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LIPSCHITZIAN STABILITY IN NONLINEAR CONTROL
AND OPTIMIZATION*

ASEN L. DONTCHEVJ" AND WILLIAM W. HAGERt

Abstract. This paper studies Lipschitz properties, relative to the parameter p, of the set of solutions to
problems of the form

Find zfp such that Tp(Z) Fp(z).

As applications, various problems in control and optimization are examined, focusing in particular on the
stability of the feasible set of a control problem, and the stability of solutions of infinite-dimensional
mathematical programs and optimal control problems. In another application, an estimate is obtained for
the error in the Euler approximation to an optimal control problem.
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1. Introduction. This paper presents a general framework for analyzing Lipschitz
stability in control and optimization. As applications of the theory, we study the
dependence on a parameter ofthe set of controls and states that satisfies given inequality
constraints. We also study the dependence on a parameter of the optimal solutions of
various problems in nonlinear control and optimization.

The paper begins by studying (in 2) the following problem:

(1) Find z [p such that Tp (z) Fp (z),

where p is a parameter, Tp maps f/p to Yp, Yp is a normed linear space, and Fp(z) is
a subset of Yp for each z fp. Loosely speaking, we proceed in the following way:
Along with (1), we consider an auxiliary problem

(2) Find z flp such that Lp(z)+y Fp(z),
where y Y is treated as a new parameter. It turns out that if Lp approximates Tp in
a suitable sense, and if the set of solutions of (2) possesses certain Lipschitz properties
with respect to y, uniformly in p, then the set of solutions of (1) will have analogous
properties with respect to p. In particular, if Tp is smooth, then Lp can be its linearization.
For a nonsmooth Tp, we should choose a nonsmooth Lp.

Our abstract approach is based on a refinement of the set-valued contracting
mapping principle (Lemma 1). An existence result given in Theorem 1, leads to various
stability results. In particular, Corollary 1 obtains an estimate for the distance from a
reference point to the set of solutions of (1). In Corollary 2, we assume that f/, F, and
L are independent of p, obtaining an implicit function theorem: If the solution set of
(2) is pseudo-Lipschitz with respect to y around some given point, and if L strongly
approximates Tp, then the set of solutions of (1) is pseudo-Lipschitz as well. Corollary
3 obtains a result related to metric regularity of the map T-F.
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Generalized equations of the form (1) have been considered by Robinson in a
series of papers [35]-[38] with 12 and F independent of p. Our analysis contains some
of his results. While the theory of [35]-[38] is applied to finite-dimensional mathe-
matical programming problems, our focus here is infinite-dimensional optimization,
primarily optimal control. Our analysis is more in the spirit of [19] and [20].

Recently, a different approach to sensitivity based on nonsmooth analysis and the
differentiability properties of set-valued maps was developed by Aubin [4], Aubin and
Frankowska [6], Rockafellar [39] and [41], King and Rockafellar [24], Mordukhovich
[32], and others. In [16] this approach is applied to various control problems. A
motivation for the nonsmooth approach to Lipschitz stability is given by Rockafellar
in [40].

An outline of our paper follows, while detailed comments connecting specific
results in our paper to related literature appear throughout the paper. Section 3 examines
the feasible set for a nonlinear control system with inequality state and control
constraints that depend on a parameter. We show that if the functions defining the
constraints are sufficiently smooth, and if an interior point condition holds for a
linearized system, then the feasible set is pseudo-Lipschitz. Moreover, the interior point
condition holds if the gradients of the active constraints satisfy an independence
condition, the same condition that appeared in Hager’s analysis [18] of Lipschitz
continuity in time for an optimal control. At the end of 3, we present an example of
a nonsmooth control system with state and control constraints, and we demonstrate a
method for proving local controllability.

Section 4 considers a quadratic minimum problem in a reflexive Banach space
with linear cone constraints. We show that a coercivity condition together with surjec-
tivity of the gradients of the (active) constraints guarantee local Lipschitz continuity
of the solution relative to the data. In 5 we apply this result to a nonlinear optimization
problem, and a quadratic program plays the role of an auxiliary problem.

In 6 we consider a nonlinear control problem with convex control constraints.
The treatment of the control problem requires special care due to the discrepancy
between the function spaces needed for coercivity and for differentiability. An example
shows that the method of analysis can still be applied, even when the coercivity
condition is violated.

Finally, in 7 we obtain error estimates for Euler’s approximation to a nonlinear
optimal control problem with convex control constraints. In this case, the parameter
p in (1) corresponds to the mesh spacing. The key step in the analysis is to show that
the solution of a perturbed discrete linear-quadratic problem, related to the auxiliary
problem (2), depends Lipschitz continuously on a parameter, uniformly in the mesh
spacing. Our method makes use of the so-called averaged modulus of smoothness,
introduced by Sendov and Popov [42]. When the optimal contol has bounded variation,
the error in the discrete control is on the order of the mesh spacing.

