

1. PrintLevel-1 means print the result for each iteration, 0 means no print  

2. PrintFinal-1 means print the final result, 0 means no print  

3. scheme-choice of explicit Runge-Kutta schemes. (There are 6 options of schemes, 
see Table A-1) 0 means user defines his/her own Runge-Kutta scheme. 
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Table A-1.  The six provided Runge-Kutta schemes 
Scheme 1 Scheme 2 
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The default values of OPTCON parameters are: 

Table A-2.  Parameters’ default values in optcon_c.parm 
Parameter’s name Default value 
PrintLevel 0 
PrintFinal 1 
scheme 2 

Running OPTCON 

To run the OPTCON, the user needs to create a driver program, which should be 

placed in the same directory where the OPTCON package stored. I will demonstrate how 

to use OPTCON with the following example.  

Problem 1: (can be found in [1].) 

(A1)   minimize dttxtu∫ +
1

0

22 )(2)(
2
1  

(A2)   subject to 1)0(),()(5.)( =+=′ xtutxtx  
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This problem can be solved with the analytic optimal solution: 

)2(
2)( 32/3

33

ee
eetx t

t

+
+

=∗ ,   
)2(

)(2)( 32/3

33

ee
eetu t

t

+
−

=∗ . 

Now, let )(tx  be denoted by )(1 tx  and 22
12 )()(2)( tutxtx +=′ , by fundamental theorem 

of calculus, the original cost function (A1) is equals to: 

(A3)   minimize [ ])0()1(
2
1

22 xx − . 

Let 0)0(2 =x , we transform the original problem into: 

(A4)   minimize )1(
2
1

2x=φ  

(A5)  subject to 1)0(),()(5.)( 111 =+=′ xtutxtx  

(A6)   0)0(,)()(2)( 2
22

12 =+=′ xtutxtx .  

Now, we create the driver program-driver1.c of the transformed system (A4)-(A6). 

Note that we use the default values of the OPTCON parameters. 
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Figure A-1. Driver1.c  
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Line 9 to 12 defined the number of time mesh intervals-n, number of state variables-nx, 

number of controls-nc and number of stage(s)-ns in the Runge-Kutta scheme. Note that 

the size of the state array is nxnxnsn +××  (see line 29), in which the last nx  elements 

store the final state. Let k
jix ,  be the discrete state, where k is the time level 10 −≤≤ nk , i 

is the component of state nxi ≤≤1 , and j is the stage in Runge-Kutta scheme nsj ≤≤1 . 

We store k
jix ,  in the array state as the following: 

For each fixed j and k, we first increment i from 1 to nx, next we increment j from 1 to ns, 

and finally we increment k from 0 to 1−n . The discrete control k
jiu ,′  ( nci ≤′≤1 ) is 

stored in the control array (defined in line 30) in the same fashion. The user-provide 

routines include: (line 49 to 73 in Figure A-1) 

• double my_phi(double *x_f) – the routine that evaluates the cost function ))(( ftxφ . 
The input is “double *x_f”-a pointer points to the first element of the array x_f 
which contains the final states. Output is a double precision value of cost ))(( ftxφ . 

• void my_dphi(double *dphi, double *x_f) – the routine that evaluates ))(( ftx
dx
dφ . 

“Double *x_f” is input. Output is the array dphi that contains the value of 
nx

f Rtx
dx
d

∈))((φ . 

• void my_f(double *f, double *x, double *u, double time) – the routine that evaluates 
the system dynamic function nxRtuxf ∈),,( . Inputs are: “double *x”-an array 
contains the states x, “double *u”-an array contains the controls u, and “double 
time”-time t. The output is “double *f”-an array contains the value of 

nxRtuxf ∈),,( . 

