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CONVERGENCE AND STABILITY PROPERTIES OF THE DISCRETE
RICCATI OPERATOR EQUATION AND THE ASSOCIATED

OPTIMAL CONTROL AND FILTERING PROBLEMS*

WILLIAM W. HAGERt AND LARRY L. HOROWITZ:

Abstract. The convergence properties for the solution of the discrete time Riccati matrix equation
are extended to Riccati operator equations such as arise in a gyroscope noise filtering problem. Stabiliz-
ability and detectability are shown to be necessary and sufficient conditions for the existence of a
positive semidefinite solution to the algebraic Riccati equation which has the following properties:
(i) it is the unique positive semidefinite solution to the algebraic Riccati equation, (ii) it is converged
to geometrically in the operator norm by the solution to the discrete Riccati equation from any positive
semidefinite initial condition, (iii) the associated closed loop system converges uniformly geometrically
to zero and solves the regulator problem, and (iv) the steady state Kalman-Bucy filter associated with
the solution to the algebraic Riccati equation is uniformly asymptotically stable in the large. These
stability results are then generalized to time-varying problems; also it is shown that even in infinite
dimensions, controllability implies stabilizability.

1. Introduction. The purpose of this paper is to prove that the convergence
and stability properties associated with the Riccati difference equation in finite
dimensions also hold for the Riccati operator equation in infinite dimensions.
Many of the finite-dimensional results already in the literature will also be
strengthened. The Riccati difference equation has been studied by Caines and
Mayne [2], Lee, Chow and Barr [9, and Zabczyk [10.

In finite dimensions, the first paper proved that if a stabilizability and an
observability assumption held, then the solution to the Riccati difference equation
converged to a positive definite matrix solving the algebraic Riccati equation,
and furthermore, the solution to the algrebraic equation was unique in the class
of positive semidefinite matrices. Their proof, however, required the Heine-Borel
theorem (a closed, bounded set of n x n matrices forms a compact set) so that
the proofs could not be extended to the Riccati operator equation.

The paper by Lee, Chow and Barr then showed that in a Hilbert space
environment, the solution to the quadratic cost control problem could be expressed
in feedback form in terms of the solution to the Riccati operator equation, and
when the system dynamics were stable, then there existed a solution to the algebraic
Riccati equation.

Zabczyk weakened this stability condition to stabilizability and then showed
that if the cost functional was positive definite in the state variable, then the
solution to the algebraic Riccati operator equation was unique in the class of
positive semidefinite operators and furthermore was the limit (in the operator
norm) of the solution to the Riccati equation from any positive semidefinite
initial condition.

This paper contains the results above as special cases. The observability
condition of Caines and Mayne and the positive definiteness of the cost functional
required by Zabczyk are weakened to deteztability. The positive definiteness of
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296 WILLIAM W. HAGER AND LARRY L. HOROWITZ

the Riccati equation solution proved by Caines and Mayne is also proved in the
infinite-dimensional framework. Furthermore, it is shown that the solution to
the regulator problem associated with the Riccati equation is uniformly asymp-
totically stable in the large if a detectability condition is satisfied and there
exists a positive semidefinite solution to the algebraic Riccati equation.

The paper reaches its climax in 5, where it is proved that stabilizability
and detectability are necessary and sufficient conditions for the existence of a
positive semidefinite solution to the algebraic Riccati equation which has the
following properties: (i) it is the unique positive semidefinite solution to the
algebraic Riccati equation, (ii) it is converged to geometrically in the operator
norm by the solution to the discrete Riccati equation from any positive semi-
definite initial condition, and (iii) the associated closed loop system converges
uniformly geometrically to zero and solves the regulator problem.

The stability of the Kalman-Bucy filter for time-varying infinite-dimensional
systems under stabilizability and detectability is also treated in the Appendix.
This weakens the conditions of controllability, observability, and nonsingularity
of the transition operator that Deyst and Price 3] required in their proof of the
stability of the solution to the time-varying filtering problem in finite dimensions.

The paper concludes with an illustration of the use of the Riccati operator
equation in filtering the noise additively corrupting a gyroscope’s output signal.
In this example, the domain of the Riccati operator is an LZ-space.

2. Problem statement. Let K(S, T, i) denote the solution to the Riccati
operator equation given by

(1) K(i- 1)= A*(i){K(i)- K(i)B(i)[R(i)+ B*(i)K(i)B(i)]-’B*(i)K(i)}A(i)+ Q(i)

with boundary condition K(T) S, where is an integer, __< T, and the following
operators appearing in (1) are uniformly bounded linear mappings on Hilbert
spaces Y and U Q(i): Y Y, S: Y Y, A(i): Y --* Y, B(i): U Y, and R(i): U U.
(Throughout this paper, the term operator will mean a bounded linear ,operator.)
The inner products on both Hilbert spaces will be denoted by (.,.)--the inner
product being used should be clear from context. The norm of a vector y Y is
given by {[YI[ (Y, y)l/2 and the norm of a linear operator P: Y Y is given by
I[P[[ sup PY Y }. The operator P* denotes the adjoint of an operator P.
P is said to be positive if it is positive semidefinite and self-adjoint; i.e., P* P
and (y, Py) >_ 0 for all y Y. The operators Q(i), R(i), and S are assumed positive,
and furthermore, R(i) is assumed uniformly positive definite, i.e., (u, R(i)u) >_ a[[u[[ 2

for some a > 0 and for all u U, where "a" is independent of i. The notation

P1 => P2 and P1 > P2 means that P P2 is positive semidefinite and positive
definite respectively.

Associated with the Riccati equation is the control problem:

(2) Minimize
{,i)} I(Sy(T)

(3)

y(T)) + {(y(i), Q(i)y(i)) + (u(i), R(i)u(i))}
io

Subject to y(i + 1)= A(i)y(i) + B(i)u(i),

Y(io) Yo Y, u(i) U.
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DISCRETE RICCATI OPERATOR EQUATION 297

Let J(S, T, io, Yo) denote the optimal value for the control problem above. As
shown in [1] for finite-dimensional spaces,

(4) J(S, T, io, Yo) (Yo, K(S, T, io)Yo),

and the optimal control in feedback form is given by

(5) u(i) -JR(i) + B*(i)K(S, T, + 1)B(i)]-1B*(i)K(S, T, + 1)A(i)y(i).

