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SUMMARY

An hp-adaptive pseudospectral method is presented for numerically solving optimal control problems.
The method presented in this paper iteratively determines the number of segments, the width of each
segment, and the polynomial degree required in each segment in order to obtain a solution to a user-
specified accuracy. Starting with a global pseudospectral approximation for the state, on each iteration
the method determines locations for the segment breaks and the polynomial degree in each segment for
use on the next iteration. The number of segments and the degree of the polynomial on each segment
continue to be updated until a user-specified tolerance is met. The terminology ‘hp’ is used because
the segment widths (denoted h) and the polynomial degree (denoted p) in each segment are determined
simultaneously. It is found that the method developed in this paper leads to higher accuracy solutions with
less computational effort and memory than is required in a global pseudospectral method. Consequently,
the method makes it possible to solve complex optimal control problems using pseudospectral methods
in cases where a global pseudospectral method would be computationally intractable. Finally, the utility
of the method is demonstrated on a variety of problems of varying complexity. Copyright � 2010 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the past two decades, direct collocation methods have become popular in the numerical solu-
tion of nonlinear optimal control problems. In a direct collocation method, the state is approximated
using a set of trial (basis) functions and the dynamics are collocated at specified set of points in
the time interval. Most commonly, direct collocation methods for optimal control are employed
using so-called h-methods where a fixed low-degree polynomial (e.g. third-degree or fourth-degree)
state approximation is used and the problem is divided into segments. Convergence of the numer-
ical discretization is then achieved by increasing the number of segments [1–3]. Grid refinement
techniques are used largely on the goal of obtaining a specified solution accuracy by increasing
the number of mesh intervals in regions of the trajectory where the errors are largest. Excellent
examples of h-methods for solving optimal control problems are given in References [2–6].

In recent years, the class of pseudospectral methods for solving optimal control problems has
increased in popularity [7–16]. In a pseudospectral method, the collocation points are chosen
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based on accurate quadrature rules and the basis functions are typically Chebyshev or Lagrange
polynomials. In contrast to an h method, a pseudospectral method is typically employed as a
p-method where a single segment is used, and convergence is achieved by increasing the degree
p of the polynomial. For problems whose solutions are infinitely smooth and well-behaved,
a pseudospectral method has a simple structure and converges exponentially [17–19]. The
most well-developed pseudospectral methods are the the Gauss pseudospectral method (GPM)
[9, 10], the Radau pseudospectral method [14–16] (RPM), and the Lobatto pseudospectral
method [7] (LPM).

While pseudospectral methods have typically been applied as p-methods [7–10, 15, 16], relying
on convergence using global polynomials has several limitations. For many smooth problems an
accurate solution may be obtained only if a very large-degree polynomial is used. In addition, many
optimal control problems have either nonsmooth solutions or nonsmooth problem formulations.
In these cases, the convergence rate of a p-method may be extremely slow, resulting in a poor
approximation even if a very high degree polynomial is used. A second limitation of a p-method
for solving optimal control problems is that the use of a high degree global polynomial results in
a nonlinear programming problem (NLP) which has a constraint Jacobian and Hessian that grows
in density and size much faster than the number of collocation points. As a result, while it may
be possible to achieve convergence using a p-method, such an approach may be computationally
intractable or inefficient due to the number of non-zero derivatives in the NLP. An alternative to
implementing a pseudospectral method as a p-scheme is to use an h-type pseudospectral method
[5, 6, 14]. It is noted, however, that an h-method may require using a large number of mesh
intervals in order to achieve an acceptable error tolerance. Furthermore, as exponential convergence
is lost while using an h-type pseudospectral method, achieving a given accuracy may result in an
extremely large NLP.

In order to increase the utility of pseudospectral methods while attempting to maintain as
close to exponential convergence as possible, in this paper we present a new hp-adaptive pseu-
dospectral method that allows the number of segments, segment widths, and polynomial degrees
to vary throughout the time interval of interest. The method uses a two-tiered strategy to deter-
mine the locations of segments and the degree of the polynomial within a segment to achieve a
specified solution accuracy. If the error across a particular segment has a uniform-type behavior,
then the number of collocation points is increased. If the error at isolated points is signifi-
cantly larger than errors at other points in a segment, then a segment is subdivided at these
isolated points. The method described in this paper provides an accurate solution at the colloca-
tion points and also computes an accurate solution between the collocation points. The method
is demonstrated on several examples of varying complexity and is found to be a viable method
for efficiently and accurately solving complex optimal control problems using pseudospectral
methods.

We note that hp-methods have been previously developed in the context of finite elements in
mechanics and spectral methods in fluid dynamics. In particular, References [20–24] describe the
mathematical properties of h, p, and hp methods for finite elements. Reference [25] showed the
application of an hp-adaptive least-squares spectral element method (LS-SEM) for solving hyper-
bolic partial differential equations. Reference [26] developed an adaptive spectral least-squares
collocation scheme for the Burgers equation. Reference [27] showed the use of an hp-adaptive
LS-SEM for solving the population balance equation whereas Reference [28] developed an
hp-adaptive spectral element solver for reactor modeling. Finally, an overview of hp-adaptive
spectral element methods for solving problems in computational fluid dynamics can be found in
Reference [29].

This paper is organized as follows. In Section 2 we provide a motivation for developing an
hp-adaptive pseudospectral method. In Section 3 we present the formulation of a general Bolza
optimal control problem. In Section 4 we describe the formulation of the GPM which is the
basis for the implementation of the method presented in this paper. In Section 5 we describe
the structure of the NLP that arises from global and segmented collocation. In Section 6 we present
the hp-adaptive pseudospectral method. In Section 7 we provide several applications of the method
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to optimal control problems of varying complexity. In Sections 8 and 9 we provide a discussion
of the results and some limitations of the method. Finally, in Section 10 we provide concluding
remarks.

2. MOTIVATION FOR AN hp-ADAPTIVE PSEUDOSPECTRAL METHOD

In order to motivate the development of an hp-adaptive pseudospectral method, consider the
following two functions:

y(�)= exp(�), �∈ [−1,1], (1)

y(�)=

⎧⎪⎨
⎪⎩

−1, −1���−1/2,

2�, −1/2���1/2,

1, 1/2���1.

(2)

It is seen that Equation (1) is smooth whereas Equation (2) has a discontinuous first derivative at
�=±1/2.

Suppose that we approximate the function in Equation (1) using a global approximation and
a piecewise (segmented) approximation. The global approximation is obtained using a basis of
Legendre polynomials, i.e.

y(�)≈Y (�)=
n∑

i=0
ci�i (�), (3)

where for any given value of n the coefficients ci , (i =0, . . . ,n) are determined in a least-squares
sense. Figure 1(a) shows the maximum error as a function of the polynomial degree, n. It is
seen that the error decreases exponentially as a function of n and is O(10−5) for n=5. The
piecewise approximation is obtained using evenly spaced intervals of constant functions such that
each constant is the least-squares approximation in that interval. Figure 1(b) shows the maximum
error as a function of the logarithm of the number of intervals. Unlike the global approximation
where the degree of the polynomial is increased, in this case it is seen that the error decreases
extremely slowly as a function of the number of piecewise constant intervals. Thus, in this example
convergence is achieved much more rapidly by increasing the degree of a global polynomial
approximation as compared to using a piecewise fixed-degree polynomial and varying the number of
intervals.