• void my_fx(double *fx, double *x, double *u, double time) – the routine that 

evaluates nxnxRtux
x
f ×∈
∂
∂ ),,( . “Double *x”, “double *u”, and “double time” are 

inputs. The output is “double *fx”-an array contains the value of 
nxnxRtux

x
f ×∈
∂
∂ ),,( . Note that we store the matrix by rows (line 63-66). 
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• void my_fu(double *fu, double *x, double *u, double time) – the routine that 

evaluates ncnxRtux
u
f ×∈
∂
∂ ),,( . “Double *x”, “double *u”, and “double time” are 

inputs. The output is “double *fu”-an array contains the value of 
ncnxRtux

u
f ×∈
∂
∂ ),,( . Note that we store the matrix by rows (line 70 and 71). 

We applied the provided Runge-Kutta scheme in this example. To provide your 

own Runge-Kutta scheme, you should set the “scheme” parameter to 0 and initialize the a 

and b arrays (line 20) to contain the coefficients of the scheme (as shown in Figure A-2, 

line 20, 21). Note that we store the coefficients of Runge-Kutta matrix A by rows.  

 

Figure A-2. Segment of Driver1.c for the case that user provides Runge-Kutta scheme 
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After calling OPTCON (line 42 in Figure A-1 or line 43 in Figure A-2), we obtain 

the final state (the last nx  elements in the state array) and the discrete optimal control for 

problem 1.  

Now, let’s consider another example, which has both initial conditions and final 

conditions. 

Problem 2: orbit transfer problem (see [7] page 66-68). 

For a constant-thrust rocket with thrust T, operating from time 0 to time ft , we 

want to find an optimal thrust angle history )(tθ  that transfer the rocket from an initial 

given orbit to the largest possible circular orbit. Now, let’s transform it into a 

mathematical model. First, the variables and parameters are given by: 1x -the radius of the 

orbit with an attracting center; 2x -the radial velocity; 3x -the tangential velocity; 0m -the 

mass of the rocket; m -the fuel consumption rate; )(tθ -the history of thrust angle; µ -the 

gravity constant of the attracting center. Then, the model is formulated by: 

(A7)   maximize )(1 ftx ,  

System dynamics:  

(A8)   21 xx =′ , 

(A9)   
tmm

T
xx

x
x

−
+−=′

0
2

11

2
3

2
sinθµ , 

(A10)   
tmm

T
x
xx

x
−

+−=′
01

32
3

cosθ . 

Initial conditions: 

(A11)   ax =)0(1 , 
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(A12)   0)0(2 =x , 

(A13)   
a

x µ
=)0(3 . 

Final conditions: 

(A14)   0)(2 =ftx ,  

(A15)   
)(

)(
1

3
f

f tx
tx µ

= . 

Where, ,336.8 ,106.149 ,/9.12 ,000,10 9
0 NTmadaykgmkgm =×===  

daystsm f 193 and /3273310.1 2320 ==µ .  

Since the final conditions are given, we solve this problem using a penalty 

approach. At step k, the cost function is given by:  

(A16) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−++

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−++−=

)(
)()(                                            

)(
)()()())(),(),((

1
3,22,1

2

1
3

2
21321

N
NkNk

N
NNNNNN

tx
txtx

tx
txPtPxtxtxtxtx

µλλ

µφ
  

with Lagrange multipliers 1λ  and 2λ , and a constant penalty factor P . At step 1+k , 1λ  

and 2λ  are updated by: 

(A17)   )(2 2,11,1 Nkk tPx+=+ λλ , 

(A18)   ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=+ )(

)(2
1

3,21,2
N

Nkk tx
txP µλλ . 

Note that 0,1λ  and 0,2λ  are given. 

By penalty approach, we solve this problem by recursively calling OPTCON, each 
iteration involved in updating the value of 1λ  and 2λ . The program will stop when the 
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value 
)(

)()(
1

32
N

NN tx
txtx µ

−+  is no longer decreasing. Please refer to the driver 

program-driver2.c, which can be found in the OPTCON package. 
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APPENDIX B 
TESTING DATA FOR GRADIENT TOLERANCE FACTOR 

We test different value of gradient tolerance factor c for problem 2 in Appendix A. 