The extension of these results to Hilbert spaces is trivial as noted in [6], since the
dynamic programming argument used in the derivation of (4) and (5) does not
require finite-dimensionality and can be performed in a Hilbert space environment.

The cost function (2) is nonnegative, so (4) implies that K(S, T, i) >= 0 for all

=< T, and hence the inverse appearing in (1) and (5) exists and is bounded since
R(i) > 0. Thus K(S, T, i) is a positive operator for __< T.

When (1) is time-invariant (i.e., A(i) A, B(i) B, etc.), then also associated
with (1) is the algebraic Riccati equation (abbreviated ARE)"

(6) K A*[K- KB(R + B*KB)-1B*K]A + Q.

Similarly associated with the control problem when the system is time
invariant is the regulator problem

(7) Minimize (y(i), Qy(i)) + (u(i), Ru(i))
{u(i)} i= 0

(8)
Subject to y(i + 1)= Ay(i) + Bu(i),

y(O) Yo 6 Y, u(i) 6 U.

Let J(Yo) denote the optimal cost for the regulator problem above.
The estimation problem, or dual problem corresponding to the control

problem, is given in Appendix C.
For future reference, the following abbreviations are used throughout the

paper:
ARE algebraic Riccati equation
UASL uniformly asymptotically stable in the large
ST stabilizability
DT detectability
CT controllability
OB observability

3. The assumptions. The following stabilizability and detectability assumptions
will appear in the development. These conditions are first stated for time-invariant
problems:
(ST) There exists an integer r > 1, a constant q, and an operator L such that

(9) II(A.- BL)rll < q < 1.

(DT) There exist integers s, >= 0 and constants 0 <= d < 1, 0 < b < oo, such that
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298 WILLIAM W. HAGER AND LARRY L. HOROWITZ

whenever IA’y >: d lyl, then

(10) Y’
i:0

a*iQaiy) >: b(y, y).

When the problem is time varying, we replace L in (ST) by a sequence {L(i)}
of uniformly bounded linear operators and require

k+r-1

(ST’) 1-I (A(i)- B(i)L(i)) < q <
i=k

for k 0, r, 2r,
Similarly in (DT) we replace A by C(i + k,k), where C(i,k)= A(i- 1)

A(i- 2)... A(k) and C(i,i)= I, the identity operator, and require that for
all k _> O, whenever [[C(k + t,k)y[[ >= d[[y[[, then

(DT’) y, C(k + i, k)*Q(k + i)C(k + i, k)y] b(y y).
i=0

Special cases of (ST) and (DT) are the controllability and observability
conditions"

(CT) There exists an integer r _> 0 and a constant 0 < a < o such that

(11) Y’
i=0 ziBB*Z*iY) a(y, y)

for all y e Y.

(OB) There exists an integer s _> 0 and a constant 0 < b < such that

(12) (Y’ i=0 A*iQAiY) >--b(y’ y)

for all y e Y.
Note that (OB) is trivially a special case of (DT). At the end of 4, it will

also be shown that (CT) implies (ST).
Recall that in finite dimensions, the pair of matrices [A, B] are said to be

stabilizable if there exists a matrix L such that the spectral radius p(A BL)
is less than 1. (A, B, and L are assumed to be n x n, n x m, and m x n respectively.)
Similarly [C,A] is detectable if [A*, C*] is stabilizable. Note that it follows
immediately that (ST) is equivalent to the condition p(A BL) < 1 for some L
since p(P) limk_ IIPII 1/ (see [4, p. 567]).

In Appendix B, it is proved that in finite dimensions, (DT) is equivalent to the
condition that p(A* C’L) < for some L where Q C*C.

4. The main results. The first lemma gives a uniform bound for the solution
K(S, T, i) of the Riccati equation (1).

LEMMA 1. If (ST’) holds, then there exists a constant c independent of and T
such that K(S, T, i) < cI and J(y) < cllyll 2, where J(Yo) is the optimal cost for the
regulator problem (7).
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DISCRETE RICCATI OPERATOR EQUATION 299

Proof. By the relation (4), the bound on K(S, T, i) will be proved if the
optimal cost in the control problem (2) can be bounded in terms of the initial
condition Yo. Since the operators A(. ), B(. ), and L(. are all uniformly bounded,
there exists a constant c such that

j+m

(13) I-I IlN(i) =< c
i=j

for all m satisfying 0 _< m < r, where N(i) A(i)- B(i)L(i). (Throughout this
paper, c will denote a generic constant whose value does not depend on T or
and whose value in different equations may change.)

Using the control u(i) L(i)y(i) in the system dynamics leads to the
estimates

(14) y(k / 1)1 IIN(k)y(k)ll I-I (N(i))yo <= cqk/" Yo
i=0

where the last inequality follows by grouping the operators N(i) into groups of
r factors and then applying the bound (ST’). Since u(i)= -L(i)y(i), then u(i)
obeys a similar estimate. Inserting these bounds on u(i) and y(i) into the cost
functional (2) leads to a bound on J(S, T, i, Yo) of the form c =o qZk/llYo 2.
Since q < 1, the geometric series is convergent and J(S, T,i, yo)< cllYol] 2 as
desired. Since c is independent of T and i, then the bound on J(y) also follows
immediately.

A sequence ofoperatorsP is said to converge strongly to P iflim_ (P P)Y
0 for all y e Y. An elementary property of operators is the following (see [4,

p. 925])" Suppose {P} is a sequence of uniformly bounded self-adjoint operators
satisfying Pk =< P+ for k >__ 0" then {P} converges strongly to a self-adjoint
operator P satisfying P =< P for all k _>_ 0. The sequence P converges weakly to P if
limk_ (z, (P P)y) 0 for all y, z e Y. It can be shown that this last condition is
equivalent to requiring lim_, (Y, (P P)Y) 0 for all y e Y.