Suppose now that we use the global and piecewise approaches for approximating the function in
Equation (2) as we did to approximate the function in Equation (1). Figure 1(c) shows the maximum
error as a function of the polynomial degree for the case where a global Legendre polynomial is
used. Different from the results for the approximation of Equation (1), in this case it is seen that
the error decreases much more slowly as a function of polynomial degree. The slower convergence
using a global polynomial is attributed to the fact that the function in Equation (2) is not smooth,
but is only piecewise smooth. Examining Figure 1(d), it is seen that, for any polynomial degree,
the approximation error on the interior of the interval �∈ (−1,1) is largest at the points where the
derivative of the function is discontinuous (i.e. �=±1/2). As expected, dividing the problem into
segments at �=±1/2, the function in Equation (2) can be approximated exactly using a constant
for −1���1/2, a straight line for −1/2���1/2, and a constant for 1/2���1. Thus, it is seen for
this second example that much more rapid convergence is achieved by determining an appropriate
segment decomposition and the degrees of the polynomials in each segment as compared with
using a global polynomial approximation.

The preceding discussion demonstrates the key point that rapid convergence of an approximation
to the true function depends upon the type of function that is being approximated. In the case of
a smooth function, it is preferable to use a global approximation and determine the appropriate
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(a) (b)

(c) (d)

Figure 1. Least-squares error function approximations for the functions in Equations (1) and (2).
(a) Logarithm of global polynomial maximum least-squares error as a function of polynomial degree
for the smooth function in Equation (1). (b) Logarithm of maximum piecewise constant least-squares
error as a function of the logarithm of the number of segments for the smooth function in Equation (1).
(c) Logarithm of global polynomial maximum least-squares error as a function of polynomial degree
for the piecewise smooth function in Equation (2). (d) Least-squares error as a function of � for

various polynomial degrees for function in Equation (2).

polynomial degree. In the case of a nonsmooth function it is preferable to divide the domain into
subintervals, determine the locations of the segment breaks, and use a polynomial of ‘appropriate’
degree in each subinterval. In general, it will be the case that convergence will be achieved
most rapidly (as a function of polynomial degree) by using higher degree polynomials in some
segments while using lower degree polynomials in other segments. With the aim of determining
the appropriate segment decomposition (i.e. the locations and widths, h, of the segments) and the
appropriate polynomial degree in each segment (i.e. the degree p in each segment), in this paper
we develop a new hp-adaptive pseudospectral method for solving optimal control problems. In the
context of optimal control, the break points between segments often correspond to those times
where either control or state constraints change between active and inactive.

3. OPTIMAL CONTROL PROBLEM IN BOLZA FORM

Without loss of generality, consider the following optimal control problem in Bolza form. Minimize
the cost functional

J =U(x(−1), t0,x(+1), t f )+ t f − t0
2

∫ 1

−1
L(x(�),u(�),�)d� (4)
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subject to the dynamic constraints

dx
d�

= t f − t0
2

f(x(�),u(�),�) (5)

the boundary conditions (i.e. the event constraints)

/(x(−1), t0,x(+1), t f )=0 (6)

and the inequality path constraints

C(x(�),u(�),�; t0, t f )�0, (7)

where x(�) is the state, u(�) is the control, and � is time. The variable �∈ [−1,1] and t ∈ [t0, t f ]
are related as

t= t f − t0
2

�+ t f + t0
2

. (8)

4. STATE APPROXIMATION USING PSEUDOSPECTRAL METHODS

A pseudospectral method is typically employed as a p-method where the state is approximated
using a basis of global polynomials. In order to remain specific in this discussion, in this paper we
choose the Gauss pseudospectral method (GPM) [9–11, 30] as the foundation for developing the
hp-adaptive method. We note, however, that the method developed in this paper can be adapted
to other pseudospectral methods with only slight modifications. In the GPM, the state of the
continuous Bolza problem is approximated as

x(�)≈X(�)=
N∑
i=0

Xi Li (�), (9)

where �∈ [−1,1], Li (�), (i =0, . . . ,N ) is a basis of Lagrange polynomials,

Li (�)=
N∏
j=0
j �=i

�−� j

�i −� j
(i =0, . . . ,N ) (10)

and Xi ≡X(�i ), (i =0, . . . ,N ) are row vectors corresponding to the approximation of the state at
the interpolation points (�0, . . . ,�N ), i.e.

Xi = [Xi1 · · · Xin] (i =0, . . . ,N )

where we recall that n is the dimension of the state. The interpolation points in the GPM are the
initial point �0=−1 and the N Legendre-Gauss [31] (LG) points (�1, . . . ,�N ), where the LG points
lie strictly on the interior of the interval [−1,1] and are the roots of the N th-degree Legendre
polynomial [32], PN (�). It is known that the Lagrange polynomials satisfy the property

Li (� j )=�i j , (i =0, . . . ,N ) ( j =1, . . . ,N ) (11)

where �i j is the Kronecker Delta function. Differentiating Equation (9), we obtain

ẋ(�)≈ Ẋ(�)=
N∑
i=0

X(�i )L̇ i (�). (12)

The derivative of the state approximation given in Equation (12) is then collocated at the N LG
points. Treating the m-dimensional control at each LG point as a row vector,

Ui = [Ui1 · · · Uim] (i =1, . . . ,N )
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the continuous-time dynamics of Equation (5) lead to the collocation conditions:

DX− t f − t0
2

F=0, (13)

where D∈RN×(N+1) is the Gauss pseudospectral differentiation matrix [9–12] and

X =

⎡
⎢⎢⎢⎣
X0

...

XN

⎤
⎥⎥⎥⎦ , XLG =

⎡
⎢⎢⎢⎣
X1

...

XN

⎤
⎥⎥⎥⎦ , ULG =

⎡
⎢⎢⎢⎣
U1

...

UN

⎤
⎥⎥⎥⎦ , sLG =

⎡
⎢⎢⎢⎣

�1

...

�N

⎤
⎥⎥⎥⎦ ,

F = F(XLG,ULG,sLG; t0, t f )=

⎡
⎢⎢⎢⎣

f(X1,U1,�1; t0, t f )
...

f(XN ,UN ,�N ; t0, t f )

⎤
⎥⎥⎥⎦ .

(14)

In addition, an NLP variable corresponding to the state at the terminal point, XN+1=X(�N+1)=
X(+1), is included by adding the following LG quadrature approximation to the integral of the
dynamics at �=+1:

XN+1=X0+ t f − t0
2

wTF, (15)

where w is a column vector of the LG weights [31]. Next, the cost functional of Equation (4) is
approximated using a LG quadrature as

J ≈�(X0, t0,XN+1, t f )+ t f − t0
2

N∑
i=1

wiL[Xi ,Ui ,�i ; t0, t f ] (16)

The system of algebraic equations corresponding to the dynamics resulting from the Gauss pseu-
dospectral discretization are then given as

DX− t f − t0
2

F= 0, (17)

XN+1−X0− t f − t0
2

wTF= 0. (18)

Finally, the boundary conditions and path constraints of Equations (6) and (7) are given, respec-
tively, as

/(X0, t0,XN+1, t f )= 0, (19)

C(Xi ,Ui ,�i ; t0, t f )� 0 (i =1, . . . ,N ). (20)

The NLP arising from the GPM is then to minimize the cost function of (16) subject to the algebraic
constraints of Equations (17)–(20).

