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Abstract The dynamic pattern of viral load in a patient’s body critically depends
on the host’s genes. For this reason, the identification of those genes responsible for
virus dynamics, although difficult, is of fundamental importance to design an optimal
drug therapy based on patients’ genetic makeup. Here, we present a differential equa-
tion (DE) model for characterizing specific genes or quantitative trait loci (QTLs) that
affect viral load trajectories within the framework of a dynamic system. The model
is formulated with the principle of functional mapping, originally derived to map
dynamic QTLs, and implemented with a Markov chain process. The DE-integrated
model enhances the mathematical robustness of functional mapping, its quantitative
prediction about the temporal pattern of genetic expression, and therefore its practical
utilization and effectiveness for gene discovery in clinical settings. The model was
used to analyze simulated data for viral dynamics, aimed to investigate its statistical
properties and validate its usefulness. With an increasing availability of genetic poly-
morphic data, the model will have great implications for probing the molecular genetic
mechanism of virus dynamics and disease progression.
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1 Introduction

Several serious human diseases, such as AIDS, hepatitis B, influenza, and rabies, are
caused by viruses. To control these diseases, antiviral drugs have been developed
to prevent infection of new viral cells or stop already-infected cells from producing
infectious virus particles by inhibiting specific viral enzymes. This process consti-
tutes a complex dynamic system, in which different types of viral cells, including
uninfected cells, infected cells, and free virus particles, interact with each other to
determine the pattern of viral change in response to drugs (Ho et al. 1999; Wei et al.
2004; Perelson et al. 1997, 1996; Sedaghat et al. 2008). A major challenge that faces
drug development and delivery for controlling viral diseases is to develop a quantita-
tive model for analyzing and predicting the dynamics of decline in virus load during
drug therapy and further providing estimates of the rate of emergence of resistant
virus.

The development of such a model can now be made possible with recent advances
in two seemingly unrelated areas. First, the combination between novel instruments
and an increasing understanding of molecular genetics has led to the birth of high-
throughput genotyping assays for single nucleotide polymorphisms (SNPs). Through
the construction of a haplotype map (HapMap) with SNP data (The International
HapMap Consortium 2003), we are able to characterize concrete nucleotides or their
combinations that encode a complex phenotype, and ultimately document, map and
understand the structure and patterns of the human genome linked to drug response.
Second, the past two decades have witnessed a tremendous growth of interest in
deriving sophisticated mathematical models for characterizing virus dynamics from
molecular and cellular mechanisms of interactions between virus and drug (Ho et al.
1999; Wei et al. 2004; Perelson et al. 1997, 1996; Sedaghat et al. 2008; Bonhoeffer
et al. 1997; Bonhoeffer et al. 1999; Nowak and May 2000). These models mostly built
with differential equations (DE) have been instrumental for studying the function of
virus and the origins and properties of virus dynamics.

These two advances can be integrated to identify specific genes or quantitative
trait loci (QTLs) that regulate a dynamic system of viral infection through a new
statistical model called functional mapping (Ma et al. 2002; Wang and Wu 2004;
Wu et al. 2004a,b,c; Wu and Lin 2006). The basic idea of functional mapping is to
map dynamic QTL for the pattern of developmental changes in time course. The pur-
pose of this article is to propose a statistical strategy for implementing a system of
DE into the functional mapping framework, ultimately to map QTLs from the host
genome that determine the dynamic pattern of virus load in patients’ bodies. The new
strategy is founded on a set of random samples drawn from a natural population at
Hardy–Weinberg equilibrium (HWE). We integrate the Markov chain properties of
dynamic data into the model to facilitate the estimation of parameters that define virus
dynamics. Simulation studies were performed to investigate statistical properties of
the model and validate its usefulness and utilization.
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2 Dynamic models of virus load