For the remainder of this section, we will only be dealing with the time-
invariant Riccati equation and control problem. In Appendix A, the question
of stability for time varying systems is considered. Let K(T, i) denote the solution
to the time-invariant Riccati equation when the terminal condition vanishes
(s 0).

TI-IEORFM 1. If J(O, T, O, y) < c y 2 for some c independent of T, then K(T, i)
converges strongly as T--. o to a positive operator P that satisfies the ARE.

Proof. Since (4) holds, then K(T, i) < cI and hence K(T, i)[ is uniformly
bounded by c. Also, (y, K(T1, i)y) J(O, TI, i, y) >__ J(O, T2, i, y) (y, K(Tz, i)y)
whenever T __> T2 since increasing the terminal time cannot decrease the optimal
cost. Thus by the remarks preceding the theorem, K(T, i) ---, P strongly as T o.
If F(K) denotes the right-hand side of (6), then (1) can be written as K(T + 1, i)

K(T,i 1) F(K(T, i)), where the first equality follows since the equation is
time-invariant. Now K(T + 1, i)--, P strongly as T---, oc and furthermore by
[4, p. 922], F(K(T, i)) F(P)strongly as T . Thus P F(P)and hence P
solves the ARE.

Combining Lemma 1 and Theorem 1 yields the following.
COROLLARY 1. If (ST) holds, then K(T, i) P strongly as T--. , where P

solves the ARE.
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300 WILLIAM W. HAGER AND LARRY L. HOROWITZ

Later it will be shown that when (DT) holds and there exists a positive solution
to the (ARE), then (ST) holds.

The stability of the solution to the following system when P is a positive
solution to the ARE will now be studied"

(15) y(i + 1)= Ay(i) + Bu(i), y(O)= Yo, u(i)= Fy(i),

(16) F -[R + B*PB-B*PA.
The following system of inequalities and equalities plays an important role in
the development"

(17) -(u(i), B’PAy(i)) (u(i), [R + S*PS]u(i))

(18) (y(i), Py(i)) >= (y(i), Py(i)) (y(j), Py(j))
j-1

(19) (y(k), Py(k)) (y(k + 1), Py(k + 1))
k=i

j-1

(20) (y(k), Py(k) A’PAy(k)) (u(k), B’PAy(k))
k=i

(B’PAy(k), u(k)) (u(k), S*PSu(k))
j-1

(21) (y(k), Qy(k)) (u(k), S*PSu(k)) (u(k), B’PAy(k))
k=i

j-1

(22) (y(k), Qy(k)) + (u(k), nu(k)) >= O.
k=i

Above, j > and (17) follows by multiplying u(i)= Fy(i) by [R + B*PB] and
(18), (20), (21), and (22) follow by the positivity of P, (15), the ARE that P satisfies,
and (17), respectively.

THEOREM 2. J(0, T, 0, y) < c Yll 2 for some constant c independent of T if and
only if there exists a positive solution to the ARE.

Proof. The theorem in the forward direction was proved by Theorem 1.
Now suppose P is a positive solution to the ARE and let y(i) and u(i) be the state
and control generated by (15). Then by the relation (18),

T-1

(23) (Yo, nyo) >= (y(k), Qy(k)) + (u.(k), Ru(k)).
k=0

Since P is bounded, thenJ(0, T, 0, y)__< IIPI y e.
Recall that the dynamical system x(k + 1) f(x(k), k), x(io) Xo is said to

be uniformly asymptotically stable in the large (abbreviated UASL) with respect
to x* if the following holds [8"

(i) Given >0, there exists >0 such that x*-xo __< b implies that
x(k) x* _-< e for any k, o satisfying k => o.

(ii) Given 6 > 0, there exists e > 0 such that ]Ix* Xoll _-< implies
x(k) x* =< for any k, o satisfying k io.

(iii) Given 6, > 0, there exists T such that IIx(k) x* for all k, o, Xo
satisfying k _> T+ oand IlXo-X* _< .
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DISCRETE RICCATI OPERATOR EQUATION 301

THEOREM 3. /f K(T, O) P strongly, P solves the ARE, and the system (15) is

UASL with respect to the origin, then P is the unique solution to the ARE in the
class of positive operators and K(S, T, i) converges strongly to P as T-, c jbr
any S >- O. Also the state and the control generated by (15) are the optimal solutions

for the regulator problem and (Yo, PYo) is the optimal cost.

Prooj: Let {y(i)} and {u.(i)} be generated by (15)using P. Then (18)implies
T-1

(24) (Yo, PYo) >= (y(k), Qy(k)) + (u(k), Ru(k)) >= (Yo, K(T, 0)yo) < J(Yo).
k=0

Since K(T, 0)--, P, then as T- oo, the => ’s in (24) become ’s, and the last =<
implies that {us(i)} must actually achieve the optimal cost in the regulator problem.
Since the cost function (7)is a strictly convex function of {u(i)}, then {u(i)} must
be the unique optimal control sequence and (Yo, PYo) is the optimal cost.

Now consider the following inequalities"

(25)
(Ys(T), Sys(T)) + (Yo, PYo)

T-1

>= (y.(T), Sys(T)) + [(Z(k), Qys(k)) + (us(k), Ru(k))]
k=O

(26) >= (Yo, K(S, T, O)yo) => (Yo, K(O, T, O)yo).

The second inequality above follows since (Yo, K(S, T, 0)yo) is the optimal cost
in the control problem (2) and the third inequality follows since the optimal cost
when S 0 is bounded by the optimal cost when a nonnegative terminal cost is
present. By assumption, the right side of (26) converges to (Y0, PYo) as T--, c,
and since the system (15) is UASL with respect to the origin, then ys(T)-, 0 as
T--, c. Thus all the inequalities in (25) become equalities as T c and hence
K(S, T, O) P weakly. An elementary application of the Schwarz inequality for
positive operators shows that weak convergence implies strong convergence
(see again [4, p. 925]).