While the aforementioned approach for approximation, differentiation, and collocation is
common to most pseudospectral methods, a key assumption when using a pseudospectral method
is that a solution to the NLP is a good approximation to the solution of the optimal control
problem. This assumption is only valid if the approximating global polynomial is of sufficiently
large degree. If, however, the approximating polynomial is of too small a degree, the left-hand
side of Equation (17), when X is replaced by the interpolant of the exact solution, may not be
very small. In addition, using a sufficiently large-degree polynomial approximation will result not
only in an accurate solution at the support points, but it will also result in an accurate solution
between the support points (that is, the Lagrange interpolating polynomial will produce an accurate
approximation at an arbitrary point in the domain). Using a global polynomial, the common
practice is to increase the number of support points until the required accuracy is obtained.
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Many applications exist, however, where an accurate solution can only be obtained using a very
large-degree global polynomial. If the degree of the polynomial is too large, the resulting NLP
from a pseudospectral discretization may be computationally intractable.

In this paper, an hp-adaptive pseudospectral method is developed. The objective of the method
is to determine the number of segments and the degree of the polynomial in each segment that
provides an accurate approximation to the solution of the Bolza optimal control problem defined
in Section 3. As we will demonstrate, the approach developed provides an accurate approximation
of the state at the collocation points and between the collocation points (via evaluation of the
Lagrange polynomial approximation of Equation (9)). In addition, the method presented in this
paper is more computationally efficient than using purely global collocation. The basis of the
method is a two-tiered strategy that determines the number and locations of the segments and the
degree of the polynomial approximation required in each segment.

5. MULTIPLE-SEGMENT NLP USING A PSEUDOSPECTRAL METHOD

A detailed description of the NLP resulting from a global pseudospectral discretization has been
described in Reference [13]. A brief discussion and the extension of pseudospectral methods to
multiple-segment problems is described in this section. As described in Reference [13], the NLP
decision variables for a global pseudospectral discretization include those corresponding to the
state, control, initial time, and terminal time. Denoting these partitions of the vector of decision
variables by zx , zu , t0, and t f , respectively, the complete vector of decision variables is given as

z=

⎡
⎢⎢⎢⎢⎣

zx

zu

t0

t f

⎤
⎥⎥⎥⎥⎦ . (21)

Collocating the dynamics for each scalar differential equation gives rise to a constraint Jacobian
whose main-diagonal block is a full matrix of size ≈N×N , where N is the number of global
collocation points. Qualitatively, the sparsity pattern of the constraint Jacobian resulting from
global collocation has the form shown in Figure 2(a), where the ≈N×N blocks are seen on the
main diagonal of the sparsity pattern. It is seen that as the majority of non-zero elements in the
sparsity pattern are those due to the ≈N2 elements in the diagonal blocks.

Suppose now that we use N collocation points, but divide the problem into S segments such that

N =
S∑

s=1
Ns , (22)

where Ns is the number of collocation points within each segment and N is an equivalent number of
global collocation points. Equations (13) and (15) are then applied across each segment. Therefore,
the system of algebraic equations corresponding to the dynamics from the segmented Gauss
pseudospectral discretization are then given in matrix form as

⎡
⎢⎢⎢⎢⎢⎣

D1 0 · · · 0

0 D2 · · · 0

...
. . .

...

0 · · · 0 DS

⎤
⎥⎥⎥⎥⎥⎦
X=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1− t0
2

I1 0 · · · 0

0
t2− t1
2

I2 · · · 0

...
. . .

...

0 · · · 0
tS− tS−1

2
IS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
F, (23)
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Figure 2. Qualitative view of constraint Jacobian sparsity pattern for a pseudospectral method using global
and segmented collocation: (a) global collocation and (b) segmented collocation.

where ts denotes the end of the sth segment and Is, (s=1, . . . , S) are identity matrices of appropriate
size. From the GPM [9–11, 30], the state at the terminus of each segment is approximated using
the LG quadrature,

Xs
Ns+1=Xs

0+
ts − ts−1

2

Ns∑
i=1

ws
i f

s
i (s=1, . . . , S), (24)
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where ws
i and f

i
s (i =1, . . . ,Ns ) are, respectively, the LG quadrature weights and the right-hand side

of the dynamic equations evaluated at each of the Ns collocation points in segment s. Continuity
on the state at a segment interface is maintained by using the same NLP variable for the value of
the state at the end of segment s and the beginning of segment s+1.

Qualitatively, the segmented sparsity pattern is shown in Figure 2(b). It is seen that the segmented
sparsity pattern has significantly fewer non-zero elements than an equivalently sized globally
collocated problem due to the fact that each diagonal block is much smaller and has many fewer
non-zeros when compared with equivalently sized globally collocated diagonal block. An example
of how the density of the Jacobian decreases is as follows. For a six state, two control, and one
path constraint problem using 30 global collocation points, the NLP has 255 decision variables
and is 14% dense. An equivalent NLP that employs three segments with 10 collocation points in
each segment has 267 decision variables and is 7% dense.

It is seen from the preceding description that dividing a problem into segments results in a much
sparser NLP when compared with global collocation. It is noted, however, that a trade-off exists
between segmented and global collocation. Using low-degree polynomials may require a very
large number of segments in order to obtain a given accuracy. In addition, spectral accuracy (a key
property of a pseudospectral method) is lost as the degree of the polynomial is decreased within a
segment. On the other hand, using larger degree polynomials may lead to the same accuracy with
many fewer segments, but may result on a computationally expensive NLP. In order to retain as
close to exponential convergence as possible without excessive computational burden, the method
developed in this paper utilizes a segmented approach that detects when exponential convergence
may be lost (e.g. detection of nonsmoothness in the solution, stiff problems with large time-scale
discrepancies). As a result, the method of this paper will result in fewer optimization variables
when compared with a strictly global method. In addition, the method provides refinement in
regions where it may be necessary. Consequently, the sparsity of the NLP using the method of this
paper is much greater than would be obtained with a purely global pseudospectral method.

6. hp-ADAPTIVE PSEUDOSPECTRAL METHOD

Suppose that the trajectory on the time interval t ∈ [t0, t f ] has already been divided into S segments
such that the time span of segment s∈ [1, . . . , S] is [ts−1, ts] and Ns is the number of collocation
points allocated in each segment. The objective of the hp-adaptive pseudospectral method is to
determine if a segment should either be divided into more segments and the locations of the newly
created segments, or if the number of collocation points in a segment should be increased.

6.1. Criteria for determining if a segment should be divided

The criteria for segment division or collocation point increase is based on how closely the dynamic
constraints are satisfied at the midpoints of the collocation points, (t̄1, . . . , t̄N )∈ [ts−1, ts], i.e.

t̄i = ti + ti+1

2
(i =1, . . . ,Ns −1). (25)

Correspondingly, let X̄ and Ū be (Ns −1)×n and (Ns −1)×m matrices (where n is the number
of states and m is the number of controls),

X̄=

⎡
⎢⎢⎢⎣

X(t̄1)

...