2.1 Differential equations

A basic model for describing short-term virus dynamics was provided by many
researchers (Bonhoeffer et al. 1997; Bonhoeffer et al. 1999; Nowak and May 2000).
This model includes three variables: uninfected cells, x , infected cells, y, and free
virus particles, v. These three types of cells interact with each other to determine the
dynamic changes of virus in a host’s body, which can be described by a system of
ordinary differential equations (ODE):

dx

dt
= λ − dx − βxv

dy

dt
= βxv − ay (1)

dv

dt
= ky − uv,

where uninfected cells are yielded at a constant rate, λ, and die at the rate dx ;
free virus infects uninfected cells to yield infected cells at rate βxv; infected cells
die at rate ay; and new virus is yielded from infected cells at rate ky and dies
at rate uv (Bonhoeffer et al. 1999). The system (1) is defined by six parameters
{λ, d, β, a, k, u} and the initial conditions for x , y, and v. The dynamic pattern
of this system can be determined and predicted by the change of these parame-
ters and the initial conditions of x , y, and v. There are some practical problems
in the real application. First, we can only observe the data for x , y, and v at dis-
crete time points, and it is difficult to get the continuous dx

dt , dy
dt , and dv

dt terms. Sec-
ond, any biological development is related to genes, but the model does not involve
any genetic components. Third, the dynamic change of the virus is accompanied
by noise which cannot be neglected in the dynamic modeling. It should be noted
that the model (1) used to explain our idea in this article is a basic sculpture of
real virus infection as it ignores the dynamics of immune responses and virus muta-
tions.

Let 0 = t0 < t1 < · · · < tN = T denote a mesh on the time interval [0, T ]
and define �tk = tk+1 − tk . The Euler approximation to the continuous differential
equations (1) is

x(tk+1) − x(tk)

�tk
= λ − dx(tk) − βx(tk)v(tk)

y(tk+1) − y(tk)

�tk
= βx(tk)v(tk) − ay(tk) (2)

v(tk+1) − v(tk)

�tk
= ky(tk) − uv(tk),
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or equivalently,

x(tk+1) = x(tk) + λ�tk − dx(tk)�tk − βx(tk)v(tk)�tk
y(tk+1) = y(tk) + βx(tk)v(tk)�tk − ay(tk)�tk (3)

v(tk+1) = v(tk) + ky(tk)�tk − uv(tk)�tk .

2.2 Markov properties

Suppose there is a random sample with n patients from a population carrying a cer-
tain virus. Each patient is measured for uninfected cells, x , infected cells, y, and free
virus particles, v, at a series of time points, (t0, t1, . . . , tN ). Thus, three sets of serial
measurements are expressed as xi = [xi (t0), . . . , xi (tN )], yi = [yi (t0), . . . , yi (tN )],
and vi = [vi (t0), . . . , vi (tN )], where the subscript i corresponds to the patient and t j ,
0 ≤ j ≤ N , are the measurement times.

A transitional Markov model is used to describe the random process of the system
by

xi (tk+1) = xi (tk) + λ�tk − dxi (tk)�tk − βxi (tk)vi (tk)�tk + εxi (tk)

yi (tk+1) = yi (tk) + βxi (tk)vi (tk)�tk − ayi (tk)�tk + εyi (tk) (4)

vi (tk+1) = vi (tk) + kyi (tk)�tk − uvi (tk)�tk + εvi (tk),

where εxi (tk) ∼ N (0, σ 2
x ), εyi (tk) ∼ N (0, σ 2

y ), and εvi (tk) ∼ N (0, σ 2
v ) are the inno-

vation errors for three variables, x, y, and v, respectively, each of which is assumed to
be iid and time-independent. To simplify our line of analysis, we assume that these
three variables are independent of each other, although this assumption can be relaxed.