2. Abstract theory. Let Z be a Banach space, let 12 be a closed subset of Z, let Y
be a normed vector space, and let 2 Y denote the collection of subsets of Y. Given a
map T" 12-> Y and a map F" i2-> 2 Y, we consider the following problem"

(3) Find z i2 such that T(z) F(z).

Of course, for appropriate choices of l-l, T, and F, (3) may represent an equation, an
inclusion, or a variational inequality. In this section, conditions are formulated that
guarantee a solution to (3). This existence theorem applied to perturbations of (3)
yields stability results. Throughout this paper, [1. denotes a norm in the appropriate
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space. Given subsets P and Q c Z, the one-sided distance from P to Q (or excess
function), denoted [[P-Q[, is defined by

P Q! sup inf P q II.
pP qQ

If Q is empty, we set lip- Q[=oo. Given z Z, let Br(z) denote the closed ball with
center z and radius r.

We will use a contraction mapping principle for set-valued maps to obtain an
existence result for (3). The proof that follows is similar to the usual proofs for the
existence of a fixed point (see [22, p. 31] or [34]); however, since our Lipschitz
assumption (b) below is weaker than the usual Lipschitz assumption, we include a
proof for completeness. Although this fixed point result is stated for a Banach space,
it holds in any complete metric space.

LEMMA 1. Let :1)- 2a with (z) closed for every z 1). Suppose that there exist
real numbers r and A, and Zo 1) with the following properties:

(a) 0<=A<I and ),,Zo-.Zo.[<r,
1-A

(b) II(y) FhBr(zo)-(z)l-Al[y-zll for every y and z Br(zo) f-I1).

Then there exists z Br(zo) gl 1) such that z (z). If is single-valued, then assumption
(a) can be replaced by

(a’) 0<_--A<I and IIz-(z)[[=<r,
1-h

and there exists a unique z Br(zo)["]1) with z =(z).
Proof By assumption (a), there exists z,(Zo)such that I]z-zo[[<r(1-A).

Proceedings by induction, suppose that there exists Zk+(Zk)Br(ZO) for k=
1,2,...,n-1 with I[Zk+--Zkll<r(1--A)A k. By assumption (b) and the induction
hypothesis, we have

]lz. -(z.)l--< I]I’(z._,) t3 B(zo)- (z.)l--< llz. z.-, < r(1 )".

Hence, there exists z.+,(z.) such that Ilz.+,-z.ll<r(1-A);". By the triangle
inequality,

k =0 k =0

so that zn+ B(zo). This completes the induction step.
By the triangle inequality and for n > rn, we have

n--I n--1

z. z <= Y z.+l z. =< r(1 A) A k < rA
k--rn k----

Thus the Zk form a Cauchy sequence that converges to some limit z B(zo)f3 1). By
assumption (b),

IIz -(z)l-< @(z-,) F1 B(zo) -(z)l z-,- zll.
Again, by the triangle inequality,

I1-()1--< I1-zll / IIz ()l--< I1 11 / 11-,- zll,
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which approaches zero as k increases. Since (z) is closed, it follows that z (z).
If is single-valued, then by (b), z is the unique element in Bt(zo)fqf for which
z=(z).

Given y Y and a mapping L from Z to Y, consider the auxiliary problem

(4) Find z f such that L(z)+y F(z).

Note that the set of solutions to (4) is closed if L is continuous and the graph of F is
closed. Given Zo Z and Yo 6 Y, define the parameters Dr and 6 by

T(z) T(y) L(z) + L(y)
sup and

y,zzon IIz-yll
yz

6 T(zo) L(zo) Yoll.

If L is a bounded, linear operator, and Zo lies in the interior of , then Dt 0 when
r-0 if and only if T is strictly (Fr6chet) differentiable at Zo (see [5, p. 16]). We have
the following generalization of [20, Thm. 1].

THEOREM 1. Let 3/ and r be real numbers that satisfy the relations

(5) O <- 3/Dt < and r > 3/6
1 3

Defining the set

mr-- [,.J { T(z) L(z)},
Br( zo)Of

let denote a map from A to 2a with the following properties" Zo6 (yo), (Y) is a
closed, nonempty subset of the solutions to (4) for each y At, and

(6) II(y,) o Bt(zo)- q(Y2)l ylly,-y2l[ for every y, and y2e At U {yo}.