X(t̄Ns−1)

⎤
⎥⎥⎥⎦ , Ū=

⎡
⎢⎢⎢⎣

u(t̄1)

...

u(t̄Ns−1)

⎤
⎥⎥⎥⎦ , (26)

where the i th row of X̄ and Ū corresponds to the approximation of the state or control in segment
s at the i th midpoint between two collocation points, t̄i . The midpoint approximations of the
state are obtained using the Lagrange polynomial approximation of Equation (9) whereas the
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midpoint approximations for the control are obtained using the arbitrary choice of cubic inter-
polation. Next, let D̄ be a square (Ns −1)×(Ns −1) differentiation matrix computed using the
hp-adaptive pseudospectral method of Reference [33] with the values s= (�̄1, . . . , �̄Ns−1)∈ [−1,1],
where (�̄1, . . . , �̄Ns−1) are computed using Equation (8). Finally, let R be the (Ns −1)×n matrix

R=
∣∣∣∣D̄X̄− ts− ts−1

2
F(X̄, Ū,s;p, ts−1, ts)

∣∣∣∣∈R(Ns−1)×n, (27)

where |·| denotes the absolute value of each element of the matrix R. The elements of the matrix
R will be referred to as the midpoint residuals of the dynamics at the midpoints of the collocation
points and the matrix R itself will be referred to as the midpoint residual matrix. Each column
of the matrix R provides a measure of the amount by which the state violates the collocation
equations at the midpoints between two collocation points in segment s.

Suppose we let r to be the elements of the column of the midpoint residual matrix R that
contains the largest element of R. Then r can be written in component form as

r=

⎡
⎢⎢⎢⎣

r (t̄1)

...

r (t̄Ns−1)

⎤
⎥⎥⎥⎦ , (28)

where each component, r (t̄i ), (i =1 . . . ,Ns −1) of r corresponds to the element of r at the midpoint
time t̄i , (i =1, . . . ,Ns −1). Because r contains the maximum element in the matrix R, it is used as
the metric to determine if the segment should be further subdivided and, if so, where the segment
breaks should be placed, or if the number of collocation points in the segment should be increased.

Suppose now that we let r̄ to be the arithmetic mean of the components of the vector r, that is

r̄ =
∑Ns−1

i=1 r (t̄i )

Ns −1
. (29)

Next, define

b=

⎡
⎢⎢⎢⎣

�(t̄1)

...

�(t̄Ns−1)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

r (t̄1)/r̄

...

r (t̄Ns−1)/r̄

⎤
⎥⎥⎥⎦ . (30)

The vector b will be referred to as the scaled midpoint residual vector. Each element of the vector
b is a scaled measure of the amount by which the collocation conditions at a particular midpoint
differs from zero.

6.2. Behavior of scaled midpoint residual vector

The scaled midpoint residual vector b can have two behaviors that are relevant in the method of
this paper. The first possibility is that all the components of b are approximately the same size.
For these ‘uniform-type’ errors in the collocation conditions at (t̄1, . . . , t̄Ns−1) the hp-method is
designed to increase the number of collocation points in the segment. The second possibility is that
certain components of b are significantly larger than other components of b in the segment. For
this ‘nonuniform-type’ error, the method is designed to place a segment break at the locations of
these large violations in the collocation equations. The vector b is used to determine the locations
of new segments or if the number of collocation points in a segment are increased.

6.3. Determining locations of new segments or increase in number of collocation points

Let � be a user-defined tolerance and assume that the maximum entry of Equation (27) is greater
than �. In this case, the segment either needs to be divided into more segments or the degree of
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Figure 3. Schematic showing the strategy to determine if a trajectory segment needs to be divided into
more segments and where to place the segment breaks.

the polynomial approximation needs to be increased in order to reach the tolerance �. In order to
improve the accuracy of Equation (27), we use the following strategy. Let � be a user-specified
threshold for the size of the elements of the vector b. Again assuming that Equation (27) exceeds
the tolerance �, two types of errors are relevant in the method of this paper: (1) isolated elements
of b are greater than �, resulting in ‘nonuniform-type errors’ and (2) no elements of b exceed �,
resulting in ‘uniform-type errors.’ For the case of nonuniform-type errors, the segment is divided,
whereas for uniform-type errors the number of collocation points in the segment is increased. We
now explain how segments are divided and collocation points are increased.

Segment division for nonuniform-type errors: For nonuniform-type errors, the segment is divided
at the time points where the entries of vector b are greater than �. Often, Equation (30) contains
adjacent entries which are greater than �. In such cases, the segment is divided at only the locations
of the largest element of b that exceeds �. Figure 3 provides a schematic of how a segment is
divided into more segments for the case where elements of R in Equation (27) exceed �.

Collocation point increase for uniform-type errors: For uniform-type errors, suppose further that
every element of the vector b is less than �. In this case the violations in the dynamic collocation
equations at the midpoints of the collocation points are of ‘uniform type’. In this case the number
of collocation points in the segment is increased by a user-specified amount L , that is

N (k+1)
s =N (k)

s +L, (31)

where N (k)
s is the number of collocation points in segment s on grid iteration k. Once the maximum

entry of Equation (27) is less than �, the segment is neither divided further nor is the number of
collocation points increased.

6.4. Stopping criteria

The iterative procedure terminates when the dynamic constraints, the path constraints, and the
bounds on the state and control are satisfied within the specified tolerance � in all segments when
evaluated at the midpoints of the collocation points. For the dynamic constraints, the stopping
criteria imposes that every entry of R in Equation (27) lie below �. In the case of the path constraints
or bounds on the state and control, the stopping criteria imposes that all violations in constraints
or bounds be less than �. In the case that the dynamic constraints are satisfied but either the
path constraints or the bounds on the state and control are not, then modification of the segments
continues as in Section 6.3 until both the path constraints or the bound constraints are satisfied to
the tolerance �.

6.5. Qualitative notions of user-defined parameters � and �

User-defined parameter �: The parameter � represents a tuning parameter that weights the method
between a local and global strategy. For large values of �, the method employs global collocation
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because none of the entries of b will be large enough to require that a segment be divided. As �
is decreased, the method becomes local because a greater number of points in the segment will
be such that the elements in b are greater than � (thus resulting in the problem being divided into
more segments). It is noted that � should always be greater than one because values of ��1 will
always result in a segment break.

User-defined tolerance �: The tolerance � provides a threshold for the accuracy of the dynamic
constraints and path constraints of the continuous-time optimal control problem. Specifically, the
smaller the value of �, the greater the required accuracy is in the dynamics. In addition, due
to the stopping criteria, the parameter � provides a threshold for the required accuracy of the
state approximation. In this study we assume that � is less than unity where the NLP is itself
scaled such that the variables and constraints are O(1). In the case of a poorly scaled NLP, the
pseudospectrally discretized problem may not be solvable, thus resulting in � being meaningless
because the hp-adaptive method cannot be implemented in this case.

6.6. Iterative procedure for hp-adaptive pseudospectral method

The following iterative procedure summarizes the aforementioned approach to collocation point
increase and segment division:

(i) Initialize the problem choosing M collocation points, where M is chosen by the user.
(ii) Solve the NLP with the prescribed grid distribution.
(iii) Check for each segment if the dynamic constraints, path constraints, and bounds on the

state and control are satisfied to the tolerance � in each segment at the midpoints between
collocation points. For all segments not within the prescribed tolerance, continue to step (iv)
or step (v).