For simplicity, we use xik , yik , and vik to stand for xi (tk), yi (tk), and vi (tk), respec-
tively. For a conditional density function, f (.|.), we derive the Markov properties of
the dynamic system (1) as follows:

Theorem 1 All the future values of uninfected cells, infected cells, and free virus
particles depend statistically only on their present values. That is,

f (xik+1, yik+1, vik+1|(xi1, yi1, vi1), . . . , (xik, yik, vik))

= f (xik+1, yik+1, vik+1|(xik, yik, vik)),

f (xik+1|(xi1, yi1, vi1), . . . , (xik, yik, vik)) = f (xik+1|(xik, yik, vik)),

f (yik+1|(xi1, yi1, vi1), . . . , (xik, yik, vik)) = f (yik+1|(xik, yik, vik)),

f (vik+1|(xi1, yi1, vi1), . . . , (xik, yik, vik)) = f (vik+1|(xik, yik, vik)).

The proof follows directly from (4) and the definitions of εxi (tk), εyi (tk), and εzi (tk).
From this theorem, we have the following results.

Corollary 2.1 Conditional on (xik, yik, vik), (xik−1, yik−1, vik−1) and (xik+1, yik+1,

vik+1) are statistically independent.
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Corollary 2.2 Conditional on (xik, yik, vik), xik−1 and xik+1 are statistically inde-
pendent.

Corollary 2.3 Conditional on (xik, yik, vik), yik−1 and yik+1 are statistically
independent.

Corollary 2.4 Conditional on (xik, yik, vik), vik−1 and vik+1 are statistically inde-
pendent.

Since

((xik+1, yik+1, vik+1)|(xik, yik, vik), (xik−1, yik−1, vik−1))

= f ((xik+1, yik+1, vik+1)|(xik, yik, vik)),

conditional on (xik, yik, vik), (xik−1, yik−1, vik−1) and (xik+1, yik+1, vik+1) are sta-
tistically independent (Bremaud 1999). Hence, Corollary 2.1 holds. The proofs of
Corollaries 2.2–2.4 can be made in a similar way.

Now, we get the following theorems:

Corollary 2.5 Conditional on (xik, yik, vik), (xi j , yi j , vi j ) for j = 0, 1, . . . , k − 1
and (xik+1, yik+1, vik+1) are statistically independent.

Corollary 2.6 Conditional on (xik, yik, vik), {xi1, . . . , xik−1}, and xik+1 are statisti-
cally independent.

Corollary 2.7 Conditional on (xik, yik, vik), {yi1, . . . , yik−1}, and yik+1 are statisti-
cally independent.

Corollary 2.8 Conditional on (xik, yik, vik), {vi1, . . . , vik−1}, and vik+1 are statisti-
cally independent.

The Theorem and all these corollaries will be used to derive computing algorithms
for solving a system of differential equations (4) embedded in functional mapping.

3 Functional mapping

3.1 Genetic design

Genetic mapping of QTLs can be based on linkage analysis for a pedigree (Lander
and Bostein 1989) or linkage disequilibrium analysis for a natural population (Wang
and Wu 2004). In this article, we assume that the population used to map human QTLs
for viral load trajectories is composed of n patients randomly sampled from a natural
population at HWE. A panel of SNP markers are genotyped for all patients, aimed at
the identification of QTLs affecting virus dynamics. Suppose there is a functional QTL
of alleles A and a for virus dynamics. Let q and 1 − q denote the allele frequencies of
A and a. The QTL forms three possible genotypes, AA, Aa, and aa. We assume that
this QTL is associated with a SNP marker of alleles M (in a frequency of p) and m
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(in a frequency of 1− p). The detection of significant linkage disequilibrium between
the marker and QTL implies that the QTL may be linked with and,therefore, can be
genetically manipulated by the marker.

The four haplotypes for the marker and QTL are M A, Ma, m A and ma, with
respective frequencies expressed as p11 = pq + D, p10 = p(1 − q) − D, p01 =
(1 − p)q − D, and p00 = (1 − p)(1 − q) + D, where D is the linkage disequilibrium
between the marker and QTL. Thus, the population genetic parameters (p, q, and D)
can be estimated by solving a group of regular equations if we can estimate the four
haplotype frequencies � = (p11, p10, p01, p00). Joint marker-QTL diplotype fre-
quencies can be expressed as a product of the corresponding haplotype frequencies
under the HWE assumption, from which joint marker-QTL genotype frequencies are
derived. Because the marker is observed, an unknown genotype of the QTL can be
inferred from the conditional probability of the QTL genotype given a marker geno-
type.