If P is any positive solution to the ARE, then it is easy to see that K(P, T, O)
P for all T and since K(P, T,O) P, then P P. I3
Now it is shown that if (DT) holds, then the stability condition of Theorem 3

is satisfied.
THEOREM 4. Suppose P is a positive operator solving the ARE and (DT) holds"

then the solution to the system (15) is UASL with respect to the origin.

Proof. It is shown that [ly(k + i) <= C2 -i/u y(k) for some N, c > 0 inde-
pendent of k and i, so that the theorem follows immediately.

Step 1. Suppose thatjbr some i, [IAty(i)ll >= d y(i) where d was given in (DT);
then there exists a constant m > 0 independent of such that

(27) (y(i), Py(i))- (y(i + s + 1), Py(i + s + 1))>_ m y(i) 2.

Proof of Step 1. Let A2 denote the left side of (27) and let c again denote a
generic constant. By (18),

i+s i+s

(28) A2 >__ (u(k), Ru(k))>_ a lu(k) 2,
k=i k=i

where a satisfies R > al > O.
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302 WILLIAM W. HAGER AND LARRY L. HOROWITZ

Letting z(.) denote the solution to z(k + 1)= Az(k),z(k i)= y(i), then
the error e(k) y(k) z(k) satisfies, for =< k <= + s,

(29)

(30)

e(k + 1) <_ IIAII Ile(k) + [IBll u(k) -< [[AI-JIBIIlu(j)
j=i

__< c Ilu(j)ll < c lu(j)ll 2 _<_ cA,
j=i j=i

where the last set of inequalities follow by the Schwarz inequality and the bound
(28) on the control.

The relation (18) also yields
i+s i+s

(31) A2 __> (y(k), Qy(k)) (e(k) + z(k), Q(e(k) + z(k)))
k=i k=i

i+s

(32) >= (y(i), A*k-iQAk-iy(i))- 2lle(k)l111(211 IAk-iy(i)
k=i

(33) >_ b y(i) z cAlly(i)

where b was given in (10); the inequality (32) follows by the Schwarz inequality
and (33) follows by the bound on e(k) in (30). Completing the square in (33) leads
to Ily(i)ll 2 _< cA2, the desired result.

Step 2. Suppose that ]]A’y(i)]] <_ d]ly(i)ll for i= k,k + t,..., k + nt. Then
there exists a constant m independent of n and k such that I[y(i)[[ 2 _<_ m[ly(k)ll 2 for
k<i<_k+nt.

Proof of Step 2. For notational convenience, suppose k 0. First let j It
where 0 < < n. Then

(34)

IIY(j)
t-1

A’y(j- t) + AiBu(j- -i)
i=0

(35) dlly(j- t)[ + c
t-1

u(j-l-i)ll 2

i=0

-< d]ly(j- t)

1/2

t-1

Ilu(J- 1 i)[[
i=0

(36)
j-1

--< dilly(O)[ + c llu(i) ll2
i=0

where .’.he Schwarz inequality was used to derive (35) and the last inequality
follows by writing the solution to the difference inequality (35) as the convolution

2 /2 dof the forcing term c( o lu(j- 1-i)11 ) with and then applying the
Schwarz inequality to the convolution; since d < 1, then the d2i factor in the
Schwarz inequality is bounded. Now by (18),

j-1

(37) a Ilu(i)ll 2 IIPII Ily(0)l[ 2

i=0

where R > aI. Inserting this bound in (36) yields the desired estimate for j lt.
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DISCRETE RICCATI OPERATOR EQUATION 303

For It < j < (l + 1)t, the relation y(k + 1)= Ay(k) + Bu(k) combined with the
bound (37) on the controls and the bound above on ly(lt)l[ proves the estimate.

Step 3. Suppose that sj+ >- sj, sj - oe as j and Isj sj+ 11 is bounded
independent of j. Then there exists a constant c independent of j such that
=< c y(sj)ll for sj < < sj+ and for all j.

i-1 Ai- 1Bu(k). Since liProof of Step 3. y(i)= Ai- Jy(s) + k=sj k-

=< IS+I SI is uniformly bounded, then the bound on y(i) follows immediately
from a bound of the form (37) on the controls where y(0) is replaced by y(s) and
the summation is from k sj to 1.

Let be the maximum constant given in Step 3 corresponding to those.
sequences of integers {sj} satisfying sj+ sj + s + 1. Now choose N1, N2, and
N3 large enough that the following conditions hold"

(38) P[ /mN1 < 1/4,

(39) dN21/2 + c(PII/aN3) 1/z < 1/2,

(40) where/ max {M, MDIIPII/m},

where m was given in (27), M appeared in Step 2, c is the same constant appearing
on the right side of (36), D appeared above at the end of Step 3, and d < is given
in (DT). Let N NINzM3 max (s + 1, t).

Step 4. There exists [k, k + N] such that I]Y(i)II < 1/2 y(k)ll for any k >= O.
Proof. For notational convenience, choose k 0. Construct a sequence

and {f} as follows" to 0;for j >= 0,

if A’y(tj)[I <= dlly(tj)ll, then tj+l tj + t, f 0,

if A’y(tj)l >d y(tj) thent+l =tj+s+ 1, fj= 1.

By (18), (y(tj), Py(tj)) (y(tj+ 1), Py(tj+ 1)) => 0, so combining this with (27) yields

(41) (y(tj), ey(tj)) (y(tj+ Py(t + >__ fmlly(tj) 2.

Let J be the first index with tj _> N. Adding the inequalities (41) for j 0, 1,...,
J- yields

(42)

J-I

Pll ly(0) (y(0), Py(O)) (y(tj), Py(ts)) + fjmlly(tj) 2

j=0

_-> f mlly(t )l
j=O

If at least N1 of the f do not vanish, then the sum on the right side of (42) is
bounded below by raN1 min I[y(tj) 2, where the min is over j such that f 1.
If j n achieves the minimum, then Ily(t,)ll z <= IIPII Ily(O)lle/mNx. Hence Step 4
would follow by (38).

Now if less than N1 of the f equal 1, then there is a sequence of N2N3 con-
secutivej’s with f 0 since N NN2N3 max (s + 1, t)and hence J >= N1N2N3.

