

OPTCON: AN ALGORITHM FOR SOLVING UNCONSTRAINED CONTROL

PROBLEMS

By

SHUO LI

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2006

Copyright 2006

by

Shuo Li

To my wonderful parents Zhanwu Li and Peirong Zheng.

iv

ACKNOWLEDGMENTS

I express my sincere gratitude to Dr. William W. Hager for his trust,

encouragement, guidance, and support (without which this work could not have been

completed). I would also like to thank Dr. Moskow and Dr. Jay for agreeing to serve on

my committee.

I thank the Department of Mathematics for the financial support during the course

of my studies.

Special thanks go to my parents, who have been working very hard in their careers

to enable me to study overseas. They have always given their loving support for my

studies. I would like to thank my lovely husband who provided me with endless love and

support while I was writing this thesis.

I would like to thank my friends Hongchao, Sukanya, and Beyza for their

encouragement and support during this project.

v

TABLE OF CONTENTS

 page

ACKNOWLEDGMENTS ... iv

LIST OF TABLES.. vii

LIST OF FIGURES ... ix

ABSTRACT...x

CHAPTER

1 INTRODUCTION ..1

1.1 Terminology ...1
1.2 Overview...2

2 SOLVE OPTIMAL CONTROL PROBLEMS...3

2.1 Discrete-time Systems And Runge-Kutta Discretization3
2.2 Numerical Solution Methods..4
2.3 An Introduction Of CG_DESCENT Method ...6
2.4 Appling CG_DESCENT In Optimal Control Problem ..7

3 IMPLEMENTATION OF OPTCON ...8

3.1 Introduction Of OPTCON ..8
3.2 Comparison Of Performances...9

4 SURVEY AND ANALYSIS..11

4.1 Penalty Factor ...11
4.2 A Study Of The Gradient Tolerance Factor– c ..13
4.3 A Survey Of AWolfe Parameter...14
4.4 Appling Different Runge-Kutta Schemes...15

APPENDIX

A HOW TO USE OPTCON...17

System Requirement...17

vi

Parameter File and Default Values ...17
Running OPTCON..18

B TESTING DATA FOR GRADIENT TOLERANCE FACTOR................................26

LIST OF REFERENCES...33

vii

LIST OF TABLES

Table page

3-1 Comparison of performance for problem 1..9

3-2 Comparison of performance for problem 2..9

4-1 Discrete state error in ∞L and CPU time with different penalty factors..................12

4-2 Performance of OPTCON using different value of gradient tolerance factor..........13

4-3 Performance of OPTCON using a combination line search conditions...................15

4-4 Discrete state error in ∞L for test problem 1 and schemes 1-6................................16

4-5 Discrete state error in ∞L and CPU time for test problem 2 and schemes 1-616

A-1 The six provided Runge-Kutta schemes...18

A-2 Parameters’ default values in optcon_c.parm ..18

B-1 Performance of OPTCON when gradient tolerance factor 100000=c26

B-2 Performance of OPTCON when gradient tolerance factor 10000=c26

B-3 Performance of OPTCON when gradient tolerance factor 1000=c27

B-4 Performance of OPTCON when gradient tolerance factor 100=c27

B-5 Performance of OPTCON when gradient tolerance factor 10=c27

B-6 Performance of OPTCON when gradient tolerance factor 1=c28

B-7 Performance of OPTCON when gradient tolerance factor 1.0=c28

B-8 Performance of OPTCON when gradient tolerance factor 01.0=c28

B-9 Performance of OPTCON when gradient tolerance factor 001.0=c29

B-10 Performance of OPTCON using a combination line search, 10000=c29

B-11 Performance of OPTCON using a combination line search, 1000=c30

viii

B-12 Performance of OPTCON using a combination line search, 100=c30

B-13 Performance of OPTCON using a combination line search, 10=c30

B-14 Performance of OPTCON using a combination line search, 1=c31

B-15 Performance of OPTCON using a combination line search, 1.0=c31

B-16 Performance of OPTCON using a combination line search, 01.0=c31

B-17 Performance of OPTCON using a combination line search, 001.0=c32

ix

LIST OF FIGURES

Figure page

1-1. Flow chart of solving optimization problem ..5

3-1. Main components of OPTCON ..8

4-1. The relation of gradient tolerance factor c and CPU time..14

4-2. Comparison of CPU time when applying a combination of Wolfe/approximate
Wolfe ..15

A-1. Driver1.c ..20

A-2. Segment of Driver1.c for the case that user provides Runge-Kutta scheme22

 x

Abstract of Thesis Presented to the Graduate School

of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

OPTCON: AN ALGORITHM FOR SOLVING UNCONSTRAINED CONTROL
PROBLEMS

By

Shuo Li

May 2006

Chair: William W. Hager
Major Department: Mathematics

Recently, Dr. Hager and Hongchao Zhang developed a new optimization

algorithm-CG_DESCENT. In this project, we show how CG_DESCENT can be used to

solve unconstrained optimal control problems. The resulting algorithm is called

OPTCON.

This numerical work is meaningful, since optimal control applications appear in so

many fields, such as aerospace, electronic circuits, heat conduction, energy optimization

and so on. These problems are usually complicated, with a large number of variables,

parameters and initial values. Therefore, without a good numerical method, we barely can

solve them by hand. This urges us to search for a fast yet stable method with less memory

requirement and high accuracy.

Comparisons with another conjugate gradient method will be provided.