Each sampled patient is measured for three different traits, uninfected cells, x ,
infected cells, y, and free virus particles, v, at a series of time points, (ti1, . . . , tiTi ).

3.2 Likelihood

For a given QTL genotype j ( j = 2 for AA, 1 for Aa, or 0 for aa), the parameters
describing virus dynamics are denoted by � j = {λ j , d j , β j , a j , k j , u j }. The compar-
isons of these parameters between the three different QTL genotypes can determine
whether and how this QTL affects the pattern of virus dynamics.

The likelihood of longitudinal viral data (xi , yi , vi ) = {xi (tk), yi (tk), vi (tk)}N
k=0

and marker information Mi for patient i is formulated by the mixture transitional
Markov model, expressed as

L(x, y, v; M) =
n∏

i=1

⎡

⎣
2∑

j=0

ω j |i f j (xi , yi , vi ;� j ,�)

⎤

⎦ , (5)

where ω j |i is a mixture proportion, that is, the conditional probability of QTL geno-
type j given the marker genotype of subject i , which can be expressed as a function
of haplotype frequencies (Table 1), and f j (xi , yi , vi ;� j ,�) is a multivariate normal
distribution with QTL genotype-specific mean vector specified by ODE parameters
(� j ) and covariance matrix specified by parametric, non-parametric, or semiparamet-
ric models (�) (Ma et al. 2002; Wu and Lin 2006).

Based on the Corollaries given above, the multivariate distribution can be specified
by the following transition model

f j (xi , yi , vi ;� j ,�)

= f j (xi1, yi1, vi1|� j ,�)

N−1∏

k=0

f j (xik+1, yik+1, vik+1|xik, yik, vik;� j ,�) (6)
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Table 1 Joint genotype frequencies at the marker and QTL in terms of gametic haplotype frequencies, from
which the conditional probabilities of QTL genotypes given marker genotypes can be calculated according
to Bayes’ theorem

Genotype Diplotype AA Aa aa Observations

A|A A|a + a|A a|a

M M M |M p2
11 2p11 p10 p2

10 N1

Mm M |m 2p11 p01 2p11 p00 + 2p10 p01 2p10 p00 N2

mm m|m p2
01 2p01 p00 p2

00 N3

where

f j (xik+1, yik+1, vik+1|xik, yik, vik;� j ,�)

= f j (xik+1|xik, yik, vik;� j ,�) f j (yik+1|xik, yik, vik;� j ,�)

× f j (vik+1|xik, yik, vik;� j ,�),

f j (xik+1|xik, yik, vik;� j , σ
2
x ) = 1√

2πσ 2
x

exp

[
− 1

2σ 2
x

(
xik+1 − g j (xik+1)

)2
]

,

f j (yik+1|xik, yik, vik;� j , σ
2
y ) = 1√

2πσ 2
y

exp

[
− 1

2σ 2
y

(
yik+1 − h j (yik+1)

)2

]
,

f j (vik+1|xik, yik, vik;� j , σ
2
v ) = 1√

2πσ 2
v

exp

[
− 1

2σ 2
v

(
vik+1 − l j (vik+1)

)2
]

,

with � = (σ 2
x , σ 2

y , σ 2
v ), and

g j (xik+1) = xik + λ j�tk − d j xik�tk − β j xikvik�tk
h j (yik+1) = yik + β j xikvik�tk − a j yik�tk (7)

l j (vik+1) = vik + k j yik�tk − u jvik�tk .