Let’s apply time mesh size 500=N , scheme 2 (see Table A-1 in Appendix A), penalty 

factor 10000=P , and initial 510_ −=tolgrad . 

Using only approximate Wolfe line search conditions in CG_DESCENT, we obtain 

Table B-1 to Table B-9. 

Table B-1.  Performance of OPTCON when gradient tolerance factor 100000=c  
Iteration # 

∞
− )()( fN txtx  CPU time CG iterations 

1 4.54e-004 11.00 sec 1128 
2 7.44e-005 0.00 sec 2 
3 3.80e-005 0.00 sec 6 
4 5.48e-006 1.00 sec 12 
5 9.31e-006 0.00 sec 39 

Not convergent 
 
Table B-2.  Performance of OPTCON when gradient tolerance factor 10000=c  
Iteration # 

∞
− )()( fN txtx  CPU time CG iterations 

1 4.54e-004 12.00 sec 1128 
2 4.24e-005 0.00 sec 22 
3 1.02e-005 0.00 sec 28 
4 5.21e-007 0.00 sec 26 
5 6.42e-008 1.00 sec 66 
6 3.20e-009 1.00 sec 35 
7 4.98e-010 1.00 sec 136 
8 1.06e-010 1.00 sec 60 
9 7.25e-011 1.00 sec 49 
10 2.58e-011 2.00 sec 120 
11 1.50e-011 0.00 sec 4 
12 3.91e-012 1.00 sec 18 
13 4.47e-011 0.00 sec 1 

Total: 20.00 sec 
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Table B-3.  Performance of OPTCON when gradient tolerance factor 1000=c  
Iteration # 

∞
− )()( fN txtx  CPU time CG iterations 

1 4.54e-004 12.00 sec 1128 
2 2.89e-005 0.00 sec 80 
3 2.58e-006 2.00 sec 91 
4 2.42e-007 0.00 sec 82 
5 1.88e-008 2.00 sec 114 
6 1.00e-009 1.00 sec 109 
7 8.39e-011 1.00 sec 97 
8 4.60e-011 3.00 sec 184 
9 1.27e-011 1.00 sec 9 
10 5.80e-012 0.00 sec 7 
11 6.76e-012 0.00 sec 16 

Total: 22.00 sec 
 
Table B-4.  Performance of OPTCON when gradient tolerance factor 100=c  
Iteration # 

∞
− )()( fN txtx  CPU time CG iterations 

1 4.54e-004 11.00 sec 1128 
2 2.95e-005 2.00 sec 133 
3 2.04e-006 2.00 sec 138 
4 1.35e-007 1.00 sec 132 
5 8.95e-009 3.00 sec 288 
6 5.95e-010 3.00 sec 231 
7 7.19e-011 1.00 sec 33 
8 1.10e-011 1.00 sec 21 
9 2.36e-011 0.00 sec 15 

Total: 24.00 sec 
 
Table B-5.  Performance of OPTCON when gradient tolerance factor 10=c  
Iteration # 

∞
− )()( fN txtx  CPU time CG iterations 

1 4.54e-004 12.00 sec 1128 
2 2.96e-005 2.00 sec 172 
3 1.92e-006 2.00 sec 208 
4 1.26e-007 3.00 sec 294 
5 8.19e-009 5.00 sec 410 
6 5.51e-010 2.00 sec 171 
7 8.01e-011 0.00 sec 27 
8 2.03e-011 1.00 sec 51 
9 7.67e-012 1.00 sec 87 
10 2.53e-011 1.00 sec 30 

Total: 29.00 sec 
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Table B-6.  Performance of OPTCON when gradient tolerance factor 1=c  
Iteration # 