1

CHAPTER 1
INTRODUCTION

Based on the recent research of Dr. William W. Hager and Hongchao Zhang, a new

conjugate gradient method CG_DESCENT was produced. (See the related paper [1].)

This method can obtain even higher convergence speed than the ordinary conjugate

gradient method and has relatively low memory requirement during the computation. In

this master’s thesis, we will employ the new conjugate gradient method to obtain a new

method-OPTCON for solving nonlinear optimal control problems.

1.1 Terminology

We first define several terms that are used throughout this thesis. Consider an

unconstrained optimal control problem of the form:

(1.0.1) minimize))((ftxJ φ=

(1.0.2) subject to:)),(),(()(ttutxftx = ,],[0 fttt ∈

(1.0.3) α=)(0tx ,

where nxtx R∈)(,)(tx means x
dt
d , and nctu R∈)(, nxncnxf RRR →×: , and

RR →nx:φ .

J is a function that evaluates the system performance or system cost. (1.0.2) is

called the system dynamics, which is a group of differential equations for nxtx R∈)(, the

state variable. The variable)(tu is the control variable, which is used to optimize the

system cost. The system has an initial time 0t , and a final time ft . Our numerical work

2

only focuses on problems for which the initial condition (1.0.3) is given. Note that some

problems have a final condition (ff xtx =)().

1.2 Overview

The organization of the thesis is as follows:

In Chapter 2, we will first provide a study of the numerical technique that we used to

solve the optimal control problem. Then, we will discover why CG_DESCENT method is

a good option for the optimization. In Chapter 3, I will introduce a C program called

OPTCON, which is the software developed for solving the practical problems with the

new method. Comparison will be made for the performance of this new method relative

to other conjugate gradient method. In Chapter 4, we will do some numerical experiments

with the new method by perturbing the parameters in OPTCON to obtain the best

performance for the sample problems.

3

CHAPTER 2
OPTIMAL CONTROL PROBLEMS

2.1 Discrete-time Systems And Runge-Kutta Discretization

In [2], a Runge-Kutta discretization and its convergence were analized for

unconstrained control problems. To discretize the unconstrained optimal control problem

(1.0.1)-(1.0.3), we use the uniform mesh of time interval, which has the length

N
tt

h f 0−
= , N∈N . Now, if we apply an stages − Runge-Kutta integration scheme [3]

with coefficients ija and ib , sji ≤≤ ,1 to the system dynamics (1.0.2), it becomes:

(2.1.1) ∑
=

=′
s

i
kiiik uyfbx

1
),(,

where
h

xx
x kk

k
−

=′ +1 ,

(2.1.2) ∑
=

+=
s

j
kjjijki uyfahxy

1
),(, si ≤≤1 , 10 −≤≤ Nk .

Therefore, the discrete control problem is the following:

(2.1.3) minimize)(NxJ φ=

(2.1.4) subject to ∑
=

=′
s

i
kiiik uyfbx

1
),(, where α=0x ,

 ∑
=

+=
s

j
kjjijki uyfahxy

1
),(, si ≤≤1 , 10 −≤≤ Nk .

Since
h

xx
x kk

k
−

=′ +1 , Nx in (2.1.3) is obtained by solving the state equation:

4

(2.1.5) ∑
=

+ +=
s

i
kiiikk uyfbhxx

1
1),(, where ∑

=

+=
s

j
kjjijki uyfahxy

1

),(,

 si ≤≤1 , 10 −≤≤ Nk , and α=0x .

Now, we explain how to compute the gradient of the cost function)(Nxφ with

respect to the discrete control. To start we introduce the associated costate equation:

(2.1.6))(,),(
1

1 NxN

s

i
kiixiikk xuyfbh φψχψψ ∇=∇+= ∑

=
+

(2.1.7) where ∑
=

+ +=
s

j
j

i

ji
ki b

a

1
1 λψχ ,

(2.1.8)),(kjjxjjj uyfhb ∇= χλ .

As shown in [2],

(2.1.9)),()(kjjujju uyfhbu
kj

∇=∇ χφ .

Above formulas are employed in our OPTCON to evaluate the function cost and

function gradient. For our numerical work, we assume the Runge-Kutta scheme is

explicit. The conditions for the explicit 2nd, 3rd, and 4th order of a Runge-Kutta

discretization can be found in [2] (Table 1).

2.2 Numerical Solution Methods

Analytic solution or accurate solution of optimal control problem is hard to obtain

due to the complexity of the cost function)(uJ and the system dynamics)),(),((ttutxf .

In most practical problems, numerical optimization method must be used. Basically, the

flow chart for solving the optimal control problem is the following:

5

Figure 2-1. Flow chart of solving optimal control problems

There are many methods can be applied in the optimization process. Gradient or

steepest descent method is one of the oldest and most obvious methods, but experience

has shown that this method can be extremely slow. Conjugate gradient method such as

feasible direction method and gradient projection method can be applied to our project.

We will compare gradient projection method with Dr. Hager and Hongchao Zhang’s

CG_DESCENT method in Chapter 3.

6

2.3 An Introduction Of CG_DESCENT Method

CG_DESCENT (refer to [1] and [4]) is a conjugate gradient method for solving an

unconstrained optimization problem:

}:)(min{ nRxxf ∈ ,

where RRf n →: is continuously differentiable. The variable kx satisfies the

recurrence: kkkk dxx α+=+1 . kα is the step size and is positive. kd is called the

searching direction. It’s generated by the following rule:

(2.3.1) . , 0011 gddgd kkkk −=+−= ++ β

In CG_DESCENT method, a special choice for the parameter kβ was developed:

},max{ kkk B ηβ = , where
},min{

1

kk
k gd η

η −= , and

1

2

)2(1
+−= k

T

k
T
k

k
kk

k
T
k

k g
yd

y
dy

yd
B .