Then (3) has a solution z Bt(zo). If in addition there is only one solution of (4) for
every y At, then z is the unique solution of (3) in Bt(zo), and the second condition in

(5) can be weakened to r >=
Proof We apply Lemma 1 with (z)=(T(z)-L(z)). Thus z is a solution to

(3) if z (z). By (6), we have

[[(z) n Bt(zo)-(y)[<= yll T(z)- T(y)-t(z)+ t(y)l[--< yOllz-Yll

whenever y and z Br(zo) I"] . Hence, satisfies (b) of Lemma 1 with constant h 3/Dr.
Since Zo V(Yo), it follows that

Zo ,(zo)l (yo) f-I Bt(zo) (T(zo) L(zo))[
-< rllyo/ L(zo)- T(zo)ll-

Dividing this inequality by 1 -A, we see that r > Ilzo-’(zo)l! (1 -h). Since the contrac-
tion property of Lemma 1 holds on Bt(zo) CI fl, there exists z Bt(zo) with z (z). If
the solution of (4) is unique for every y Ar, then is single-valued on Bt(zo) f.
By Lemma 1, there exists a unique zBt(zo)fqf with z=(z). Hence, there is a
unique solution to (3) in Br(zo).

Remark 1. Note that if cr >= rDt + a, then At c B(yo). To prove this, we take the
norm of the identity

T(z) L(z) Yo T(z) T(zo) L(z) + L(zo)] + T(zo) L(zo) Yo],

where z Bt(zo)CI f, and we apply the triangle inequality to obtain the relation

T(z L(z) Yol[ <= rDr + a <--<_ o’.
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Now we consider a family of equations, each equation depending on a parameter
p contained in a metric space P. Associated with each p P, there is a closed subset
fp of a Banach space Zp, a normed vector space Yp, and a pair of maps Tp:fp Yp
and Fp :fp 2 Y. Analogous to (3), we study the following problem:

(7) Find z lip such that Tp(z) Fp(z).

Let 0 be a fixed element of P. Using Theorem 1, we will study the continuity of the
map p- E(p), where E(p) is the set of solutions of (7), making use of the following
auxiliary problem"

(8) Find zfp such that Lp(z)-byG Fp(z),

where Lp :Zp Yp, and y6 Yp. We give three specific results assuming the maps
appearing in (7) and (8) satisfy certain conditions near a reference point. The parameters
Dr, At, and 6 of Theorem now depend on p as follows:

T(z) Tp(y) Lp(z) + L(y)
Dr(p) sup

.zz. IIz-yll
yz

a(p)=ar(p,), where Ar(p,x)= tA {Tp(z)-Lp(z)}, and
Br(x)Ol"

(p) T(z)- t(z)-Y II.
(Although the norms above may depend on p, this dependence is not indicated
explicitly. In 5 we consider a finite-dimensional discretization of an optimal control
problem, in which case the norms depend on the mesh spacing.)

COROLLARY 1. Let p denote a map from a neighborhood of yp to 2t with the
following properties: zp p(yp), p(y) is a closed, nonempty subset of the solutions to

(8) for each y A(p), where cr > O, and for some 3" and a > O, we have

(9) IIp(y)fqB(zp)-p(y2)l<-3"lly-y2ll for every y and y2A(p)lO{yp}.

If Dr(p) and 6(p) tend to zero as r and p tend to zero, then for each 3,+> 3’ and for
each p sufficiently close to zero, (7) has a solution z such that

(10) IIz,,- ell--< r/ll T,(z,)- L,(z,)-YpII.

If there is only one solution to (8) for every y A(p), then z, satisfying (10), is the
unique solution of (7) in a neighborhood of Zp.

Proof Apply Theorem 1 with 6=6(p) and r= 3’/6(p). If 6=0, then Zp is a
solution of (7), and (10) holds with z Zp. If 6 > 0, then choose p sufficiently close to
0 that

tr>-r, ),Dr(p)<l, a_->r, and 3’+> 1- 3’D(p)"

Hence, Theorem 1 yields (10). 13
Now we wish to start with a given solution z0 of (7) associated with p 0 and

show that for small perturbations in the parameter, we can solve the equation, and in
some sense, the solution is "well behaved." In this analysis, we allow T to depend on
p, while f and F are independent of p. That is, the following problem is considered"

(11) Find z f such that Tp(z) F(z).
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To study the continuity of the solution map, we work with the fixed auxiliary problem
(4) (L is independent of p).

We define an analogue Er(p) of Dr in which T is replaced by Tp, below:

(12) Er(p) sup
Y,ZEBr(ZO)(- IIz--Yll

yz

T (z) Tp(y) L(z) + L(Y)

Following the terminology of Robinson [38], we say that L(z) strongly approximates
Tp(z) at z Zo and p =0 if and only if Er(p)O as p and r tend to zero. Note that L
does not need to be smooth. For example, if Tp(z)=fp(g(z)), where fp is Fr6chet
difterentiable and g is Lipschitz, but not necessarily differentiable, then L(z)=
f’o[g(zo)]g(z) strongly approximates Tp(z) at z Zo and p =0 under appropriate con-
tinuity assumptions (see [38]).

In the following corollary, we take Zp Zo and yp Yo, and we replace assumption
(9) by pseudo-Lipschitz continuity. Recall (see [4]) that the map is pseudo-Lipschitz
with modulus y, around a point (Yo, Zo) in the graph of, if there exist neighborhoods
V of Yo and U of Zo such that

whenever y and y2 V. Letting ’r(P)--E(p)fq Br(zo) denote the restriction of E(p)
to Br(Zo), we have the following corollary.