∞
− )()( fN txtx  CPU time CG iterations 

1 4.54e-004 12.00 sec 1128 
2 2.96e-005 3.00 sec 246 
3 1.93e-006 4.00 sec 342 
4 1.26e-007 5.00 sec 355 
5 8.25e-009 2.00 sec 175 
6 5.22e-010 2.00 sec 114 
7 3.65e-011 1.00 sec 88 
8 1.09e-011 1.00 sec 97 
9 4.12e-012 1.00 sec 1 
10 2.63e-011 0.00 sec 2 

Total: 31.00 sec 
 
Table B-7.  Performance of OPTCON when gradient tolerance factor 1.0=c  
Iteration # 

∞
− )()( fN txtx  CPU time CG iterations 

1 4.54e-004 12.00 sec 1128 
2 2.96e-005 4.00 sec 350 
3 1.93e-006 5.00 sec 377 
4 1.26e-007 4.00 sec 363 
5 8.17e-009 4.00 sec 258 
6 5.52e-010 2.00 sec 150 
7 9.22e-011 0.00 sec 52 
8 4.66e-011 1.00 sec 37 
9 3.65e-011 2.00 sec 76 
10 1.54e-011 0.00 sec 2 
11 1.32e-011 0.00 sec 10 
12 6.47e-012 1.00 sec 19 
13 9.18e-012 0.00 sec 20 

Total: 35.00 sec 
 
Table B-8.  Performance of OPTCON when gradient tolerance factor 01.0=c  
Iteration # 

∞
− )()( fN txtx  CPU time CG iterations 

1 4.54e-004 11.00 sec 1128 
2 2.96e-005 6.00 sec 441 
3 1.93e-006 4.00 sec 404 
4 1.26e-007 4.00 sec 327 
5 8.21e-009 5.00 sec 378 
6 5.16e-010 3.00 sec 200 
7 7.05e-011 0.00 sec 48 
8 2.31e-011 2.00 sec 104 
9 3.17e-011 1.00 sec 23 

Total: 36.00 sec 
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Table B-9.  Performance of OPTCON when gradient tolerance factor 001.0=c  
Iteration # 

∞
− )()( fN txtx  CPU time CG iterations 

1 4.54e-004 11.00 sec 1128 
2 2.96e-005 5.00 sec 441 
3 1.93e-006 5.00 sec 404 
4 1.26e-007 4.00 sec 327 
5 8.21e-009 5.00 sec 378 
6 5.16e-010 3.00 sec 200 
7 7.05e-011 0.00 sec 48 
8 2.31e-011 2.00 sec 104 
9 3.17e-011 1.00 sec 23 

Total: 36.00 sec 

Using a combination of Wolfe and approximate Wolfe line search conditions in 

CG_DESCENT, we obtain Table B-10 to Table B-17. 

Table B-10.  Performance of OPTCON using a combination line search, 10000=c  
Iteration # 

∞
− )()( fN txtx  CPU time CG iterations 

1 4.54e-004 8.00 sec 807 
2 4.25e-005 0.00 sec 22 
3 1.00e-005 1.00 sec 31 
4 8.34e-007 0.00 sec 26 
5 5.21e-008 1.00 sec 48 
6 1.58e-008 1.00 sec 59 
7 1.99e-010 0.00 sec 51 
8 6.55e-011 2.00 sec 138 
9 4.86e-011 1.00 sec 74 
10 4.79e-011 0.00 sec 3 
11 5.17e-011 1.00 sec 20 

Total: 15.00 sec 
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Table B-11.  Performance of OPTCON using a combination line search, 1000=c  
Iteration # 

∞
− )()( fN txtx  CPU time CG iterations 

1 4.54e-004 8.00 sec 807 
2 2.82e-005 1.00 sec 71 
3 3.36e-006 1.00 sec 79 
4 1.15e-007 1.00 sec 60 
5 9.48e-009 2.00 sec 132 
6 8.46e-010 1.00 sec 95 
7 4.25e-011 2.00 sec 114 
8 2.35e-011 0.00 sec 34 
9 1.70e-011 1.00 sec 15 
10 2.33e-011 1.00 sec 46 