η is a positive constant and kα is updated by a line search procedure. It uses secant and

bisecant steps for faster convergence rate. This procedure will stop as soon as the Wolfe’s

conditions are satisfied. The Wolfe’s conditions are:

(2.3.2)
k

k

α
φαφ

φδ
)0()(

)0(
−

≥′ and)0()(φσαφ ′≥′ k ,

where)()(kk dxf ααφ += . Note that δ and σ are positive constants satisfying

10 <≤< σδ .

The disadvantage of using the Wolfe’s condition is that when the variable kx is

close to the local minimum, the term)0()(φαφ −k becomes relatively inaccurate. Hence,

in [1], (2.3.2) is replaced by the approximate Wolfe conditions:

7

(2.3.3))0()()0()12(φσαφφδ ′≥′≥′− k ,

where 1 and 2/10 <≤<< σδδ . This condition will be used only when the function

value reaches some neighborhood of a local minimum.

By default, this method will apply approximate Wolfe condition. User can compute

with the standard Wolfe conditions by setting AWolfe parameter to FALSE in the

CG_DESCENT parameter file.

2.4 Applying CG_DESCENT In Optimal Control Problem

First we initialize the control variable n
kktu 0)}({ = : n

kktuu 000)}({ == . Then, we update

the control by kkkk duu α+=+1 , where kα is the searching step size and kd is the

searching direction generated by (2.3.1). The step size kα is computed with the same

fashion as in Section 2.3. The updating of the controller will terminate if:

tolerancegradientxNu)(≤∇ φ .

This method has been implemented in C. The program is called OPTCON.C.

8

CHAPTER 3
IMPLEMENTATION OF OPTCON

3.1 Introduction Of OPTCON

OPTCON is a C program for solving the problems (1.0.1)-(1.0.3). It can be

downloaded at http://www.math.ufl.edu/~lishuo/optcon.html.

In OPTCON, we provide the routine that evaluates the gradient)(~ uJ∇ and the

routine that evaluates the objective cost)(~ uJ . The optimization is performed using Dr.

Hager and Hongchao Zhang’s CG_DESCENT. The main components of OPTCON are

shown in Figure 3-1.

Figure 3-1. Main components of OPTCON

To use this program, user needs to provide a driver code, with the following

routines:

• The routine that evaluates))((ftxφ

• The routine that evaluates))((ftx
dx
dφ

9

• The routine that evaluates nxRtuxf ∈),,(

• The routine that evaluates nxnxRtux
x
f ×∈
∂
∂),,(

• The routine that evaluates ncnxRtux
u
f ×∈
∂
∂),,(

How to use OPTCON package and the sample problems can be found in the Appendix A.

3.2 Comparison Of Performances

For evaluate the performance of OPTCON, we compare with another code GP.C,

which uses the gradient projection method [5], with an Armijo rule for step and then

applies the conjugate gradient method with Polak-Ribiere update of the search direction.

The source code can be found and downloaded at:

http://www.math.ufl.edu/~lishuo/optcon.html.

We compare the performances using problem 1 and problem 2 in the Appendix A.

Note that in these two codes we apply the same Runge-Kutta scheme, time mesh

intervals, initial guess, and gradient tolerance. Since problem 2 is solved by penalty

approach, we also apply the same penalty factor. The results are as follows:

Table 3-1. Comparison of performance for problem 1
Optimization

method
Cost evaluation Gradient

evaluation
CG iterations CPU time

CG_DESCENT 32 times 34 times 20 0.11 sec.
Gradient

Projection
170 times 170 times 47 0.24 sec.

Table 3-2. Comparison of performance for problem 2
Optimization

method
Cost evaluation Gradient evaluation CG iterations CPU time

CG_DESCENT 2616 times 3379 times 1367 18.00 sec.
Gradient

Projection
25815 times 23947 times 2736 139.00 sec.

10

It’s clear that OPTCON with the new CG_DESCENT method runs much faster than the

previous conjugate gradient method.

11

CHAPTER 4
SURVEY AND ANALYSIS

This method can perform differently upon different choice of parameters and

schemes. In this chapter, we will discuss performance relative to the parameters of

CG_DESCENT and the Runge-Kutta schemes. Note that the sample problems we use in

this Chapter can be found in Appendix A.

4.1 Penalty Factor

Let’s use the problem 2 in Appendix A. We solve this problem by using a penalty

approach. Since the problem provides the final-time boundary condition: 0)(2 =ftx and

)(
)(

1
3

f
f tx

tx µ
= , we try to minimize the terms: 0)(2 −Ntx and

)(
)(

1
3

N
N tx

tx µ
− .

Hence, the target cost function becomes:

(4.1.1)

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−+−=

)(
)(

)(

)(
)()0)(()(),,,,(~

1
3

2

2

1
3

2
21321

N
N

N
T
k

N
NNN

tx
tx

tx

tx
txPtxPtxtxxxJ

µλ

µθ

,

where P is the penalty factor. The multiplier vector kλ is updated by:

(4.1.2)
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−+=+

)(
)(

)(
2

1
3

2

1

N
N

N

kk

tx
tx

tx
P µλλ .

We will recursively apply OPTCON, and update the multiplier vector kλ in each

iteration. Now, let’s try different values of penalty factor. Table 4-1 shows the infinity

12

norm of the state error and the total CPU time for different choice of penalty factors.