3.3 Estimation and algorithm

The EM algorithm (Dempster et al. 1977; Little and Rubin 2002) is implemented to get
the maximum likelihood estimates (MLE) of all unknown parameters. The gradient
of the log-likelihood function

log L(x, y, v; M) =
n∑

i=1

log

⎡

⎣
2∑

j=0

ω j |i f j (xi , yi , vi ;� j ,�)

⎤

⎦ , (8)
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is given by

�� j log L(x, y, v; M)

=
n∑

i=1

2∑

j=0

ω j |i f j (xi , yi , vi ;� j ,�)
∑2

j ′=0 ω j ′|i f j ′(xi , yi , vi ;� j ,�)
�� j log f j (xi , yi , vi ;� j ,�),

�� log L(x, y, v; M)

=
n∑

i=1

2∑

j=0

ω j |i f j (xi , yi , vi ;� j ,�)
∑2

j ′=0 ω j ′|i f j ′(xi , yi , vi ;� j ,�)
�� log f j (xi , yi , vi ;� j ,�),

and

�ω j |i log L(x, y, v; M)

=
n∑

i=1

2∑

j=0

ω j |i f j (xi , yi , vi ;� j ,�)
∑2

j ′=0 ω j ′|i f j ′(xi , yi , vi ;� j ,�)
�ω j |i log(ω j |i ).

A iterative loop for the EM algorithm is formulated as follows. In the E step, the
posterior probability with which a patient i carries a specific QTL genotype j based
on the marker and phenotypic data is calculated by

� j |i = ω j |i f j (xi , yi , vi ;� j ,�)
∑2

j ′=0 ω j ′|i f j ′(xi , yi , vi ;� j ,�)
. (9)

In the M step, the parameters are estimated by solving the following log-likelihood
equations:

�� j log L(x, y, v; M) = 0, (10)

�� log L(x, y, v; M) = 0, (11)

�ω j |i log L(x, y, v; M) = 0. (12)

Wang and Wu (2004) derived a closed algorithmic form to obtain the MLEs of haplo-
type frequencies p11, p10, p01 and p00 and, therefore, allele frequencies of the marker
(p) and QTL (q) and their linkage disequilibrium (D). Genotype-specific mathemat-
ical parameters for viral dynamics and variances for the three types of viruses are
calculated by implementing the Newton algorithm with the Armijo search (Bertsekas
2003).

123



Functional mapping of a virus-cell dynamic system

4 Hypothesis testing

4.1 The significance of QTL

Whether there is a specific QTL responsible for viral dynamics described by a system
of differential equations 1 can be tested by using the following hypotheses:

H0 : � j ≡ �, ( j = 2, 1, 0)

H1 : At least one of the equalities above does not hold,
(13)

The likelihoods under the null (L0) and alternative hypotheses (L1) are calculated,
from which a log-likelihood ratio test statistic is computed by

LR = −2
[
log L0(�̃, �̃|x, y, z) − log L1(�̂, �̂ j , �̂|x, y, z, M)

]
,

where the tildes and hats present the MLE under the null and alternative hypothe-
ses, respectively. Because of violation of the regularity assumption, the LR may not
asymptotically follow a χ2-distribution with the degrees of freedom equal to the dif-
ference of parameter numbers between the two hypotheses (13). For this reason, the
threshold for claiming the existence of a significant QTL is determined from empirical
permutation tests (Churchill and Doerge 1994) because this approach does not rely on
the distribution of LR values.

After a significant QTL is claimed, its significant association with the marker con-
sidered can be tested by the following hypotheses:

H0 : D = 0 vs. H1 : D �= 0, (14)

whose log-likelihood ratio test statistic asymptotically follow the χ2-distribution with
one degree of freedom.