COROLLARY 2. Given Zo E(0), define yo To(zo)-L(zo), and let q(y) denote the
set of solutions to (4). We assume that is closed and nonempty-valued near Yo, that
qt is pseudo-Lipschitz with modulus y around (Yo, Zo), and that L strongly approximates
Tp (z) at p 0 and z Zo. If Tp (z) is continuous in p at p O, uniformly in a neighborhood
of z Zo, then for each y+> 3’ and for r sufficiently small, there exists s > 0 such that
’r(P) is nonempty for every p B(0); moreover, for each p and q Bs(O) and for each
zp Er(p), there exists Zq E(q) such that

(13) IIz-zll
If there is only one solution to (4) for every y near Yo, then the solution of (11) is unique
in Br(zo) for every pc Bs(0). Moreover, the gqC.,(q) satisfying (13) also lies in Br(zo).

Proof. Define the parameters

d(a,s)= sup IIY (z)-Yq(z)ll and Dp= sup Ep(p).
p,qE Bs(0) p Bo(O)

Ba(zo)

Let U and V be the neighborhoods of Zo and Yo appearing in the definition of
pseudo-Lipschitz continuity. Choose tr sufficiently small that B(yo)C V. Choose p
sufficiently small that Bo(zo)c U

(14) o’> p/p and y< y+(1-y/p).
Choose a and s sufficiently small that

(15) p>-2a, p>-s, a>y+d(a,s), and o>-_pOo+d(a,s).
Let p B,(0). Referring to Remark 1, we see that Aa(p, Zo) C B(yo). Theorem 1 with
T replaced by Tp and with r= a implies that Ea(p) is nonempty.

Given p and q B(0) and Zp Ea(p), let us apply Theorem 1 with Zo, Yo, and T
in the theorem replaced by zp, yp Tp(zp)- L(zp), and Tq, respectively. In Theorem
1, we take

+r y , where d(a, s).
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If 6 O, then (13) holds trivially by taking Zq Zp. If 6 > O, then by (15) we have

3,6
l-yD,,’

where Op E,(q)<-_ O,. Since Br(zp)C B,(Zo), we have &r(P, Zp) &a(p, 0) B(yo).
Hence, condition (6) of Theorem 1 holds, and (13) is established.

If the map W is single-valued, then there exists a unique solution of (11) in Br(zo)
for every p B(0). Similar to the proof of Theorem 1, the map p(Z)= W( Tp(Z)- L(2))
is a contraction on the ball B(2o) with contraction constant A TD for each p B(0).
The distance from Zp to Zq is estimated by the following sequence of inequalities"

IIz z ll +

which yields (13).
Observe that if there exists a constant K such that Tp satisfies the Lipschitz condition

distance {p, q}

for every z in a neighborhood of Zo, then (13) implies that for every Zp Xa(p), there
exists Zq E(q) such that

IIz - zqll <- distance {p, q};

that is, the map is pseudo-Lipschitz around p 0 and z Zo. Thus we conclude that
if the auxiliary problem strongly approximates the original problem, and if the solution
map of the auxiliary problem is pseudo-Lipschitz, then the solution map of the original
problem is pseudo-Lipschitz as well.

Remark 2. Corollary 2 is a generalization of Theorem 2.1 in [37] and of Theorem
3.2 in [38]. In [37] 12 is a closed convex set, F(z) is the normal cone to 12 at z, Tp(z)
is Fr6chet ditterentiable with respect to z around z Zo and p =0, and both Tp(z) and
its derivative T’p(Z) are continuous with respect to z and p at z Zo and p=0.
Furthermore, it is assumed that (4) with

L(z)= To(zo)+ T’o(Zo)(Z- Zo)

has a unique solution that is Lipschitz near yo=0. In [38] F(z)=0, L(z) strongly
approximates Tp(z) at z= Zo and p=0, and the assumptions for L(z) are equivalent
to the condition that L-1 is single-valued and Lipschitz near 0.

Corollary 2 is an implicit function theorem in which we avoid the surjectivity
(interiority) condition, for a suitably defined derivative, that is usually present in a
Graves-type theorem (see [7, p. 95]). For example, given a closed-valued map F:Z 2 Y

and given (Zo, Yo) in the graph of F, let f:Z Y be a continuous function that is
strictly Fr6chet ditterentiable at Zo. Let us apply Corollary 2 with L(z) -f’(zo)(Z- Zo),
p =y Y, Tp(z)=p-f(z), and q defined by

(y) {z Z: y f’(zo)(Z- Zo) F(z)}.

By Corollary 2, is pseudo-Lipschitz around (Yo, Zo) if and only if the map [F +f]-I
is pseudo-Lipschitz around (Yo +f(zo), Zo).