Note: we apply time mesh size 500=N , Runge-Kutta scheme 2 (see Table A-1 in

Appendix A) and 510_ −=tolgrad for all iterations.

Table 4-1. Discrete state error in ∞L and CPU time with different penalty factors
Iterations P = 1000 P = 5000 P = 10000 P = 50000 P = 500000

1 5.87e-003 1.43e-003 7.38e-004 1.52e-004 1.53e-005
2 1.52e-003 1.35e-004 3.84e-005 1.71e-006 1.76e-008
3 6.30e-004 1.66e-005 2.51e-006 2.37e-008 2.21e-011
4 2.59e-004 2.04e-006 1.64e-007 3.39e-010 3.61e-011
5 1.06e-004 2.49e-007 1.07e-008 1.78e-011 CPU time:

36 sec.
6 4.37e-005 3.05e-008 6.56e-010 3.49e-011
7 1.79e-005 3.66e-009 9.49e-011 CPU time:

33 sec.

8 7.37e-006 4.97e-010 2.33e-011
9 3.03e-006 1.13e-010 2.33e-011
10 1.24e-006 2.16e-011 CPU time:

27 sec.

11 5.11e-007 1.78e-011
12 2.10e-007 1.78e-011
13 8.62e-008 CPU time:

20 sec.

14 3.53e-008
15 1.46e-008
16 5.95e-009
17 2.41e-009
18 1.34e-009
19 4.10e-010
20 3.71e-010
21 1.65e-010
22 1.70e-010
 CPU time:

14 sec.

Greater penalty factor yields faster convergence rate. However, higher convergence

rate is sacrificed with longer CPU time. Note that when you choose penalty factor P less

than 1000, this method will not converge.

13

4.2 A Study Of The Gradient Tolerance Factor– c

For each of (4.1.2) we solve the discrete problem (4.1.1) to level of accuracy using

CG_DESCENT. The convergence criterion in CG_DESCENT is based on the norm−∞

of the gradient. The code terminates when this norm−∞ is less than an input parameter

grad_tol.

We apply 510_ −=tolgrad at the first iteration. Then, we compute the error

∞
−)()(fN txtx , and set

∞
−⋅=)()(_ fN txtxctolgrad for the next iteration. Table B-1

to Table B-9 in Appendix B provide the performance data when we choose different

value of c. From these data, we obtain:

Table 4-2. Performance of OPTCON using different value of gradient tolerance factor
Factor c CPU time

∞
−)()(fN txtx CG iterations

100,000 Unbounded
10,000 20.00 sec. 4.47e-011 1693
1,000 22.00 sec. 6.76e-012 1917
100 24.00 sec. 2.36e-011 2119
10 29.00 sec. 2.53e-011 2578
1 31.00 sec. 2.63e-011 2548
0.1 35.00 sec. 9.18e-012 2842
0.01 36.00 sec. 3.17e-011 3053
0.001 36.00 sec. 3.17e-011 3053

14

Based on the total CPU time listed in Table 4-2, we obtained Figure 4-1:

Figure 4-1. The relation of gradient tolerance factor c and CPU time

Comparing the performance with the different value of c, we can conclude that:

1. Very large c will not work. In this case, when 100000=c the computation does not
converge. CPU time ∞→ as 100000≥c .

2. Choosing smaller c can take longer CPU time.

3. The largest c such that computation converges provides the best CPU time.

4.3 A Study of Line Search Parameters

In the previous computation, we always used an approximate Wolfe line search [1].

Now, we will use a combination line search where the ordinary Wolfe conditions are

used until the function value (4.1.1) average is sufficiently small. Then, we switch to

approximate Wolfe conditions. To do this, we should set “AWolfe” parameter in

CG_DESCENT_C.PARM to “FALSE”. See Appendix B, Table B-10 to Table B-17. By

these data we have:

15

Table 4-3. Performance of OPTCON using a combination line search conditions
Factor c CPU time

∞
−)()(fN txtx CG iterations

100,000 Unbounded
10,000 15.00 sec. 5.17e-011 1279
1,000 18.00 sec. 2.33e-011 1453
100 21.00 sec. 2.11e-011 1758
10 23.00 sec. 2.27e-011 1843
1 26.00 sec. 4.08e-011 2224
0.1 29.00 sec. 2.76e-011 2401
0.01 30.00 sec. 4.25e-011 2406
0.001 30.00 sec. 4.25e-011 2406

Comparing the performance of OPTCON using combination line search conditions with

the previous one, we get the following figure:

Figure 4-2. Comparison of CPU time when applying a combination of

Wolfe/approximate Wolfe

It is clear that the performance is improved when we applying a combination line search.

The best CPU time is 15 seconds, one fourth faster than the previous one.