Letkl tjbechosensuchthatf+i 0for0 <=iN N2N3 andeitherf_
or tj 0. Let k2 tl mark the end of this sequence of f’s that vanish. By Step 2,
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304 WILLIAM W. HAGER AND LARRY L. HOROWITZ

Ily(i)ll 2<_ Mlly(kl)ll 2 whenever kl <i=< k2. If f./_l 1, then the inequalities
Ily(k)ll2 < Dlly(tj-x)ll2<= DIIPII Ily(O)ll2/m follow by Step 3, the choice of D
above and (42). Combining these last two sets of inequalities yields ]ly(i)l] 2

<= MDIIPII Ily(O)ll2/m if k - 0 and Ily(i)ll 2 __< Mlly(0)ll 2 if kl 0. Thus Ily(i)ll 2

<= lly(0)l[ 2, where is given in (40).
Divide [k,k2] into subintervals of length N2t. Since Ikl- k21 => N2N3t,

then there are >= N3 Of these subintervals. By (37), one of these subintervals [r r2]
must satisfy

’2

(43) y,, ilu(i)ll 2 < IIPI ily(0)]12
i= r aN3

(i.e., the smallest sum of the form (43) is bounded by the average sum).
For j rl + N2t r2, the inequality (34) implies

(44) IlY(r)ll <-_ dllY(r)ll + c Ilu(i)

Inserting the bounds above on Ily(i)ll and (43) into (44) yields

(45) Ily(r=)ll _-< d=-/ + Cag3 y(0) < 1/211y(0)l,

where the last inequality follows by (39). This completes Step 4 and the geo-
metric convergence follows by combining Steps 3 and 4. !-1

COROtAR 2. If P is a positive solution to the ARE and (DT) holds, then P is
the unique solution to the ARE in thb class of positive operators and K(S, T, i) --, P
geometrically in the operator norm as T oe for any S >= O. Also the state and the
control generated by (15) are optimal solutions to the regulator problem and the
solution to the system (15) converges to zero uniformly and geometrically.

Proof. By Theorems 2 and 1, there exists a solution P to the ARE such that
K(T, i) P strongly as T --, oe. By Theorem 4, since (DT) holds, the system (15)
is UASL with respect to the origin and hence by Theorem 3, P P and (Yo, PYo)
is the optimal cost for the regulator problem.

Let y(T, i) denote the optimal solution to the control problem (2) in the
time-invariant case when S 0 and io 0. It can be shown that y(T, i)--, 0
uniformly and geometrically as T oe. This follows since (18) holds with (y(i), Py(i))
replaced by (y(T, i), K(T, i)y(T, i)), and hence all the steps of Theorem 4 are valid
with y(i) replaced by y(T, i) and P replaced by K(T, i). Note that the proof of
Theorem 4 required a bound on IIPII and hence will require a uniform bound on
IlK(T, i)ll for the finite terminal-time case; however, since (Yo, PY0) is the optimal
cost for the regulator problem by Theorem 3, then (Yo, PYo) >-- (Yo, K(T, i)yo) and
tlPII >_-IIK(r,i)ll. (Berberian [11] shows that if Z is a positive operator, then
Ilzll sup {(y, zyl" Ilyll }3

Now (Yo, PYo) <- (Yo, K(T, 0)yo) + (y(T, T), Py(T, T)).

Combining this with (25) yields

(y(r), sy(r) + (yo, eyo) >-_ (yo, I(s, r, 0tyo

->- (Yo, PYo) (y(T, T), Py(T, T)).
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DISCRETE RICCATI OPERATOR EQUATION 305

Since there exist c, q satisfying IIy(T, T)II, IIy(T)I[ cqWl[yol and 0 < q < 1, then
I(Yo, PYo K(S, T, 0)yo)[ =< cq2llyoll2 for some c > 0. Hence Berberian’s theorem
can now be used to prove that liP K(S, T, 0)ll _-< CQ2L

The remaining results in this corollary follow from Theorems 3 and 4.
To summarize the previous results we have the following theorem.
THEOREM 5. If (ST) and (DT) hold, then K(S, T, i) converges geometrically in

the operator norm as T to a positive operator P that is the unique positive
solution to the ARE. Also, the control and state generated by (15) is UASL with
respect to the origin and is the unique solution to the regulator problem.

When the control problem is observable, then any positive solution to the
ARE is actually positive definite.

THEOREM 6. Suppose P is a positive solution to the ARE and (OB) holds. Then
P > 0 and is the unique solution to the ARE in the class of positive operators.

Proof. By Step 1 of Theorem 4, whenever (10) holds, then (27) holds. When
the control problem is observable, however, (10) holds all the time so (yo,PYo)
_> (y(s + 1),Py(s + 1)) + mllYoll 2 >= ml Yo 12 for some m > 0. The fact that P is
the unique positive solution to the ARE follows by Corollary 2.

Now cases, are presented where the converse of Corollary holds.
THEOREM 7. If there exists a .positive solution P of the ARE such that the

system (15) is UASL with respect to the origin, then (ST) holds.
Proof. Define G A B[R + B*PB]- 1B.PA and suppose Gk >_- for all

k >= 0. Then there exists Yk such that Ilakyll > 1/2 and Ilykll 1. This contradicts
condition (iii) in the definition of UASL and so there exists r _>_ 0 with IIGrll < 1.
Now (ST) holds for L [R + B*PB]-IB*PA.

COROLLARY 3. If there exists a positive solution P to the ARE and (DT) holds,
then (ST) holds.

Proof. This follows immediately by Theorems 4 and 7.
THEOREM 8. If (CT) holds, then (ST) holds.
Proof. The solution to the system equation (3) is

(46) y(r + 1)= Ar+yo + A’Bu(r- i)= A+xyo + M[u(0),..., u(r)],
i=0

where M is the linear operator on the controls appearing in the middle of (46).
Note that the range space of M contains the range space of MM* and furthermore
the operator MM* is precisely the operator appearing in (11). Thus MM* is
positive definite and hence there exists a solution to the equation -A+lyo
MM*y. Hence the control sequence M*y inserted in (46) yields y(r + 1) 0.