In the remainder of the paper, we also make use of the following result.
COROLLARY 3. If the assumptions of Corollary 2 hold, then for each y/ > y, there

exist positive constants a, p, and e with the following properties: For every z Ba(zo),
p Bo(O), and Wp F(z) with Tp(z)- wll--< , there exists Zp ,(p) such that

(16) Ilz zpll <= 3’+11Tp(z)- wll.
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Proof. Choose cr and p as in the proof of Corollary 2 to satisfy (14). Let a and
e > 0 be small enough that

_P_>a> y+(17)
2

e and o’>-pD,+e.

Given p B,(O), z B,(Zo), and Wp F(z) with w ll--< let us define yp
Wp- L(z). We apply Theorem 1 with Yo, Zo, and T replaced by yp, z, and Tp, and with
-IIT(z)-wll. If 8=0, then zE(p), and (16) holds. If 8>0, we take r=y+&
Since 8 =< e, it follows from (14) and (17) that

y8 P< r= y+t_-< y+e_-< a_-<<p.1-y(p

Hence, Br(z)c B,(Zo), which implies that Ar(p, z) c A,(p, Zo). By Remark 1 and (17),
we have A,(p, Zo)C B,(yo) so that assumption (6) of Theorem 1 holds. By Theorem
1, there exists a solution Zp Br(z) to (11), where r= 7+8, which establishes (16). !-I

Remark 3. Relation (16) implies that

llz-(p)l -< +II Tp(z)- wpll.
Since the left-hand side of this inequality does not depend on wp, it follows from
Corollary 3 that when ]]Tp(z)-F(z)l is sufficiently stoat1, we have

(18) ]lz E(p)I -< y+ll Tp(z) F(z)l.

In particular, if Tp(z)= T(z)+p, we conclude that the map T-F is metrically regular
around (Zo, 0). It turns out that metric regularity is equivalent to the pseudo-Lipschitz
property (see Penot [33]). For a discussion of related results, see Cominetti [10], and
the references therein.

Corollary 3 is a generalization of Theorem 1 in [36] where the estimate (18) is
obtained under the following conditions: F is a closed, convex cone, independent of
z; Tp(z) is continuously Fr6chet differentiable; and interior point regularity holds. This
regularity condition implies, via the celebrated Robinson-Ursescu theorem (see [36]
and [43]), that the solution map of the linearized (auxiliary) problem is pseudo-
Lipschitz.

3. Feasibility and controllability. As a first appliction of the abstract theory, we
study the continuity of the map "parameter-> feasible set" of a nonlinear control system
with constraints. The following model problem is analyzed" Given an interval I [0, 1 ],
the state x is a map from I to R n, while the control u is a map from I to R ". Given
0 between 1 and oo, let L(R’) denote the space of functions u" I R with lu(t)l
integrable where 1. is the Euclidean norm. Let W1’(R) denote the space of functions
x" I--, R with both x and its derivative in L(R"). We often omit the argument R
or R when the context is clear. Of course, when 0 is oo, these spaces are modified
in the standard fashion" L is the space of essentially bounded functions, and W1’

is the space of Lipschitz continuous functions (or, equivalently, the space of essentially
bounded functions with essentially bounded derivatives). Given functions

fp" R+’ x I-> R , Kp" R" x I R, and Sp" R" x I-> R ,
where p is a parameter, and, given a starting condition a R, the feasible set E(p)
consists of the set of u L and x W1" that satisfy the relations

(t) =fp(X(t), u(t), t) and Kp(u(t), t) <- 0 a.e. I,
(19)

x(O) a, Sp(x(t), t) -<_ 0 for every I.
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Using the notation of (11), the feasible set in the control problem consists of those
z such that Tp(z) F(z), where

a {Z (X, U)" X Cr_. W1’0, u e L, x(O) a},

Tp(x, u)= K(u) and F(x, u)= L

_
S.(x) L

_
Here L denotes the nonpositive functions in L.

Given a pair Zo (Xo, Uo) that is feasible for (19) when p =0, we wish to study
the behavior of E(p) for p near zero. Throughout this section, we make the following
assumption: There exists a closed set A cRnxR"xI and a 8>0 such that
(Xo(t), Uo(t), t) lies in A for almost every /, the distance from (Xo(t), Uo(t), t) to the
boundary of A in the hyperplane R x R x {t} is at least 8 for almost every /, the
derivatives offp(X, u, t), Kp(u, t), and Sp(x, t) with respect to x and u exist on A, and
these derivatives along with the function values are continuous with respect
to (x, u, t) A and p near zero. From the development in 2, Lipschitz properties of
the solution map for the nonlinear problem are related to Lipschitz properties
of the solution map for an auxiliary problem (4) when y is in a neighborhood
of To(zo). We consider the following linearization of (19):

)( t) :o( t) A( t)(x( t) Xo( t)) + B( t)(u( t) Uo( t)) + yl(t),

(20) K(t)(u(t)- Uo(t)) + y2(t) _-<0,

S( t)(x( t) Xo( t)) -t- y3(t) -< 0,

where Yl L, Y2 and Y3 G L, and

A(t) Vxfo(Xo(t), Uo(t), t),

B(t) V ,fo(Xo(t), Uo(t), t),

K(t) V,Ko(uo(t), t),

S(t) VxSo(xo(t), t).