4.4 Applying Different Runge-Kutta Schemes

OPTCON provides 6 optional explicit Runge-Kutta schemes (see Appendix A

Table A-1). Using different schemes results in different performance. For problem 1 in

16

the Appendix A, the discrete state error in L∞ for different choice of Runge-Kutta

schemes and different time mesh is shown in Table 4-4:

Table 4-4. Discrete state error in ∞L for test problem 1 and schemes 1-6
time mesh Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6
N=2000 7.0e-008 8.0e-012 1.5e-008 3.5e-008 6.0e-008 1.4e-013
N=1000 2.8e-007 6.4e-011 6.1e-008 1.4e-007 2.4e-007 1.6e-013
N=600 7.8e-007 3.0e-010 1.7e-007 3.9e-007 6.7e-007 5.4e-013
N=320 2.7e-006 2.0e-009 5.9e-007 1.4e-006 2.4e-006 5.9e-012
N=160 1.1e-005 1.6e-008 2.4e-006 5.5e-006 9.5e-006 9.6e-011
N=80 4.4e-005 1.3e-007 9.7e-006 2.2e-005 3.8e-005 1.5e-009
N=40 1.8e-004 1.1e-006 3.9e-005 8.9e-005 1.6e-004 2.4e-008

Scheme 6 which has the fourth order of accuracy provides the best discretization error for

this problem. Notice to obtain error on the order of 810− , we need to take N=2000, 160,

1000, 2000, 2000, 40 for schemes 1-6 respectively.

Table 4-5 shows the performance of Runge-Kutta schemes 1-6 applying to the

problem 2 (Appendix A) with respect to 10000=P and the corresponding N.

Table 4-5. Discrete state error in ∞L and CPU time for test problem 2 and schemes 1-6
 Scheme 1

N=2000
Scheme 2
N=160

Scheme 3
N=1000

Scheme 4
N=2000

Scheme 5
N=2000

Scheme 6
N=40

∞
−)()(fN txtx 4.2e-011 7.4e-011 9.3e-012 2.6e-011 2.6e-011 7.6e-012

CPU time 27.00 sec 6.00 sec 69.00 sec 43.00 sec 65.00 sec 1.00 sec

It shows that scheme 6 provides the best CPU time. Among the third order schemes

(schemes 2-5), scheme 2 gives the best performance.

17

APPENDIX A
HOW TO USE OPTCON

System Requirement

OPTCON uses GNU gcc complier, which is available on most UNIX systems.

Availability of memories for running the program depends on the complexity of the

problem. Once you run OPTCON, it will first check the availability of your computer

memory.

Parameter File and Default Values

There are two parameter files in OPTCON package. One file is cg_descent_c.parm,

which is used in CG_DESCENT. The meaning of the parameters and their default values

can be found in [6]. Another parameter file optcon_c.parm is used in OPTCON

subroutine. The parameters are the following:

1. PrintLevel-1 means print the result for each iteration, 0 means no print

2. PrintFinal-1 means print the final result, 0 means no print

3. scheme-choice of explicit Runge-Kutta schemes. (There are 6 options of schemes,
see Table A-1) 0 means user defines his/her own Runge-Kutta scheme.

18

Table A-1. The six provided Runge-Kutta schemes
Scheme 1 Scheme 2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

2/1
2/1

 ,
01
00

bA

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

6/1
3/2
6/1

 ,
021
002/1
000

bA

Scheme 3 Scheme 4

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

9/4
3/1
9/2

 ,
04/30
002/1
000

bA
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

3/1
3/1
3/1

 ,
02/12/1
002/1
000

bA

Scheme 5 Scheme 6

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

3/2
6/1
6/1

 ,
04/14/1
001
000

bA

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

6/1
3/1
3/1
6/1

 ,

0100
002/10
0002/1
0000

bA

The default values of OPTCON parameters are:

Table A-2. Parameters’ default values in optcon_c.parm
Parameter’s name Default value
PrintLevel 0
PrintFinal 1
scheme 2

Running OPTCON

To run the OPTCON, the user needs to create a driver program, which should be

placed in the same directory where the OPTCON package stored. I will demonstrate how

to use OPTCON with the following example.

Problem 1: (can be found in [1].)

(A1) minimize dttxtu∫ +
1

0

22)(2)(
2
1

(A2) subject to 1)0(),()(5.)(=+=′ xtutxtx

19

This problem can be solved with the analytic optimal solution:

)2(
2)(32/3

33

ee
eetx t

t

+
+

=∗ ,
)2(

)(2)(32/3

33

ee
eetu t

t

+
−

=∗ .

Now, let)(tx be denoted by)(1 tx and 22
12)()(2)(tutxtx +=′ , by fundamental theorem

of calculus, the original cost function (A1) is equals to:

(A3) minimize [])0()1(
2
1

22 xx − .

Let 0)0(2 =x , we transform the original problem into:

(A4) minimize)1(
2
1

2x=φ

(A5) subject to 1)0(),()(5.)(111 =+=′ xtutxtx

(A6) 0)0(,)()(2)(2
22

12 =+=′ xtutxtx .

Now, we create the driver program-driver1.c of the transformed system (A4)-(A6).

Note that we use the default values of the OPTCON parameters.

20

Figure A-1. Driver1.c

21

Line 9 to 12 defined the number of time mesh intervals-n, number of state variables-nx,

number of controls-nc and number of stage(s)-ns in the Runge-Kutta scheme. Note that

the size of the state array is nxnxnsn +×× (see line 29), in which the last nx elements

store the final state. Let k
jix , be the discrete state, where k is the time level 10 −≤≤ nk , i

is the component of state nxi ≤≤1 , and j is the stage in Runge-Kutta scheme nsj ≤≤1 .

We store k
jix , in the array state as the following:

For each fixed j and k, we first increment i from 1 to nx, next we increment j from 1 to ns,

and finally we increment k from 0 to 1−n . The discrete control k
jiu ,′ (nci ≤′≤1) is

stored in the control array (defined in line 30) in the same fashion. The user-provide

routines include: (line 49 to 73 in Figure A-1)

• double my_phi(double *x_f) – the routine that evaluates the cost function))((ftxφ .
The input is “double *x_f”-a pointer points to the first element of the array x_f
which contains the final states. Output is a double precision value of cost))((ftxφ .