From the equation that satisfies and the positive definiteness of MM*, al].]] 2

<_ (y;, MM*) -(y;, A+ ly0) __< I]l A] +l[lyol or II.[I -< c Yoll, where "a" is
given in (11).

Now choose Q, R to be any positive operators satisfying R, Q > 0. Using the
control sequence M* for the controls {u(0), ..., u(r)} and u(j)= 0 for j > r
results in y(j) 0 for j > r and the cost function (2) is bounded by cllyoll 2 since
IlY _-< cllyoll and the first r + controls are given by M*.. By Theorem 1, there
exists a positive solution of the ARE and since Q > 0, then (DT) holds. Corollary 3
completes the proof, l-I
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306 WILLIAM W. HAGER AND LARRY L. HOROWITZ

Remark. It also follows that the steady state Kalman-Bucy filter for the dual
estimation problem corresponding to the control problem (2) in the time-invariant
case is uniformly asymptotically stable in the large with respect to the origin
when (DT) holds and P solves the ARE. The homogeneous part of the Kalman-
Bucy filter (presented in Appendix C) is given by

x(n+ 1In + 1)

(A*-PB[R + B*PB]-IB*A*)x(n[n)

(A*-PB[R + B*PB]-IB*A*)"+’x(OlO)

{A[A B(R + B*PB)-B*PA]"[I- B(R + B*PB)-’B*P]}*x(O[O),

where the last equation follows by taking the adjoint of the prior equation twice
and then regrouping terms. Theorems 4 and 7 imply that

][A- B(R + B*PB)-1S*nA]k]] <

for k large enough. Thus it is easy to see that the homogeneous part of the Kalman-
Bucy filter is UASL.

5. Necessary and sufficient conditions. The results of the previous section are
now tied together in the following theorem.

THEOREM 9. The following conditions are all equivalent"
(a) (ST) and (DT) hold.
(b) There exists a unique positive solution P to the ARE. For any S >= O,

K(S, T, i) P geometrically in the operator norm as T , and the solution to (15)
both solves the regulator problem and is UASL with respect to the origin.

(c) There exists a positive solution to the ARE and (DT) holds.
(d) (DT) holds and J(O, T, O, y) <= cllY[ 2 for some c independent of T.
Proof. By Theorem 2, (c) and (d) are equivalent. By Theorem 5, (a) implies (c)

and by Corollary (2), (c) implies (b). The proof will be complete when it is shown
that (b) implies (a).

If (b) holds, then by Theorem 7, (ST) holds. Now suppose (DT) is violated and
let P be as given in (b). Then given any e, T, t, there exists y(, T, t) such that
[[y(e, T,t) 1, IA’y(e, T,t)ll > 1/2, and (y(e, T,t), M(T)y(e, T,t)) <= e, where
M(T) -o’ A*iQA’"

Now fix and define F(P)= A- B[R + B*PB]-1B*PA. It is easy to see
that there exist constants c, 6 > 0 depending on P such that ]IF(P)-F(P’)]]
<= c IP P’]I whenever P P’I =< 5. Let y(e, T, t, i) and ys(e, T, t, i) denote the
solutions to y(i + 1) F(K(T,i + 1))y(i), y(0) y(e., T, t) and z(i + 1) F(P)z(i),
z(0) y(e, T, t) respectively.

The error e(e, T, t, i) ys(e, T, t, i) y(e, T, t, i) is the solution e(i) to the
equation

e(i + 1)= F(K(T, + 1))e(i)+ IF(P)- F(K(T, + 1))]y(, T, t, i)

F(K(T, k)) 6F(T, j)y(e, T, t, j),
j=0 k=j+2

where 6F(T, i) F(P) F(K(T, + 1)) and e(0) 0.
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DISCRETE RICCATI OPERATOR EQUATION 307

Since the system (15) is UASL with respect to the origin, and lys(e, T, t, 0)1
[y(e, T, t)[[ 1, then lys(e, T, t, i)[ is bounded uniformly in e, T, t, and i. By

Theorem 3, (yo,PYo) is the optimal cost in the regulator problem and hence
P >= K(T, i) >_ 0 for =< T and K(T, i) is bounded uniformly in T and i. Also,
note that if a > 0 satisfies R > aI, then II[R + B*ZB]-111 <= 1/a for any positive
operator Z and hence IIF(K(T,i))II is uniformly bounded. Combining these
uniform bounds with the fact that is fixed and II6F(T, 1)ll IIF(K(T, i)) F(P)
<= c K(T, i) PII 0 as T , implies that for T sufficiently large, lie(e, T, t, t)ll
__< (independent of

Now hold T fixed and consider the following lemma.
LEMMA 2. Suppose (., is a continuous bilinear form on U x U satisfying

(u, u) >__ a[ u 2 for all u U and some a > 0 independent of u, and( is a bounded
linear operator. Then the problem to minimize J(u) (u, u) + (u) over u U has
a unique solution u* U and u u* 2 (J(u) J(u*))/a.

Proof of lemma. The existence and uniqueness of u* and the necessary
condition 2’(u u*, u*) + M(u u*) 0 for all u e U follows by [12]. If J(u) is
expanded about u* and the necessary condition is applied, then the following
holds" J(u) J(u*) (u u*, u u*) >= allu u*l 2. [[]

Note that the control problem (2) satisfies the conditions for the lemma since
(u(k), Ru(k)) >__ al u(k)ll 2 (where R > aI > 0), (y(k), Qy(k)) >= O, and the cost
functional is a quadratic in {u(i)} when {y(i)} is expressed in terms of {u(i)}. Thus
if J(e, T, t) denotes the optimal cost in (2) when the initial condition is y(0) y(e, T, t)
and S 0, and Jo(e, T, t) is the cost generated by the control sequence u(k) 0
for k > 0 starting from the same initial condition, then the relation e >= (y(e, T, t),
M(T)y(e, T, t)) Jo(e, T, t) >= J(e, T, t) >= 0 implies that /a >__ (Jo(e, T, t) J(e, T, t))/a
>= =--01 liu(e, T, t, i)[ 2, where u(e, T, t, i) is the optimal control sequence for the
control problem (2) corresponding to the initial condition y(0) y(e, T, t). (Recall
that the solution to y(i + 1)= F(K(T,i + 1))y(i), y(O)= y(e, T,t), which was
labeled y(e, T, t, i) above, is also the solution to the control problem (2) and so the
notation above for the optimal control is compatible with the notation for the
optimal state.)