(iv) For all segments where Equation (30) is of ‘uniform-type’ increase the number of collo-
cation points in these segments by the user-specified amount L .

(v) For all segments where Equation (30) is of ‘nonuniform-type’, break the segments at all
prescribed points (see Figure 3) and set M=5 in each new segment.

(vi) After all segments have been updated, return to step (ii).
(vii) Terminate when the dynamic constraints, path constraints, and bounds on the state and

control are satisfied to the tolerance � in all segments.

6.7. Clarification of various aspects of hp-adaptive pseudospectral method

Several important aspects of the hp-adaptive pseudospectral method are now clarified. We choose
L=10 for this paper because increasing by fewer than 10 collocation points may result in a
significantly larger number of grid iterations. Whenever the method adds a segment, the number
of collocation points in the newly created segment is set to 5 in order to keep the number of
collocation points small. The error estimate of Equation (27) has been found in practice to result
in an appropriate termination of the method and to keep the NLP of reasonable size. To avoid
the case where large, computationally inefficient polynomial approximations are being used to
approximate a segment, a user-specified limit on the number of collocation points within a segment
should be set. If this limit is exceeded, then the current segment should be subdivided to avoid
computationally large, dense segments. For the problems of this paper, this scenario was not
encountered.

7. EXAMPLES

We now apply the hp-adaptive pseudospectral method of Section 6 to several examples.
All of the examples analyzed in this section are taken from the open literature and were
solved using a modified version of the open-source pseudospectral optimal control software
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GPOPS [12, 13]¶ using the NLP solver SNOPT [34]. All computations were performed on a
2GHz Core 2 Duo machine with 2 GB RAM running OpenSuse Linux 11.0 and MATLAB
R2007a.

In the results that follow, the state approximation is shown at the discretization points (collocation
points plus endpoints) and at points between the discretization points. The state approximation at
points between the discretization points was obtained using the Lagrange polynomial approximation
of Equation (9) on a very fine grid in each segment. On the other hand, the control is shown at
only the collocation points because it does not have a unique function approximation between
the collocation points. Finally, Example 1 has an analytic solution whereas Examples 2–5 do not
have an analytic solution. Thus, for Example 1 the actual error in the solution on the final grid
will be computed. For Examples 2–5, the error on the final grid will be estimated by solving the
NLP using one additional collocation point, Ns +1,∈ [1, . . . , S], in each segment and taking the
difference between the Ns and Ns +1 state approximations.

Example 1: Moon-lander problem

Consider the following optimal control problem of a soft lunar landing [35]. Minimize

J =
∫ t f

t0
u dt (32)

subject to

ḣ = v

v̇ = −g+u
(33)

the boundary conditions

h(0) = h0=10, v(0)=v0=2

h(t f ) = h f =0, v(t f )=v f =0
(34)

and the control path constraint

0�u�3, (35)

where g=1.5, and t f is free. The optimal solution to the optimal control problem given in Equations
(32)–(35) is given as

(h∗(t),v∗(t),u∗(t))=

⎧⎪⎨
⎪⎩

(
− 3

4 t
2+v0t+h0,− 3

2 t+v0,0
)
, t�s∗,

(
3
4 t

2+(−3s∗+v0)t+ 3
2 (s

∗)2+h0, 3
2 t+(−3s∗+v0),3

)
, t�s∗,

(36)

where s∗ is given as

s∗ =
t∗f
2

+ v0

3
(37)

with

t∗f = 2
3v0+ 4

3

√
1
2v

2
0+ 3

2h0. (38)

For the boundary conditions given in Equation (34), we have (s∗, t∗f )= (1.4154,4.1641). It is seen
that the optimal control for this problem is ‘bang-bang’ in that it is at its minimum value for t<s∗
and at its maximum value for t>s∗.

¶GPOPS [12, 13] is available for download at either http://www.sourceforge.net/projects/gpops or http://www.
gpops.org.
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(a) (b)

(c)

Figure 4. Control and state on final grid and state approximation points (i.e. LG points plus endpoints)
on the various grids for Example 1: (a) control vs time on final grid; (b) state approximation points on

various grids; and (c) state vs time on final grid.

Figure 4(a) shows the control for this problem for �=10−3 whereas Figure 4(b) shows the distri-
bution of collocation points on each iteration of the method. Initializing the problem with five global
collocation points, it is seen that the method progresses to a final grid such that the collocation points
are more densely located near the control discontinuity, terminating with a six-segment decompo-
sition of five collocation points in each segment except the segment containing the discontinuity
terminated with 15 collocation points. Segment breaks occurred at t= (1.30,1.37,1.41,1.45,1.70).
Furthermore, the control discontinuity is closely bracketed by a fairly short segment. Figure 4(c)
displays the state for this problem, and demonstrates that the nonsmoothness in the state at s∗
is accurately captured. Table I shows the performance of the method using �=3 in comparison
with a global approach. It is seen that, when a highly accurate solution is desired, the global
approach is simultaneously more computationally expensive and less accurate than the hp-adaptive
method. For example, Table I shows that a solution using 200 global collocation points achieves a
maximum state error of O(10−3) whereas a solution obtained using the hp-adaptive method with
45 collocation points achieves a maximum state error of O(10−6). In the case of global collocation
with �=10−1, a solution was never obtained because the maximum value in Equation (27) only
reduced to O(1), even for 200 global collocation points. On the other hand, the hp-adaptive method
was able to solve this problem much more computationally efficiently and for a much smaller value
of �=10−4. Examining the maximum of Equation (27) and the maximum relative error between
the NLP solution and the true solution, for this problem, it is seen that analyzing the value of
dynamic collocation at the midpoints between collocation points is a conservative estimate of the
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Table I. Summary of accuracy and speed using the hp-adaptive pseudospectral method for Example 1
using various accuracy tolerances, �, and global/local threshold tolerances, �.

CPU Collocation No. of Maximum Maximum
� � time (s) points Segments grids infeasibility relative error

100 Global 0.23 5 1 1 9.5×10−1 5×10−2

5×10−1 Global 1.99 65 1 7 4.5×10−1 2.5×10−1

10−1 Global — — — — — —
10−1 3 0.89 10 2 4 7.3×10−2 1.33×10−3

10−2 3 2.4 45 5 13 8.1×10−3 8.43×10−5

10−3 3 3.21 40 6 15 8.2×10−4 5.0×10−6

10−4 3 3.71 45 7 17 3.1×10−5 1.82×10−6

— Global 13.41 200 1 1 5.94×10−1 9.03×10−4

actual errors in the state (the actual state errors being between one and two orders of magnitude
smaller than �).