4.2 Genetic mechanisms

The model allows the test of whether the QTL triggers a pleiotropic effect on three
different types of cells. To do so, three null hypotheses for uninfected cells, infected
cells, and free virus particles are formulated as follows:

H0 : (λ j , d j , β j ) ≡ (λ, d, β), (15)

H0 : (β j , a j ) ≡ (β, a), (16)

H0 : (k j , u j ) ≡ (k, u), (17)

for j = 2, 1, 0. If all the null hypotheses are rejected, then this means that the QTL
pleiotropically affect these three different aspects of viral dynamics. The pleiotropic
effect of the QTL on any pair of three types of cells can also be tested accordingly.
An empirical approach for determining the critical threshold is based on simulation
studies.
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4.3 Physiological control of QTL

Several physiological important parameters define the dynamic system (1) (Bonhoeffer
et al. 1999), including

1. The average life-times, 1/d, 1/a, and 1/u, of uninfected cells, infected cells, and
free virus, respectively,

2. The average number of virus particles or the burst size, k/a, yielded over the
lifetime of a single infected cell,

3. Basic reproductive ratio, R0 = βλk/(adu), i.e., the average number of newly
infected cells that arise from any one infected cell when almost all cells are unin-
fected.

How a QTL affects these physiological aspects of viral dynamics separately or jointly
can be tested.

5 Application to simulated data

Monte Carlo simulation was performed to examine the statistical properties of the
model for genetic mapping of viral dynamics. Also, the use of the model to ana-
lyze simulated data will validate its practical usefulness and utilization. We randomly
choose 100 subjects from an HWE population. Consider one of the markers genotyped
for all subjects. This marker of two alleles M and m is used to infer a QTL of two
alleles A and a for viral dynamics based on the non-random association between the
marker and QTL. The allele frequencies are assumed as p = 0.6 for allele M 0.4 for
allele m as well as q = 0.6 for allele A and 0.4 for allele a. A positive value of linkage
disequilibrium (D = 0.08) between alleles M and A is assumed, suggesting that these
two more common alleles are in coupling phase.

The three QTL genotypes, AA, Aa, and aa, are each hypothesized to have differ-
ent response systems for uninfected cells, x , infected cells, y, and free virus particles,
v, constructed by Eqs. (1). Six curve parameters {λ j , d j , β j , a j , k j , u j } that define
QTL genotype-specific systems were chosen from their spaces of biological relevance
(Bonhoeffer et al. 1999). The phenotypic values of these three variables are expressed
as the sum of the genotype-specific means and innovation errors assumed to follow a
multivariate normal distribution. The phenotypic data were simulated for a practically
reasonable number of equally spaced time points (say 22) under two different levels
of heritability, low (0.1) and high (0.4). The genetic variance due to the QTL for virus
response at a middle measurement point was used to define the heritability. The resid-
ual variances for each of the three virus traits were then calculated under different
heritabilities. To assure the homoscedasticity of variances, the transforms-both-sides
(TBS) model was used to simulate innovation errors. The TBS model can preserve
biological means of parameters in original DE and also avoid negative phenotypic
values (Wu et al. 2004b).

The DE-incorporated functional mapping model was used to analyze the simulated
data, with the results suggesting that the QTL responsible for the dynamic system
of viral infection can be detected using a molecular marker in association with the
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QTL. As expected, population genetic parameters about QTL segregation in a pop-
ulation can well be estimated with a closed form of the EM algorithm derived in
(Wang and Wu 2004). The curve parameters for virus responses of each QTL
genotype can be estimated accurately and precisely with a modest sample size (100)
even for a low heritability of viral loads (Tables 2, 3). The precision of all parameters
can increase with increasing heritability level. By drawing the curves of viral trajecto-
ries with six parameters, the dynamic behavior of the system can be visualized. Figure 1
illustrates QTL genotype-specific curves of uninfected cells, infected cells, and free
virus particles in a dynamic system from a random run of simulation. It is found that
the shapes of the estimated curves are broadly consistent with the those of the true
curves, suggesting that the system can be reasonably estimated with the new model.