Let yo(e, T, t, i) denote the solution to y(i + 1)= Ay(i), y(O) y(e, T, t).
Then the error e0(e, T, t, i) y(e, T, t, i) yo(e, T, t, i) satisfies the equation e(i + 1)

Ae(i) + Bu(e, T, t, i), e(0) 0. Using the above bound on the controls implies
that for e sufficiently small, [leo(e, T, t, t)ll

To summarize,

lY(, T, t, t) Yo(e, T, t, t) IIY(, T, t, t) y(, T, t, t)ll

+ Ily(e, T, t, t) yo(e, T, t, t)

By assumption, IlYo(, T, t, t)ll- IlAty(e, T, t)ll > 1/2. Thus for all t, it is possible
to choose T large enough and e small enough so that lys(e, T, t, t) > 1/4. However,
this violates the assumption that the system (15) is UASL with respect to the
origin (see condition (iii) in the definition of UASL). Hence (DT) must hold. I-]
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308 WILLIAM W. HAGER AND LARRY L. HOROWITZ

6. A gyroscope noise filtering problem. A practical problem motivating the
study of operator Riccati equations is the gyroscope noise filtering problem
which is described briefly below. The additive noise corrupting gyroscopic output
readings are observed experimentally to often possess a 1/f behavior in power
spectral density over a wide band of frequency. To model this noise as the output
of a linear system, a continuum of first order linear systems are used with time
constants, r, of the linear systems described by a probability density function p(r).
The filtering problem is equivalent via duality to solving the following operator
control problem.

The state y(k) Yis given by a pair [b(., k), a(k)], where a(k) is an m vector
and b(-, k) L2([-rl, r2]) i.e.,

f]2 b(r, k)2 dr < .
The limits r and r2 satisfy 0 < rl < r2 < cZ3. The inner product on Y is given by

(y, y)= b(t)b(t)dt + aa,

where y Ibm(. ), a] and y [ba(.), a]. The controls u(k)e U are scalars
and the inner product on U is simply multiplication. The operators A and B in
the system dynamics (3) are given by

A[b(. ), a] [e-/(’)b( ), ia],

B[u] [p(. )u, hu],

where p(. is bounded and measurable, A is an m x m matrix, h is an m x vector,
and z > 0.

The cost functional is

(Sy(T), y(T)) + Q(r)b(r, k)2 dr + a(k)*Qa(k) + u(h:)2d
k=0

where Q >= 0 is an m m matrix, Q(r) >= c > 0 is a bounded measurable function,
d > 0 is a scalar, and S __> 0 is a positive semidefinite operator.

Note that this problem is not controllable and, in fact, inserting the operators
A and B into the controllability condition (11) results in

p(r) e-zi/’b(r) dr >- a b(r)2 dr
i=0

for some a > 0 and for all b L2([rl, r23). This is clearly impossible (for example,
consider a sequence of functions {bj(. )} converging to a delta function). The L2

part of the system dynamics, however, trivially satisfies the stabilizability condition
with L 0 since e -z/r =< e -/r2 < 1 for rl <_ r =< r2 < . The L2 part of the
system dynamics is also observable for s 0 since Q(r) => c > 0. Thus if the linear

=- Y*Q2 ] > 0system a(k + 1) Aa(k) + hu(k) is stabilizable and the matrix [k= o
for some s, then all the theorems in 4 apply.

More details on the gyroscope problem are given in [6].
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Appendix A. Stability of the time varying Kalman-Bucy filter and control
problem solution. The stability result in Theorem 4 can be generalized to the time-
varying case, where

y(i + 1)= A(i)y(i) + B(i)u(i),

y(0) yoe Y,

u(i) F(S, T, i)y(i),

F(S, T, i) -JR(i) + B*(i)K(S, T,i + 1)B(i)]-1B*(i)K(S, T,i + 1)A(/).

Note that since K(S, T,. )is only defined on [-v, T], then y(.) is only defined on
[0, T], and hence it no longer makes sense to ask whether y(. is stable. However,
(ST’) and (DT’) are sufficient to prove the following properties for Y(Yo, T,. ),
the solution to the system above"

(i) Given e > 0, there exists 6 > 0 such that Yo __< 6implies that
lIT(To, T, 011 -< whenever T > __> 0 (6 independent of T).

(ii) Given 6 > 0, there exists e > 0 such that Y(Yo, T, i) < whenever
[Yol =< 6 and T >__ >= 0 (e independent of T).

(iii) Given e, 6 > 0, there exists T’ such that lIT(Y0, T, i)l[ =< whenever
IT(To, T,j)ll =< and T >= > j + T’ (T’ independent of T).

This is essentially the same as the definition of UASL except that the index
for y(. must be confined to the range 0 =< =< T. The proof of these results is
identical to the proof of Theorem 4. Note that the condition (18) holds with
(y(k), Py(k)) replaced by (y(k), K(S, T, k)y(k)). All the steps of Theorem 4 are valid
in the time-varying case with K(S, T, j) replacing P. Since a bound was required
on IP in various places in the proof, we must now require that K(S, T, j) be
bounded uniformly in T and j. Lemma 1, however, shows that when (ST’) holds,
[K(S, T, j) is bounded uniformly.

As in the remark at the end of 4, it follows that the Kalman-Bucy filter
for the dual estimation problem corresponding to the control problem is uniformly
asymptotically stable in the large with respect to the origin in the time-varying
case when (ST’) and (DT’) hold.

Appendix B. (DT) and detectability. We now show that in finite dimensions,
(DT) is equivalent to the condition p(A* C’L) < 1 for some L where Q C*C.
Hautas proves [5] that this last condition is equivalent to requiring that every
unstable eigenvector of A is observable, i.e., when e is an eigenvector of A corre-
sponding to the eigenvalue 2 and I,l >_- l, then Ce =/= O.