• void my_dphi(double *dphi, double *x_f) – the routine that evaluates))((ftx
dx
dφ .

“Double *x_f” is input. Output is the array dphi that contains the value of
nx

f Rtx
dx
d

∈))((φ .

• void my_f(double *f, double *x, double *u, double time) – the routine that evaluates
the system dynamic function nxRtuxf ∈),,(. Inputs are: “double *x”-an array
contains the states x, “double *u”-an array contains the controls u, and “double
time”-time t. The output is “double *f”-an array contains the value of

nxRtuxf ∈),,(.

• void my_fx(double *fx, double *x, double *u, double time) – the routine that

evaluates nxnxRtux
x
f ×∈
∂
∂),,(. “Double *x”, “double *u”, and “double time” are

inputs. The output is “double *fx”-an array contains the value of
nxnxRtux

x
f ×∈
∂
∂),,(. Note that we store the matrix by rows (line 63-66).

22

• void my_fu(double *fu, double *x, double *u, double time) – the routine that

evaluates ncnxRtux
u
f ×∈
∂
∂),,(. “Double *x”, “double *u”, and “double time” are

inputs. The output is “double *fu”-an array contains the value of
ncnxRtux

u
f ×∈
∂
∂),,(. Note that we store the matrix by rows (line 70 and 71).

We applied the provided Runge-Kutta scheme in this example. To provide your

own Runge-Kutta scheme, you should set the “scheme” parameter to 0 and initialize the a

and b arrays (line 20) to contain the coefficients of the scheme (as shown in Figure A-2,

line 20, 21). Note that we store the coefficients of Runge-Kutta matrix A by rows.

Figure A-2. Segment of Driver1.c for the case that user provides Runge-Kutta scheme

23

After calling OPTCON (line 42 in Figure A-1 or line 43 in Figure A-2), we obtain

the final state (the last nx elements in the state array) and the discrete optimal control for

problem 1.

Now, let’s consider another example, which has both initial conditions and final

conditions.

Problem 2: orbit transfer problem (see [7] page 66-68).

For a constant-thrust rocket with thrust T, operating from time 0 to time ft , we

want to find an optimal thrust angle history)(tθ that transfer the rocket from an initial

given orbit to the largest possible circular orbit. Now, let’s transform it into a

mathematical model. First, the variables and parameters are given by: 1x -the radius of the

orbit with an attracting center; 2x -the radial velocity; 3x -the tangential velocity; 0m -the

mass of the rocket; m -the fuel consumption rate;)(tθ -the history of thrust angle; µ -the

gravity constant of the attracting center. Then, the model is formulated by:

(A7) maximize)(1 ftx ,

System dynamics:

(A8) 21 xx =′ ,

(A9)
tmm

T
xx

x
x

−
+−=′

0
2

11

2
3

2
sinθµ ,

(A10)
tmm

T
x
xx

x
−

+−=′
01

32
3

cosθ .

Initial conditions:

(A11) ax =)0(1 ,

24

(A12) 0)0(2 =x ,

(A13)
a

x µ
=)0(3 .

Final conditions:

(A14) 0)(2 =ftx ,

(A15)
)(

)(
1

3
f

f tx
tx µ

= .

Where, ,336.8 ,106.149 ,/9.12 ,000,10 9
0 NTmadaykgmkgm =×===

daystsm f 193 and /3273310.1 2320 ==µ .

Since the final conditions are given, we solve this problem using a penalty

approach. At step k, the cost function is given by:

(A16)

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−++

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−++−=

)(
)()(

)(
)()()())(),(),((

1
3,22,1

2

1
3

2
21321

N
NkNk

N
NNNNNN

tx
txtx

tx
txPtPxtxtxtxtx

µλλ

µφ

with Lagrange multipliers 1λ and 2λ , and a constant penalty factor P . At step 1+k , 1λ

and 2λ are updated by:

(A17))(2 2,11,1 Nkk tPx+=+ λλ ,

(A18) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=+)(

)(2
1

3,21,2
N

Nkk tx
txP µλλ .

Note that 0,1λ and 0,2λ are given.

By penalty approach, we solve this problem by recursively calling OPTCON, each
iteration involved in updating the value of 1λ and 2λ . The program will stop when the

25

value
)(

)()(
1

32
N

NN tx
txtx µ

−+ is no longer decreasing. Please refer to the driver

program-driver2.c, which can be found in the OPTCON package.

26

26

APPENDIX B
TESTING DATA FOR GRADIENT TOLERANCE FACTOR

We test different value of gradient tolerance factor c for problem 2 in Appendix A.

Let’s apply time mesh size 500=N , scheme 2 (see Table A-1 in Appendix A), penalty

factor 10000=P , and initial 510_ −=tolgrad .

Using only approximate Wolfe line search conditions in CG_DESCENT, we obtain

Table B-1 to Table B-9.