Simulation studies showed that the new model displays reasonably high power,
0.75 for a modest heritability (0.1) and 0.99 for a high heritability (0.4), to detect a
significant QTL responsible for a dynamic system of viral infection. Hypothesis tests
described in Sects. 4.2 and 4.3 provide a general platform for addressing the genetic
control machinery of viral dynamics. For a given set of simulation data, it appears that
these tests can be reasonably made. For example, the power for detecting a pleiotropic
QTL for three types of viral cell dynamics is adequately high (≥ 0.7) for a modest
sample size and heritability level. On the other hand, under this circumstance, type
I error rates for detecting a significant QTL despite its absence is reasonably low

Table 2 The MLEs of parameters that define virus-host dynamics for three different QTL genotypes, and
the association between the marker and QTL in a natural population, assuming that the heritability of the
simulated QTL is H2 = 0.1

AA Aa aa

Given MLE Given MLE Given MLE

Virus-host parameters

λ 11.00 11.9556 (0.0137) 10.00 010.99626 (0.0115) 12.20 012.6963 (0.0142)

d 0.4500 0.4622 (0.0017) 0.090 0.1042 (0.0014) 0.3800 0.4004 (0.0017)

β 0.1100 0.1196 (0.0001) 0.1200 0.1296 (0.0001) 0.1300 0.1435 (0.0031)

a 0.2000 0.1971 (0.0008) 0.2500 0.2477 (0.0006) 0.2500 0.2654 (0.0008)

k 0.3000 0.3089 (0.0010) 0.2000 0.2121 (0.0008) 0.2100 0.2187 (0.0012)

u 0.9800 1.0034 (0.0025) 0.6400 0.6621 (0.0023) 0.6800 0.7043 (0.0033)

Given MLE

Genetic parameters and variances

p 0.6 0.6010 (0.0312)

q 0.6 0.5703 (0.0680)

D 0.08 0.07701 (0.0108)

σ 2
x 0.2538 0.2548 (0.0107)

σ 2
y 0.2583 0.2978 (0.0105)

σ 2
v 0.5976 0.5968 (0.0239)

The numbers in the parentheses are the square roots of the mean square errors of the MLEs
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Table 3 The MLEs of parameters that define virus-host dynamics for three different QTL genotypes, and
the association between the marker and QTL in a natural population, assuming that the heritability of the
simulated QTL is H2 = 0.4

AA Aa aa

Given MLE Given MLE Given MLE

Rhythmic parameters

λ 11.000 11.9507 (0.0069) 10.00 10.9599 (0.0057) 12.00 12.4235 (0.0100)

d 0.4500 0.4629 (0.0009) 0.090 0.1046 (0.0007) 0.380 0.3971 (0.0012)

β 0.1100 0.1198 (0.0000) 0.120 0.1278 (0.0000) 0.130 0.1386 (0.0000)

a 0.2000 0.1976 (0.0003) 0.250 0.2480 (0.0003) 0.250 0.2642 (0.0005)

k 0.3000 0.3061 (0.0004) 0.200 0.2106 (0.0003) 0.210 0.2192 (0.0006)

u 0.9800 1.0013 (0.0011) 0.640 0.6626 (0.0009) 0.680 0.7025 (0.0017)

Given MLE

Genetic parameters

p 0.6 0.5976 (0.0336)

q 0.6 0.6030 (0.0407)

D 0.08 0.0793 (0.0047)

σ 2
x 0.0423 0.0456 (0.0020)

σ 2
y 0.0430 0.0436 (0.0031)

σ 2
v 0.0996 0.1000 (0.0045)

The numbers in the parentheses are the square roots of the mean square errors of the MLEs

(≤ 0.1). These results suggest that our model will be practically useful in statistical
analysis of the genetic control of viral dynamics.

6 Discussion

A combination of functional mapping (Ma et al. 2002; Wang and Wu 2004; Wu
et al. 2004a,b,c; Wu and Lin 2006) and mathematical models (Bonhoeffer et al. 1997;
Bonhoeffer et al. 1999; Nowak and May 2000) provides new insights into the genetic
control of virus population dynamics. In this article, we have proposed a statistical
model for mapping QTLs that affect the dynamic pattern of viral infection. One of the
meritorious advantages of the new model, as compared to existing functional mapping
models, lies in the organization of multiple correlated aspects of viral infection into
a dynamic system through a group of ODE and the implementation of such a viral
dynamic system into the framework of functional mapping. To our best knowledge,
the work presented here is a first model of genetic mapping which treats multiple
complex traits as a complex system.