Above any equality or inequality involving measurable functions is interpreted in the
sense "almost everywhere."

From the development of 2, we see that pseudo-Lipschitz continuity of the
feasible map can be deduced from the following three conditions:

(i) Lipschitz continuity of Tp(z) with respect to p,
(ii) Do is sufficiently small,
(iii) The solution map associated with the linearized system is pseudo-Lipschitz.

With regard to condition (i), Lipschitz continuity of Tp(z) with respect to p is equivalent
to Lipschitz continuity of fp (z), Kp (z), and Sp (z) with respect to p. Also, Dp tends
to zero as p tends to zero under our smoothness assumptions. In the following
two lemmas, we study the Lipschitz continuity of the solution map for the linearized
system.

LEMMA 2. Let Zo (Xo, Uo) f be feasible in (19) when p O, let A(y) denote the
set of solutions (x, u) W’ x L to (20), and define yo To(zo). If there exist a > O,
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W E W1’0, and v L such that

vg( t) A( t)w( t) + B( t)v( t),

(21) (K(t)v(t)+ Ko(uo(t),

(S(t)w(t)+ So(xo(t), t)),<--a,

w(0) -0,
i= 1,2,...,/x,

i= 1, 2,..., ,,
then A is pseudo-Lipschitz around (yo, Zo).

Proof This result follows from the Robinson-Ursescu theorem (see [36] and [43])
as stated (for example) by Aubin and Ekeland in [5, p. 132] or Clarke I-9, p. 236]. That
is, if there exists r> 0 such that for each y in a neighborhood of Yo, we can find
z Br(zo) with z A(y), then the map y- A(u) f’) Br(zo) is Lipschitz continuous, from
which it follows that A is pseudo-Lipschitz around (Yo, Zo). The proof of the lemma
proceeds as follows: Given y Y and a pair (w, v) satisfying (21), let x denote the
solution to the differential equation in (20) corresponding to the control u v + Uo and
the starting condition x(0)= a. Observe that x can be expressed as

x= W+Xo+My,

where M is a bounded linear map from L to W’. Hence, we have

S(x Xo) + Y3 S(w + My) + Y3 <= --ce + SMy + Y3- So(xo).

Similarly, putting u v + Uo into the control constraint of (20) gives

K (u Uo) + Y2 --< -a + Y2 Ko(uo).

Thus there exists o->0 such that x and u satisfy the constraints in (20) whenever
y e B(Yo), where

Yo To(zo) Ko(uo)
So(Xo)

By the triangle inequality, we have

Ilu uoll / IIx-xoll--< Ilvll / Ilwll / My II--< Ilvll / Ilwll / IIMII
for every y B(yo). Setting r= Ilvll / Ilwll / IIMII, it follows that Br(zo) A(y) is
nonempty whenever y B(yo). This completes the proof.

The proof of Lemma 2 provides a way to construct a single-valued : For each
y Y, x is the solution of the differential equation (20) corresponding to u v+ Uo.
Now we present a condition that yields the existence of a state and control satisfying
the interior point condition of Lemma 2. This condition is the same one that appeared
in the study 18] of Lipschitz continuous solutions in optimal control. First, we provide
some terminology. We say that a function g is piecewise continuous if there exists a
finite sequence {ti} with

0 o ( ( ( ( N 1,

such that g is continuous on the open interval (ti, t/) for each i, and one-sided limits
exist at each t. A function is piecewise continuously differentiable if it is continuous
and its derivative is piecewise continuous. If K(t) is the coefficient matrix for u in
(20), then K B(t) and K N(t) denote the submatrices of K(t) consisting of rows
associated with those indices for which either

Ko(uo(t), t) 0 or Ko(uo(t), t) < 0, respectively.

In other words, K B(t) and K N(t) are the submatrices corresponding to the binding
and the nonbinding constraints at time t. The submatrices Sn and SN of S are defined
in a similar fashion. Basically, we will show that if the columns of K(t)r and
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B(t) rSB(t)r are uniformly linearly independent, then the interior point condition of
Lemma 2 is satisfied.

LEMMA 3. Let Zo= (Xo, Uo) fl be a point feasible for (19) when p=0, and suppose
that So(a, 0)<0, So(xo) is piecewise continuously differentiable, both Ko(uo) and the
matrices K and B are piecewise continuous, and at each where these piecewise continuous

functions are continuous, the following independence condition holds: There exists fl > 0
such that

IgB(t)rb + n(t)rSB(t)rcl>= t(Ibl / Icl)
for every b and c. Moreover, at a time of discontinuity, this independence condition also
holds, but with replaced by both / and t-, and with the binding constraint set replaced
by those ofKo(uo( t+)) and Ko(uo( t-)), respectively. Then there exist w Wl’ and v L
that satisfy hypothesis (21) of Lemma 2 for some a > O.