Table B-1. Performance of OPTCON when gradient tolerance factor 100000=c
Iteration #

∞
−)()(fN txtx CPU time CG iterations

1 4.54e-004 11.00 sec 1128
2 7.44e-005 0.00 sec 2
3 3.80e-005 0.00 sec 6
4 5.48e-006 1.00 sec 12
5 9.31e-006 0.00 sec 39

Not convergent

Table B-2. Performance of OPTCON when gradient tolerance factor 10000=c
Iteration #

∞
−)()(fN txtx CPU time CG iterations

1 4.54e-004 12.00 sec 1128
2 4.24e-005 0.00 sec 22
3 1.02e-005 0.00 sec 28
4 5.21e-007 0.00 sec 26
5 6.42e-008 1.00 sec 66
6 3.20e-009 1.00 sec 35
7 4.98e-010 1.00 sec 136
8 1.06e-010 1.00 sec 60
9 7.25e-011 1.00 sec 49
10 2.58e-011 2.00 sec 120
11 1.50e-011 0.00 sec 4
12 3.91e-012 1.00 sec 18
13 4.47e-011 0.00 sec 1

Total: 20.00 sec

27

Table B-3. Performance of OPTCON when gradient tolerance factor 1000=c
Iteration #

∞
−)()(fN txtx CPU time CG iterations

1 4.54e-004 12.00 sec 1128
2 2.89e-005 0.00 sec 80
3 2.58e-006 2.00 sec 91
4 2.42e-007 0.00 sec 82
5 1.88e-008 2.00 sec 114
6 1.00e-009 1.00 sec 109
7 8.39e-011 1.00 sec 97
8 4.60e-011 3.00 sec 184
9 1.27e-011 1.00 sec 9
10 5.80e-012 0.00 sec 7
11 6.76e-012 0.00 sec 16

Total: 22.00 sec

Table B-4. Performance of OPTCON when gradient tolerance factor 100=c
Iteration #

∞
−)()(fN txtx CPU time CG iterations

1 4.54e-004 11.00 sec 1128
2 2.95e-005 2.00 sec 133
3 2.04e-006 2.00 sec 138
4 1.35e-007 1.00 sec 132
5 8.95e-009 3.00 sec 288
6 5.95e-010 3.00 sec 231
7 7.19e-011 1.00 sec 33
8 1.10e-011 1.00 sec 21
9 2.36e-011 0.00 sec 15

Total: 24.00 sec

Table B-5. Performance of OPTCON when gradient tolerance factor 10=c
Iteration #

∞
−)()(fN txtx CPU time CG iterations

1 4.54e-004 12.00 sec 1128
2 2.96e-005 2.00 sec 172
3 1.92e-006 2.00 sec 208
4 1.26e-007 3.00 sec 294
5 8.19e-009 5.00 sec 410
6 5.51e-010 2.00 sec 171
7 8.01e-011 0.00 sec 27
8 2.03e-011 1.00 sec 51
9 7.67e-012 1.00 sec 87
10 2.53e-011 1.00 sec 30

Total: 29.00 sec

28

Table B-6. Performance of OPTCON when gradient tolerance factor 1=c
Iteration #

∞
−)()(fN txtx CPU time CG iterations

1 4.54e-004 12.00 sec 1128
2 2.96e-005 3.00 sec 246
3 1.93e-006 4.00 sec 342
4 1.26e-007 5.00 sec 355
5 8.25e-009 2.00 sec 175
6 5.22e-010 2.00 sec 114
7 3.65e-011 1.00 sec 88
8 1.09e-011 1.00 sec 97
9 4.12e-012 1.00 sec 1
10 2.63e-011 0.00 sec 2

Total: 31.00 sec

Table B-7. Performance of OPTCON when gradient tolerance factor 1.0=c
Iteration #

∞
−)()(fN txtx CPU time CG iterations

1 4.54e-004 12.00 sec 1128
2 2.96e-005 4.00 sec 350
3 1.93e-006 5.00 sec 377
4 1.26e-007 4.00 sec 363
5 8.17e-009 4.00 sec 258
6 5.52e-010 2.00 sec 150
7 9.22e-011 0.00 sec 52
8 4.66e-011 1.00 sec 37
9 3.65e-011 2.00 sec 76
10 1.54e-011 0.00 sec 2
11 1.32e-011 0.00 sec 10
12 6.47e-012 1.00 sec 19
13 9.18e-012 0.00 sec 20

Total: 35.00 sec

Table B-8. Performance of OPTCON when gradient tolerance factor 01.0=c
Iteration #

∞
−)()(fN txtx CPU time CG iterations

1 4.54e-004 11.00 sec 1128
2 2.96e-005 6.00 sec 441
3 1.93e-006 4.00 sec 404
4 1.26e-007 4.00 sec 327
5 8.21e-009 5.00 sec 378
6 5.16e-010 3.00 sec 200
7 7.05e-011 0.00 sec 48
8 2.31e-011 2.00 sec 104
9 3.17e-011 1.00 sec 23

Total: 36.00 sec

29

Table B-9. Performance of OPTCON when gradient tolerance factor 001.0=c
Iteration #

∞
−)()(fN txtx CPU time CG iterations

1 4.54e-004 11.00 sec 1128
2 2.96e-005 5.00 sec 441
3 1.93e-006 5.00 sec 404
4 1.26e-007 4.00 sec 327
5 8.21e-009 5.00 sec 378
6 5.16e-010 3.00 sec 200
7 7.05e-011 0.00 sec 48
8 2.31e-011 2.00 sec 104
9 3.17e-011 1.00 sec 23

Total: 36.00 sec

Using a combination of Wolfe and approximate Wolfe line search conditions in

CG_DESCENT, we obtain Table B-10 to Table B-17.