Example 2: Hyper-sensitive problem

Consider the following hyper-sensitive [36–39] optimal control problem adapted from Refer-
ence [37]. Minimize the cost functional

J = 1

2

∫ t f

0
(x2+u2)dt (39)

subject to the dynamic constraint

ẋ=−x3+u (40)

and the boundary conditions

x(0)=1, x(t f )=1, (41)

where t f is fixed. It is known that for sufficiently large values of t f that the solution to this example
exhibits a so-called ‘take-off’, ‘cruise’, and ‘landing’ structure where the interesting behavior
occurs near the initial and final time (see Reference [37] for details). In particular, the ‘cruise’
segment of this trajectory is constant (i.e. state, control and, interestingly, costate are all zero) and
becomes an increasingly large percentage of the total trajectory time as t f increases. Given the
structure of the solution, one would expect that the majority of collocation points would be placed
in the ‘take-off’ and ‘landing’ segments whereas few collocation points would be placed in the
‘cruise’ segment.

Suppose that we use a global polynomial to approximate the solution. Figure 5(a) shows the
solution for t f =40 using three different approximations. It is seen that an insufficient degree
polynomial (5 and 10 collocation points) results in an inaccurate solution (the solution is inaccurate
in the ‘take off’ and ‘landing’ segments and also oscillates around the true solution in the ‘cruise’
segment). It should be noted that not only are the interpolation points between the discretization
points inaccurate, but the discretization points themselves can be highly inaccurate when utilizing
an insufficient degree global polynomial. On the other hand, utilizing a 25th-degree polynomial
(i.e. 25 collocation points) results in a solution that is in better agreement with the optimal solution.
It is expected that, as t f increases, the degree of a global polynomial required to solve the problem
will also increase.

This example was solved using the hp-adaptive pseudospectral method of Section 6 for different
values of t f using global collocation and an initial grid of five global collocation points. It is seen
from Table II that the problem only solved for relatively large values of �; for smaller values of �,
the problem did not solve. Even for loose tolerances, for large final times, a global polynomial did
not accurately approximate the solution. Also, utilizing such a large number of global collocation
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(a) (b)

(c) (d)

Figure 5. State solution for Example 2 with t f =40 using global collocation and t f =5000 using hp-adaptive
pseudospectral method: (a) globally collocated solution for various values of N ; (b) entire state solution;

(c) take-off segment; and (d) landing segment.

Table II. Computational performance of global collocation for Example 2.

t f � CPU time (s) Collocation points No. of grids Jacobian density Jacobian entries

40 10−2 2.35 105 11 50 11 556
200 10−1 20.3 175 18 50 31 506
1000 10−1 — — — — —

Table III. Computational performance of the hp-adaptive pseudospectral method for Example 2 using �=3.

t f � CPU time (s) Collocation points Segments No. of grids Jacobian density Jacobian entries

40 10−3 12.47 85 7 13 10.8 1830
200 10−3 9.79 70 10 12 8.3 1042
1000 10−3 14.24 120 16 14 5.22 1866
2000 10−3 24.15 140 20 18 4.24 2082
5000 10−3 19.93 135 17 13 4.85 2170

points will become computationally intractable for higher dimensional problems (i.e. problems
with many more states and controls) due to the increased memory and computational requirements
associated with such a dense NLP.
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Suppose now that the hp-adaptive pseudospectral method is applied to this example using
�=3 (thus, forcing the method to divide the problem into segments) and �=10−3, where �=
10−3 was chosen because this value results in very accurate solutions while maintaining a small
computation time. The results obtained using �=3 and �=10−3 are shown in Table III. It is seen
that for large values of t f the number of collocation points are increased, but the problem is still
manageable in terms of CPU time, NLP variables, and Jacobian entries. Figures 5(b)–(d) show
the solution for t f =5000 along with the solution obtained using SOCS [40]. The hp-adaptive
pseudospectral solutions and SOCS solutions are in excellent agreement. As one might expect,
the majority of collocation points are placed in the take-off and landing segments, whereas many
fewer collocation points are placed in the cruise segment. With regard to CPU time, it is seen
that the total computation time using �=3 is growing as t f grows but not by a significant
amount. Because the problem is divided into segments, the resulting NLP is significantly more
sparse as compared with using global collocation. Also, unlike global collocation, where no
solution was obtained for t f >200, using �=3 we were able to obtain solutions for t f =5000.
The final grid for t f =5000 was increased by one collocation point in each segment, the NLP was
re-solved, and the maximum difference between the state approximations between these two grids
was O(10−4).

Example 3: Dynamic soaring problem

Consider the following optimal control problem taken from Reference [41]. Minimize

J =� (42)

subject to the dynamic constraints and the inequality path constraint

ẋ = V cos � sin �+Wx , mV̇ =−D−mg sin �−mẆx cos � sin �,

ẏ = V cos � cos �, mV �̇= L cos 	−mg cos �+mẆx sin � sin �,

ḣ = V sin �, mV cos ��̇= L sin 	−mẆx cos �,

−2 � L/(mg)�5,

(43)

and the boundary conditions

(x(0), y(0),h(0)) = (0,0,0)

(x(t f ), y(t f ),h(t f ),v(t f ),�(t f ),�(t f )) = (x(0), y(0),h(0),v(0),�(0),�(0)−2
),
(44)

where � is the average wind gradient slope, Wx =�h is the wind component along the East
direction, Ẇx =�V sin�, V is the air-relative speed, � is the azimuth angle, � is the air-relative
flight path angle, h�0 is the altitude, (x, y) are the (East, North) position, 	 is the glider bank
angle, D is the drag force, and L is the lift force. The drag and lift forces are computed as

D = qSCD,

L = qSCL,
(45)

where q=�V 2/2 is the dynamic pressure, S=45.09703ft2 is the vehicle reference area, m=5.6
slug is the vehicle mass, g=32.2ft/s2 is the acceleration due to gravity, �=0.002378 slug/ft3 is
the atmospheric density, CD =CD0+KC2

L is the coefficient of drag, CD0=0.00873 is the zero-lift
drag coefficient, K =0.045 is the drag polar parameter, and CL is the coefficient of lift (where
0�CL�CL ,max=1.5). It is noted that the controls for this example are CL and 	.

This example was posed in English units, but was solved using the automatic scaling procedure
in GPOPS (see Reference [30] for details). The hp-adaptive pseudospectral solution with �=3
and �=10−3 and an initial grid of 10 global collocation points is shown in Figures 6(a)–(e),
whereas the Hamiltonian is shown in Figure 6(f). It is seen that the Hamiltonian is close
to zero for this problem, consistent with the known optimal value. Table IV summarizes the
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Solution on final grid for Example 3: (a) three-dimensional plot of (x, y,h); (b) V vs t ; (c) � vs t ;
(d) � vs t ; (e) CL and 	 vs t ; and (f) Hamiltonian vs t .

computational performance of both the global pseudospectral method and the hp-adaptive
pseudospectral method using �=3. It is seen that the NLP was solvable using global colloca-
tion only for �>5×10−2. In addition, for a similar value of �, fewer collocation points were
utilized with the hp-method when compared with global collocation. For this example similar
computational effort was required using either a global method or the hp-method. Finally, for
�= (10−1,10−2,10−3), the maximum relative differences in the state on the final grid and the solu-
tion obtained from the NLP via a one collocation point increase in each segment were (O(10−2),
O(10−3),O(10−3)).
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Table IV. Summary of accuracy and speed using the hp-adaptive pseudospectral method for Example 3
using various accuracy tolerances, �.