Proof. Before considering the state constraints, we give a proof in the case of no
state constraints. We first show that there exist a scalar 8 > 0 and sequences {ti} and
{ri} such that

ti<:’l’i<:ti+l for0=<i=<N, to=to=0, r=tN+=l,
(22) Ko’(Uo(t), t)<=-8 for each ti<: <-

(23) Ig’(t)bl lbl for each ti < < ti+l, for every b,

where the Bi superscript means those rows (or components) associated with the binding
constraints at ri, while the Ni superscript means those rows (or components) associated
with nonbinding constraints at ri. The right-hand side of the inequality KoN,(Uo(t), t)<--
-8 is interpreted as a vector with every component equal to -8.

To prove (22) and (23), we verify that they are satisfied on the closure of each
open interval J where K and Ko(uo) are continuous. Let us define the parameter s(t)
by

e(t) minimum {-Ko(uo(t), t)i: Ko(uo(t), t)i 0}.
li

If all the constraints are binding at t, then we set e(t)= +. The value of Ko(uo) at
an endpoint of J is taken to be its limit at that point. By the continuity assumptions,
it follows that for each J, there exists an open ball O,, containing t, such that

e(t)K’(Uo(S))- for every s O,
2

and

for every s 0,,

where the superscript Bt stands for rows binding at t, while the superscript N, stands
for components nonbinding at t. If is an endpoint of J, then the open ball is replaced
by a half-open ball. By compactness, this cover of J has a finite subcover. In (22) and
(23), the % are the centers of the balls in the subcover, while the ti are arbitrary points
in the overlap region between adjacent balls. The parameter 8 is given by

8 1/2 minimum {e(ro), e(rl),..., e(rN),
The control v that satisfies the interior point condition of Lemma 2 can be

constructed in the following way: Given r> 0 and between ti and ti/l, v(t) is the
minimum norm solution of the equation K’(t)v(t)=-r (if there are no binding
constraints, set v(t)=0). Since Ko(uo(t), t) is nonpositive, we have

(24) KSi(t)v(t)q gg’(Uo(t), t)<--r.
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By (23), the smallest singular value of KB’(t) is bounded from below by 6. It follows
that v(t) has the following bound in the Euclidean norm:

Iv(t)l
6

where/z is the number of component of Ko. Hence, by (22) v also satisfies the inequality

(25) gN’(t)v(t)+ go’(Uo(t), t)<-- IK’(t)l- .
Relations (24) and (25) imply that v satisfies the interior point condition (21) for tr

sufficiently small.
When state constraints are present, this proof must be modified in several ways.

By incorporating the state constraints in the definition of e(t), we can choose 5 to
satisfy the additional relation

So,(Xo(t), t) -< -6 for each t _<- -< t+.
In addition, the independence condition (23) generalizes to the form

(26) IgB’(t)rb + n( t) rS’( t) 7"cl >--  (Ibl + Icl).
Similar to the control constrained case, we wish to construct a control v and a state

w such that K n,v(t)=-or and SO’w(t)=-o" for between t and t/, and both v
and w are bounded pointwise by a constant times o-. This construction is complicated
by the fact that v and W must satisfy the linear differential equation in (21).

The proof proceeds by induction, interval by interval, from left to right. Suppose
that on the interval [to, tk] we can construct a control v and a corresponding state

w such that for each cr sufficiently small, we have

Iw(t)l<-c, S-,w,(tk)---o-,
where c is independent of tr, and with a =tr, the control v v and the state w w
satisfy the relations (21) on the interval [0, t]. We now show that this construction
can be continued on the interval Its, t+]. The control v and the state w on the new
interval are chosen to satisfy the relations

K B(t)v(t) -tr, for k ( <-- tk+l,

(27) (Sn(t)W(t)),=(Sn(tk)W,(tk)),+y,(t--tk) for tk <t<--tk+e,

Sn(t)w(t) -o" for tk + e < <-- tk-.

The parameters y and e are selected so that (Sn(tk+e)W(tk+e))=--tr, or
equivalently, so that

(Sn( tk)w( tk))i-I- O"

Since w(tk) tends to zero as tr tends to zero, it follows that for any e, y tends to zero
as tr tends to zero.