Total: 18.00 sec 
 
Table B-12.  Performance of OPTCON using a combination line search, 100=c  
Iteration # 

∞
− )()( fN txtx  CPU time CG iterations 

1 4.54e-004 8.00 sec 807 
2 2.97e-005 1.00 sec 138 
3 1.83e-006 2.00 sec 140 
4 1.26e-007 1.00 sec 129 
5 7.74e-009 4.00 sec 314 
6 4.82e-010 1.00 sec 82 
7 6.55e-011 1.00 sec 50 
8 9.31e-012 1.00 sec 83 
9 2.11e-011 1.00 sec 15 

Total: 21.00 sec 
 
Table B-13.  Performance of OPTCON using a combination line search, 10=c  
Iteration # 

∞
− )()( fN txtx  CPU time CG iterations 

1 4.54e-004 8.00 sec 807 
2 2.96e-005 2.00 sec 181 
3 1.92e-006 2.00 sec 184 
4 1.26e-007 3.00 sec 234 
5 8.23e-009 3.00 sec 250 
6 5.04e-010 2.00 sec 139 
7 6.21e-011 1.00 sec 28 
8 6.92e-012 0.00 sec 17 
9 2.27e-011 1.00 sec 3 

Total: 23.00 sec 
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Table B-14.  Performance of OPTCON using a combination line search, 1=c  
Iteration # 

∞
− )()( fN txtx  CPU time CG iterations 

1 4.54e-004 8.00 sec 807 
2 2.96e-005 2.00 sec 233 
3 1.93e-006 4.00 sec 306 
4 1.26e-007 4.00 sec 373 
5 8.19e-009 3.00 sec 240 
6 5.62e-010 3.00 sec 180 
7 3.74e-011 1.00 sec 80 
8 4.08e-011 1.00 sec 5 

Total: 26.00 sec 
 
 
Table B-15.  Performance of OPTCON using a combination line search, 1.0=c  
Iteration # 

∞
− )()( fN txtx  CPU time CG iterations 

1 4.54e-004 8.00 sec 807 
2 2.96e-005 4.00 sec 358 
3 1.93e-006 5.00 sec 368 
4 1.26e-007 3.00 sec 275 
5 8.23e-009 3.00 sec 237 
6 5.32e-010 3.00 sec 165 
7 4.86e-011 0.00 sec 44 
8 1.68e-011 2.00 sec 97 
9 1.52e-011 0.00 sec 5 
10 2.76e-011 1.00 sec 45 

Total: 29.00 sec 
 
 
Table B-16.  Performance of OPTCON using a combination line search, 01.0=c  
Iteration # 

∞
− )()( fN txtx  CPU time CG iterations 

1 4.54e-004 8.00 sec 807 
2 2.96e-005 6.00 sec 432 
3 1.93e-006 5.00 sec 354 
4 1.26e-007 3.00 sec 260 
5 8.20e-009 4.00 sec 320 
6 5.40e-010 2.00 sec 132 
7 3.97e-011 1.00 sec 55 
8 2.51e-011 1.00 sec 20 
9 4.25e-011 0.00 sec 26 

Total: 30.00 sec 
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Table B-17.  Performance of OPTCON using a combination line search, 001.0=c  
Iteration # 

∞
− )()( fN txtx  CPU time CG iterations 

1 4.54e-004 8.00 sec 807 
2 2.96e-005 6.00 sec 432 
3 1.93e-006 4.00 sec 354 
4 1.26e-007 4.00 sec 260 
5 8.20e-009 4.00 sec 320 
6 5.40e-010 2.00 sec 132 
7 3.97e-011 1.00 sec 55 
8 2.51e-011 1.00 sec 20 
9 4.25e-011 0.00 sec 26 

Total: 30.00 sec 
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