CPU Collocation Grid Jacobian Jacobian
� � time (s) points Segments iterations density entries

10−1 Global 25.6 50 1 5 12.8 19215
5×10−2 Global 68.6 90 1 9 11.9 56135
10−2 Global — — — — —
10−1 3 26.1 30 4 7 6.8 4409
10−2 3 84.4 65 7 9 2.8 13085
10−3 3 300.8 155 13 14 1.8 30113

Example 4: Minimum time-to-climb of a supersonic aircraft

Consider the following optimal control problem which is a variation of the minimum time-to-climb
of a supersonic aircraft [38, 42, 43]. Minimize the cost functional

J = t f (46)

subject to the dynamic constraints

ḣ=v sin �, Ė= v

W
(T −D), �̇= g

v
(n− cos �) (47)

the boundary conditions

h(0) = 0, h(t f )=19995m

E(0) = 852.6m, E(t f )=24435m

�(0) = 0◦, �(t f )=0◦
(48)

and the inequality path constraint

��45◦, (49)

where h is the altitude, E is the energy altitude, � is the flight path angle, v=√
2g(E−h) is the

speed, g is the local acceleration due to gravity, and n is the load factor (and is the control for this
example). Further details of the vehicle model and the numerical values of the constants for this
model can be found in References [38, 43].

The solution to the optimal control problem of Equations (46)–(48) using the hp-adaptive
pseudospectral method is shown in Figure 7 for �=10−3 and �=3. A key characteristic of the
performance of the hp-method is captured in Figure 7(a), where the flight path angle, �, is shown to
reach the path constraint. The path constraint is active from approximately t=18.45s to t=31.42s,
after which � decreases to near zero at t≈100s. On its second increase, � does not attain its
maximum allowable value. Because the first increase hits the upper limit on � (in this case,
�max=45◦), many collocation points and segments are required in order to obtain an accurate
approximation. Also, the Hamiltonian, H , is shown in Figure 7(e) where it is seen that H is
close to −1, (where the optimal Hamiltonian, H∗ is −1 for this problem). Table V displays the
computation times and expense for this example using various values of �. Again, for even a very
loose accuracy tolerance, the global approximation never converged whereas a segmented approach
converged for increasingly tight tolerances. In this problem it is seen that obtaining an accurate
solution to accuracy O(10−4) requires significantly more collocation points, segments, and CPU
time. For �= (10−1,10−2,10−3), the maximum relative difference between the state approximation
on the final grid and grid with one extra collocation point per segment was approximately 1 order
of magnitude less than �. For �=10−4, this same maximum relative difference was O(10−4).
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(c) (d)

(e)

Figure 7. Solution for Example 4 on final grid: (a) flight path angle vs time; (b) altitude vs speed;
(c) altitude vs energy height; (d) load factor vs time; and (e) Hamiltonian vs t .

Example 5: Aeroassisted orbital transfer

Consider the following three-phase optimal control problem taken from Reference [30]. Minimize
the cost functional

J =
3∑

i=1
‖�Vi‖ (50)
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Table V. Summary of computational performance of the hp-adaptive pseudospectral method for Example 4
using various values of � and �.

� � CPU time (s) Collocation points Segments No. of grids Jacobian density Jacobian entries

100 Global — — — — — —
10−1 3 10.34 30 4 5 10.5 1856
10−2 3 21.47 75 6 8 6.1 5804
10−3 3 36.68 120 14 12 3.0 7796
10−4 3 119.78 260 34 19 1.3 16196

subject to the dynamic constraints (that correspond to motion over a spherical nonrotating Earth)
are modeled in spherical coordinates as

Phases 1 and 3:

ṙ =v sin �

�̇= v cos � cos �

r cos �

�̇= v cos � cos �

r

v̇=−D−g sin �

�̇=−1

v

(
g− v2

r

)
cos �

�̇=−1

v

v2

r
cos � cos � tan�

Phases 2:

ṙ=v sin �

�̇= v cos � cos �

r cos �

�̇= v cos � cos �

r

v̇=−D−g sin �

�̇= 1

v

[
−qS

m
u2−

(
g− v2

r

)
cos �

]

�̇=−1

v

[
qS

m cos �
u1+ v2

r
cos � cos � tan�

]

(51)

where r is the geocentric radius, � is the longitude, � is the geocentric latitude, v is the speed, � is
the flight path angle, � is the heading angle, g=/r2 is the gravitational acceleration,  is the
gravitational parameter, and q=�v2/2 is the dynamic pressure. Phases 1 and 3 of this problem
occur outside of the atmosphere whereas phase 2 occurs in the atmosphere. The impulses �V1∈R3,
�V2∈R3, and �V3∈R3 are modeled in Earth-centered inertial (ECI) Cartesian coordinates and
are applied at the beginning of Phase 1, the end of Phase 2, and the end of Phase 3. Each impulse
is transformed to spherical coordinates via the transformation

{�V}sph =T s
e (�V), (52)

where T s
e is the nonlinear transformation from ECI to spherical coordinates (see Appendix). The

first impulse de-orbits the vehicle into the atmosphere, the second impulse boosts the vehicle upon
atmospheric exit, and the third impulse circularizes the vehicle into its final orbit. The controls
during atmospheric flight are u1 and u2, defined as

u1 = −CL cos 	,

u2 = −CL sin 	,
(53)

where 	 is the bank angle. The controls u1 and u2 are constrained by the inequality path constraint

√
u21+u22�CL ,max, (54)
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where CL ,max is the maximum allowable coefficient of lift. It is noted that the bank angle can be
computed from u1 and u2 as

	= tan−1(u1,u2), (55)

where tan−1 is the four-quadrant inverse tangent. The initial conditions correspond to an equatorial
circular orbit of altitude h0 and are given in terms of orbital elements as

a = Re+h0, e=0,

i = 0◦, �=0◦,

� = 0◦, �=0◦,

(56)

where a, e, i , �, �, and � are the semi-major axis, eccentricity, inclination, longitude of ascending
node, argument of periapsis, and true anomaly, respectively [44], and Re is the equatorial
radius of the Earth. Next, the following inequality constraint is imposed at the terminus of
Phase 2:

�(t (2)f )�0, (57)

where t (2)f is the time at the end of phase 2. Finally, a terminal constraint is placed on the
inclination as

cos i(t f )=cos �(t f )cos �(t f ). (58)

For this example we choose i(t f )=10◦ and a maximum lift coefficient CL ,max=0.4. The problem
is solved using a canonical system of units where length is in units of Earth radii (Re), time is
in units of

√
/Re, speed is in units of

√
/Re , and mass is in units of initial spacecraft mass.

Finally, it is noted that the mass drop across an impulse is taken into account by reducing the mass
using the rocket equation

‖�V‖=g0Isp ln(m
+/m−), (59)

where m+ and m− are the values of the mass immediately before and application of the impulse,
�V, and Isp is the engine specific impulse. Thus, this example contains continuous variables (state
and control) along with the static optimization parameters �V1, �V2, �V3, and the values of mass
m(1)), m(2), and m(3) that represent the mass during phases 1, 2, and 3.