Table B-10. Performance of OPTCON using a combination line search, 10000=c
Iteration #

∞
−)()(fN txtx CPU time CG iterations

1 4.54e-004 8.00 sec 807
2 4.25e-005 0.00 sec 22
3 1.00e-005 1.00 sec 31
4 8.34e-007 0.00 sec 26
5 5.21e-008 1.00 sec 48
6 1.58e-008 1.00 sec 59
7 1.99e-010 0.00 sec 51
8 6.55e-011 2.00 sec 138
9 4.86e-011 1.00 sec 74
10 4.79e-011 0.00 sec 3
11 5.17e-011 1.00 sec 20

Total: 15.00 sec

30

Table B-11. Performance of OPTCON using a combination line search, 1000=c
Iteration #

∞
−)()(fN txtx CPU time CG iterations

1 4.54e-004 8.00 sec 807
2 2.82e-005 1.00 sec 71
3 3.36e-006 1.00 sec 79
4 1.15e-007 1.00 sec 60
5 9.48e-009 2.00 sec 132
6 8.46e-010 1.00 sec 95
7 4.25e-011 2.00 sec 114
8 2.35e-011 0.00 sec 34
9 1.70e-011 1.00 sec 15
10 2.33e-011 1.00 sec 46

Total: 18.00 sec

Table B-12. Performance of OPTCON using a combination line search, 100=c
Iteration #

∞
−)()(fN txtx CPU time CG iterations

1 4.54e-004 8.00 sec 807
2 2.97e-005 1.00 sec 138
3 1.83e-006 2.00 sec 140
4 1.26e-007 1.00 sec 129
5 7.74e-009 4.00 sec 314
6 4.82e-010 1.00 sec 82
7 6.55e-011 1.00 sec 50
8 9.31e-012 1.00 sec 83
9 2.11e-011 1.00 sec 15

Total: 21.00 sec

Table B-13. Performance of OPTCON using a combination line search, 10=c
Iteration #

∞
−)()(fN txtx CPU time CG iterations

1 4.54e-004 8.00 sec 807
2 2.96e-005 2.00 sec 181
3 1.92e-006 2.00 sec 184
4 1.26e-007 3.00 sec 234
5 8.23e-009 3.00 sec 250
6 5.04e-010 2.00 sec 139
7 6.21e-011 1.00 sec 28
8 6.92e-012 0.00 sec 17
9 2.27e-011 1.00 sec 3

Total: 23.00 sec

31

Table B-14. Performance of OPTCON using a combination line search, 1=c
Iteration #

∞
−)()(fN txtx CPU time CG iterations

1 4.54e-004 8.00 sec 807
2 2.96e-005 2.00 sec 233
3 1.93e-006 4.00 sec 306
4 1.26e-007 4.00 sec 373
5 8.19e-009 3.00 sec 240
6 5.62e-010 3.00 sec 180
7 3.74e-011 1.00 sec 80
8 4.08e-011 1.00 sec 5

Total: 26.00 sec

Table B-15. Performance of OPTCON using a combination line search, 1.0=c
Iteration #

∞
−)()(fN txtx CPU time CG iterations

1 4.54e-004 8.00 sec 807
2 2.96e-005 4.00 sec 358
3 1.93e-006 5.00 sec 368
4 1.26e-007 3.00 sec 275
5 8.23e-009 3.00 sec 237
6 5.32e-010 3.00 sec 165
7 4.86e-011 0.00 sec 44
8 1.68e-011 2.00 sec 97
9 1.52e-011 0.00 sec 5
10 2.76e-011 1.00 sec 45

Total: 29.00 sec

Table B-16. Performance of OPTCON using a combination line search, 01.0=c
Iteration #

∞
−)()(fN txtx CPU time CG iterations

1 4.54e-004 8.00 sec 807
2 2.96e-005 6.00 sec 432
3 1.93e-006 5.00 sec 354
4 1.26e-007 3.00 sec 260
5 8.20e-009 4.00 sec 320
6 5.40e-010 2.00 sec 132
7 3.97e-011 1.00 sec 55
8 2.51e-011 1.00 sec 20
9 4.25e-011 0.00 sec 26

Total: 30.00 sec

32

Table B-17. Performance of OPTCON using a combination line search, 001.0=c
Iteration #

∞
−)()(fN txtx CPU time CG iterations

1 4.54e-004 8.00 sec 807
2 2.96e-005 6.00 sec 432
3 1.93e-006 4.00 sec 354
4 1.26e-007 4.00 sec 260
5 8.20e-009 4.00 sec 320
6 5.40e-010 2.00 sec 132
7 3.97e-011 1.00 sec 55
8 2.51e-011 1.00 sec 20
9 4.25e-011 0.00 sec 26

Total: 30.00 sec

33

33

LIST OF REFERENCES

1. W. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed
descent and an efficient line search, SIAM Journal on Optimization, 16, 2005, pp.
170-192.

2. W. W. Hager, Runge-Kutta methods in optimal control and the transformed adjoint
system, Numerische Mathematik, 87, 2000, pp. 247-282.

3. J. C. Butcher, The numerical analysis of ordinary differential equations, John
Wiley, NY, 1987.

4. W. W. Hager and H. Zhang, Source code C Version 1.2, November 14, 2005,
http://www.math.ufl.edu/~hager/papers/CG

5. M. R. Hestenes, Conjugate Direction Methods in Optimization, Springer-Verlag,
NY, 1980.

6. W. W. Hager and H. Zhang, CG_DESCENT Version 1.4, User's Guide, November
14, 2005, http://www.math.ufl.edu/~hager/papers/CG/cg_manual-1.4.ps

7. A. E. Bryson and Jr., Y.-C. Ho, Applied Optimal Control, Blaisdell, Waltham, MA,
1969.