The current model is not a simple extension of functional mapping for multiple
traits (Zhao et al. 2005). The previous multi-trait models do not take into account the
relationships of genotypic values of different traits, although they model across-trait
correlations in residual errors. The new model views multiple traits as a whole in
which different traits coordinate each other to determine the dynamic behavior of the
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Fig. 1 Estimated and true curves for a system of viral infection including uninfected cells, x , infected
cells, y, and free virus particles, v for three genotypes at a simulated QTL, AA, Aa, and aa, under different
heritability levels, 0.1 (right panel) and 0.4 (left panel). The broad consistency between the estimated and
true curves suggests that the model can provide a reasonably good estimate of the dynamic system

system. Thus, by altering one variable or trait, other variables will change, leading
to the change of the entire system. The genetic mapping of genes for a dynamic sys-
tem will provide a powerful means for understanding the genetic architecture of a
biological process.

The mathematical strength of the new model is the deployment of a system of DE in
a genetic mapping context. The solution of multiple DE, especially high-dimensional
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ones, is computationally challenging. In this article, we apply a Newton algorithm
with the EM setting to provide numerical estimates of the parameters that define the
dynamic system. With the corollaries derived from several assumptions of indepen-
dence, the algorithm is shown from simulation studies to be computationally efficient
and provides precise estimates of the parameters, even when the sample size used is
modest (Tables 2, 3).

As a demonstration of the new model, we assume that a dynamic system is con-
trolled by a single QTL, although this assumption is too simple in real world. The
genome-wide modeling of multiple QTLs throughout the genome can be incorporated
into the current model setting, allowing the characterization of epistatic interactions
among different QTLs (Wang et al. 2005; Wu et al. 2006). A multi-locus linkage
disequilibrium model has been available to specify high-order non-random associa-
tions among multiple loci in a natural population (Li and Wu 2009). Although more
parameters are involved in a multi-locus model, the closed forms derived for the EM
algorithm (Li and Wu 2009) facilitates the estimation of many parameters at the same
time. Also, a multi-locus model allows the test of the role of genetic interference
in recombination events between adjacent intervals. Although linkage disequilibrium
mapping has proven to be powerful for the high-resolution of QTLs, it often gives
spurious results due to population structure and other evolutionary forces. A new
genetic design that samples a set of random families, each composed of parents and
their offspring, can overcome this limitation of linkage disequilibrium mapping (Li
and Wu 2009; Wu et al. 2002). This design allows the simultaneous estimation of the
linkage and linkage disequilibrium between different genes, thus making it possible
to construct a genome-wide linkage disequilibrium map for gene discovery.

Our model focuses on the identification of genes for a dynamic system of viral
changes in a host’s body before the administration of an anti-viral drug. When the
patients are treated with a drug, the equilibrium state of the system will be violated,
from which a new equilibrium will be generated. Bonhoeffer et al. (1999) described a
series of DE that specify the dynamic change of the system after drug treatment. The
current model can be readily extended to model the genetic control of viral declines in
a response to the anti-viral drug and half-lives of infected cells in the body. Perhaps, the
most promising aspect of the new model is that it, when incorporated with the dynamics
of virus’ drug resistance, can provide scientific guidance for drug delivery and devel-
opment by characterizing genes for drug resistance. The emergence of drug-resistant
virus presents a main problem with antiviral therapy. A system of DE that captures
the essential dynamics of resistance is given in the literature (Ribeiro and Bonhoeffer
2000; Wodarz and Nowak 2000). With the idea presented in this article, they can be
readily incorporated into the functional mapping model, in a hope to achieve the maxi-
mum prevention of virus resistance to drugs by determining an optimal administration
dose and time for individual patients based on their genetic makeups.
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