The solution to the aeroassisted orbital transfer optimal control problem was obtained using
the hp-adaptive pseudospectral method of Section 6 using �=3, �=10−4 and an initialization of
10 collocation points per phase. In phases 1 and 3 single global segments of 10 collocation points
each were obtained with a maximum value of Equation (27) of O(10−11). Phase 2 consisted of
seven segments each of five collocation points, except that the first and last segments of phase 2
have 15 collocation points. It was found that the maximum of Equation (27) of the solution on the
final grid in phase 2 is 8.66×10−5.

The solution on the final grid in phase 2 (i.e. the atmospheric phase) is shown in Figure 8. In this
problem it is interesting to observe that the collocation points are densely located near the minimum
altitude. The dynamics change most rapidly near the minimum altitude because the atmospheric
force is the greatest in this region (thus providing the greatest lift on the vehicle anywhere on the
trajectory). Consistent with this last observation, Figure 8(d) shows that the bank angle changes
most rapidly near minimum altitude. Finally, Figure 8(f) shows the Hamiltonian, H , as a function
of t . It is seen that the Hamiltonian is close to zero, as expected because the Hamiltonian is not
an explicit function of time and the final time is free.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Solution of Example 5 in Phase 2 on final grid: (a) altitude vs longitude;
(b) altitude vs speed; (c) flight path angle vs speed; (d) bank angle vs time; (e) coefficient

of lift vs time; and (f) Hamiltonian vs time.

8. DISCUSSION OF RESULTS

The results of Section 7 demonstrate several key features of the hp-adaptive pseudospectral method
developed in this paper. Example 1 is a problem with a nonsmooth optimal control where the
hp-adaptive pseudospectral method is both more computationally efficient and more accurate than a
global approach. In addition, the hp-adaptive solution contains many fewer total collocation points
as compared with a global approach. Because the optimal control in Example 1 is nonsmooth (in
this case, discontinuous in the control), a global approximation was unable to provide a solution
where tighter tolerances (e.g. 10−2) were used. Also, it was found for this example that using
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Equation (27) as a convergence criteria results in a very conservative approximation of the true
accuracy in the state. The actual accuracy of the state on the final grid was 1–2 orders of magnitude
greater than the maximum residual of Equation (27).

In Example 2, the location of the segment breaks and allocation of collocation points changed
as a function of the final time. Specifically, for this example the percentage of the solution in the
‘take-off’ and ‘landing’ decreases as t f increases. For small-to-moderate values of t f , a global
approach was feasible for only loose accuracy tolerances. For larger values of t f (e.g. t f =5000),
the hp-adaptive method developed in this paper was computationally efficient and gave solutions
to tighter accuracy tolerances than global collocation. In the case of large t f it was found that the
placement of the collocation points was as expected, that is the hp-method placed a large number
of collocation points in the ‘take-off’ and ‘landing’ segments (where the state and control change)
and placed many fewer collocation points in the ‘cruise’ segment. As t f is increased further, greater
computational resources were required but computationally efficient solutions were still obtained.

Examples 3 and 4 re-emphasize the increased accuracy and computational efficiency of the
hp-adaptive pseudospectral method of this paper over global collocation. Example 4 demonstrates
how the hp-method of this paper treats a problem with active inequality path constraints. Similar to
the results of Examples 1, the hp-adaptive method is more efficient and accurate than a p-method.
In this example, the p method did not converge for very loose accuracy tolerances. Interestingly,
when the hp-adaptive method is used, the segments are divided near the activity/inactivity of the
path constraint. In addition, many segments and collocation points were used to capture the ascent
of the aircraft from the runway. In contrast, the final segment of the trajectory has significantly
less interesting behavior and, thus, fewer collocation points and segments are used to approximate
this section of the trajectory.

Example 5 shows the utility of the hp-adaptive method on a multiple-phase problem. In this
example suitable solutions were found using a mixture of globally collocated phases (phases 1
and 3) and a phase that requires segmentation (phase 2). The key attribute of the hp-adaptive
pseudospectral method for this example is that the collocation points were more densely located
in the middle of the atmospheric phase. The behavior of the adaptive hp-adaptive pseudospectral
method for Example 4 is similar to that of Example 2, i.e. the collocation points are located in
regions where the greatest action takes place.

9. POSSIBLE LIMITATIONS OF THE hp-ADAPTIVE PSEUDOSPECTRAL METHOD

While the hp-adaptive pseudospectral method developed in this paper has been found to be
successful on a range of problems, it has some possible limitations that we now describe. First, in
the approach developed in this paper, the mesh can only increase in size. For example, in Example 1
the method terminated using more segments than were theoretically necessary. If it was possible to
decrease the number of collocation points or segments, the result might have been a three-segment
solution with a short segment bracketing the control discontinuity. Ideally, two segments connected
at the exact location of the discontinuity would be utilized. The inefficiency of terminating with
six segments, while not significant in Example 1, might be important in other applications (e.g. a
problem with a multiple bang-bang solution). Second, the method may have some difficulties on
a problem with a very high frequency periodic solution. For such a problem, because the solution
is smooth, the method may not divide the problem into segments. Instead, the method may simply
increase without bound the degree of a global polynomial approximation used. Finally, from our
experience it typically takes many grid iterations when � is small. Reducing the number of times
that the NLP solver is called would greatly increase the efficiency of this hp scheme.

10. CONCLUSIONS

An hp-adaptive pseudospectral method has been developed for solving optimal control problems.
A strategy has been devised that determines the locations of segment breaks and the degree of
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the polynomial approximation required in each segment. The method has been applied to several
examples of varying complexity. It has been found that the method produces solutions with
better accuracy than global pseudospectral collocation while utilizing less computation time and
resources. The method is demonstrated on a wide variety of applications ranging from problems
with nonsmooth solutions to multiple-phase problems where the dynamics change more rapidly
in certain regions of the trajectory than in other regions. The method has been integrated into a
previously developed open-source pseudospectral optimal control software and is found to be a
viable way to solve optimal control problems using pseudospectral methods.

APPENDIX A: TRANSFORMATION FROM ECI CARTESIAN TO
SPHERICAL COORDINATES

Consider a point in three-dimensional Euclidean space whose position (measured from the center of
the Earth) and inertial velocity are modeled in Earth-centered inertial (ECI) Cartesian coordinates
as r= (x, y, z) and v= (vx,vy,vz). Let r , �, �, v, �, and � be the geocentric radius, longitude,
latitude, speed, flight path angle, and heading angle. Together (r,�,�,v,�,�) define a set of
spherical coordinates. The transformation from ECI to spherical coordinates is given as follows.
First, the radius and speed are computed as

r = ‖r‖2=
√
x2+ y2+z2,

v = ‖v‖2=
√

v2x +v2y+v2z .

(A1)

Next, the longitude and latitude are computed as

� = tan−1(y, x),

� = tan−1(z,
√
x2+ y2),

(A2)

where tan−1(·, ·) is the four-quadrant inverse tangent. Finally, the flight path angle and heading
angle are computed as follows. First, let

er =r/r, e� = Ez×r
‖Ez×r‖2 , e� =er ×e�, (A3)

where Ez = [0 0 1]T. We then define the vector vs as

vs = [er e� e�]
Tv=

⎡
⎢⎣

vr

v�

v�

⎤
⎥⎦ . (A4)

The flight path angle and heading angle are then computed as

� = tan−1(vr ,
√

v2� +v2�),

� = tan−1(v�,v�).
(A5)
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