PrtOPOSITION B.1. Every unstable eigenvector of A is observable if and only if
(DT) holds for Q C*C.

Proof. If (DT) holds, Ae 2e, Ilell 1, and Il _-> 1, then IIAell _> Ilell and
hence by (10),

e,
i=o A*iC*CAie) i=o

121ZillCellZ >= b > O.

Thus Ce :/: O.
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310 WILLIAM W. HAGER AND LARRY L. HOROWITZ

Conversely, suppose every unstable eigenvector of A is observable. It is easy
to see that the nullspace of M(k) i=o A*iC*CAi is contained in the nullspace
of M(k 1). Thus the nullspace is a decreasing function of k and there exists some
integer s such that the nullspace is unchanged for k >__ s.

We only treat the case where there is a complete set of normalized eigenvectors
{ek} corresponding to the eigenva|ues {2j}. The changes necessary for defective
eigenvalues are summarized at the end of the proof.

If d is any constant satisfying 0 < d < 1, then the following result is now
proved"

(*) There exists an integer > 0 such that whenever [[A’yl[ dl[Yll, then the
expansion y a,e, has a 0 for some unstable eigenvector e.
Form the matrix N e1, e2, e,]. Since the {e} are independent, then

N- exists and hence if yll and x (al, a2, "-, a,)* is defined by x N-
then xl12= lal 2 __< IN-II 2. Define a IIN-I and choose large enough
so that if2k is a stable eigenvalue, then 12kl’ < d/(na). If Ily and IIA’y[ >= d, then
expanding y in terms of {ek} leads to IIAtyll I[At E akekll lie ak2kekllt >= d.
Suppose that ak vanishes for all the unstable eigenvectors. Then the bounds
]akl <= a and Ilekl imply that IIak2ek < ]kl’a < d, where the last
inequality follows since the previous sum is only over stable eigenvalues. This is
a contradiction, and hence ak cannot vanish for all the unstable eigenvectors.

Let f be any vector that minimizes (y, M(s)y) over all real vectors satisfying
Y and ]lAtyll => d, and suppose that the optimal value of this minimization
problem is zero. If it is not zero, then (DT) is immediately satisfied. Recall that
a positive semidefinite matrix can be expressed as DrD so that (f, M(s)f)= 0
if and only if M(s)f 0. Thus M(k)f 0 for k >_ s since the nullspace of M(k) is
invariant for k => s. Since Zf[ _>_ d, then aj - 0 for some unstable component in
the expansion f a,e,. Let 2j be the eigenvalue of the biggest modulus such
that aj -- 0, and first let us assume that 2j is real. Then lim_.oo 2f’A’f e, where
e is an unstable eigenvector (note that any nonzero linear combination of eigen-
vectors corresponding to a given eigenvalue is also an eigenvector corresponding
to the same eigenvalue). Thus lim,_,ool2il-2’(f,A*’C*CA’f)= Ilfell 2. Since
M(k)f 0 for k >= s, then CA’f 0 for k => s and hence Ce 0. This violates the
assumption that none of the unstable eigenvectors of A lies in the nullspace of C.

If 2j occurs in a complex conjugate pair, then 12jl-’CA’f --, C(ei’e +
where 0 is the complex conjugate of e. Since 0 4: 0, , then as k ---, oe ,we conclude
that two linearly independent combinations of 0 and e lie in the nullspace of C
(i.e., there exists a subsequence kj of the k’s that converges to a vector in the null-
space of C. Then consider k) kj + and extract another convergent subsequence).
Hence Ce CO 0 which is again impossible.

We now summarize the changes for the case of defective eigenvalues. Write
A in Jordan canonical form as A NDN-1, where D has eigenvalues on the
diagonal and either l’s or O’s on the upper subdiagonal. Let {e} denote the
columns of N. The proof above is almost unaltered until the point where it was
shown that Ce 0 which violated the condition that the unstable eigenvectors
cannot lie in the nullspace of A. Note now that e may no longer be an eigenvector
however, if ej is not an eigenvector, then one property of the Jordan decomposition
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DISCRETE RICCATI OPERATOR EQUATION 311

above is that Aej 2jej + ej_ 1" Thus Akej for k large enough will have a component
which is an unstable eigenvector. The remainder of the proof (which is still very
complicated) involves looking at convergent subsequences as above in the case of a
complex conjugate pair of eigenvalues.

Appendix C. The estimation problem. The estimation problem corresponding
to the control problem (2) is now presented. Consider the following linear system
and observation sequence {z(i)}

x(i + 1)= A*(i)x(i) + w(i),

z(i) B*(i)x(i) + v(i),

where (i) w(i), x(i) Y, z{i), v(i) U, (ii) x(0 is a random variable with mean Xo
and covariance Zo satisfying E[(Fx(O))2] FZoF* for any F:Y--, R the real
numbers, (iii) {w(i)} and {v(i)} are zero mean white noise with covariances {Q(i)}
and {R(i)} satisfying E[(Fw(i))2] FQ(i)F* and E[(Gv(i))2] GR(i)G* for any
F’Y R and G’U R respectively. Also, x(0), {w(i)}, and {v(i)} are assumed
uncorrelated.

The estimation problem is to find a sequence of vectors {)2(ili)} that minimizes
E[((ili) x(i), 2(ili) x(i))], where the estimate 2(ili) is based on the observations
to time i. The Kalman-Bucy filter corresponding to the estimation problem is
given by

92(n + lln / 1)-- A*(n)2(nln) / Y(n + lln)B(n / 1)JR(n+ 1)+B*(n+ 1)

E(n + lln)B(n + 1)]-l[z(n / 1)- B*(n + 1)A*(n)2(nln)],

t(010) Xo,

where E(n + lln) is generated by

E(n / lln)-- A*(n)[Y(nln- 1)- (nln- 1)B(n)[R(n)/ B*(n)E(nln- 1)B(n)] -
B*(n)E(nln 1)]A(n) +

(o, ) o.
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