To obtain a control that satisfies (27), we differentiate the second and third
equations in (27) and we substitute from the state equation ff Aw+ Bv to obtain

dSB(t)Sn(t)B(t)v(t)=yi-w(t)-Sn(t)A(t)w(t) for tk<t<--_tk+e,
dt

(28)

Sa(t)B(t)v(t) dSn(t)
w(t) SB(t)A(t)w(t) for k-I- 13 < < tk+dt
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By the independence condition (26), the minimum norm control v(t) that satisfies the
equation K Bk(t)v(t)--or along with (28), where w is the solution to

b( t) A( t)w( t) + B( t)v( t), w( t) w(t),
is bounded pointwise by a constant times tr. If the ith state constraint is binding at
both ’k-1 and Zk, then by the construction of w, we have

(S(t)w(t))i -or for tk <- <-- tk+l,

which implies that

(S(t)w(t)+ So(xo(t), t))i<--r for tk <- <- tk+.

If the ith state constraint is nonbinding at either Zk- or Zk, then So(Xo(tk) tk)i<--6.
Hence, for e sufficiently small, So(xo(t), t)i--< 6/2 for between tk and tk -[- e. Taking
tr sufficiently small yields

(S(t)w(t)+So(Xo(t), t)),_<--6/4 for tk <--t<--tk+e.
Now consider in the interval Irk-[-e, tk+]. If the ith constraint is binding at Zk, then

(S(t)w(t)+ So(xo(t), t))i<-o
If the ith constraint is nonbinding at Zk, then

(S(t)w(t)+ So(xo(t), t))i<=iS(t)w(t)[-6.
Since w is bounded by a constant times tr, the induction step is complete.

To conclude, we state a specific sensitivity result for the feasibility problem (19)
based on Corollary 3.

THEOREM 2. If (X0, t/0) isfeasible in (19) whenp O, and there exist a > O, w W1’

and v L satisfying (21 ), then for each p in a neighborhood of 0 and for each (x, u)
in a neighborhood of Zo-(Xo, Uo), there exists Xp and Up that are feasible in (19), and
we have

(29) IIx,-xll ,,o+llu,-ull   c(llL(x,
where the "+" subscript stands for the positive part and c is independent ofp.

Proof. Relation (29) follows from Corollary 3 and Lemma 2, where we identify
the z of Corollary 3 with the pair (x, u), while wp is identified with the triple (0, Kp (u)_,
Sp(x)_). Here the subscript "-" stands for the negative part.

Remark 4. Using generalized derivatives of set-valued maps, a result related to
Theorem 2 is established in [16, Thm. 10.1] for a problem with final state constraints.
A linear system with convex state and control constraints is studied in [14].

We can use the same approach to study local controllability. The following simple
example illustrates the basic ideas. Let us consider the nonsmooth control system

(30) .(t) -Ix(t)[ + x(t) u(t) + u(t) a.e. 6 I,
with the constraints

x(0)=0, x(t)>-_t-1 for every t/, -1-<u(t)-I a.e. tel, x W’, uL.
A control system is locally controllable around 0 at t- if for each a near zero that
satisfies the state constraints at 1, there exists a feasible trajectory with x(1)= a.
We will apply Corollary with the following identifications:

f {(x, u) W’xL:x(O)=O,x(t)>-t-1
for every 6/, -1 =< u(t) -<_ a.e. I},

Tp(x, u) [3 [xl XSu tt] and Fp(x, u) O.
x(1)-p
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Local controllability is equivalent to existence of a solution to (7) for every p-> 0, p
sufficiently small.

In applying Corollary 1, we take P R/, the nonnegative real numbers, Zp Zo-=
(Xo, Uo) 0, Yo 0, and

x(1)

With this definition, the auxiliary problem becomes the following:

(31)
Find (x, u) 11 such that

:(t) -Ix(t)]- u(t) + yl(t) 0, x(1)+y2=0.

Hypothesis (9) of Corollary is satisfied if there exists a single-valued map from
Lx R to wl’x L, with (0) =0, with (x, u) xtt(y, y2) a solution of (31), and with

Lipschitz continuous on the set A(p) of Corollary 1. It can be verified that the
following choice for has the desired properties:

1-e’
el y-

(y)
Y2 y(
-e

t)

(Note that if (y, y) A(p), then y2<-_O since p _-> 0.) Hence, the control system (30)
is locally controllable around 0 at 1.

4. Quadratic programs. In applying the results of 2 to problems in optimal
control and mathematical programming, we must derive Lipschitz results for the
auxiliary problem. This section collects properties of quadratic programs that are
relevant to the analysis.

LEMMA 4. Let X denote a reflexive Banach space, let A X be a nonempty closed,
convex subset, and consider the problem

(32) minimize 1/2(Ax, x)+(ck, x) over x A,

where (.,.) denotes the duality pairing between X and the dual space X*, b X*,
A X - X* is a continuous linear operator, and (Ax, y) (Ay, x) for every x and y X.
If there exists a constant cr > 0 such that

(33) (A(x,-xz),x,-xz)>-_ ,llx,-xzll for every x and xzG A

then there is a unique solution to (32), and is the unique solution to the following
variational inequality:

(34) Find A such that (A + ok, x 2) >= 0 for every x A.

IfXl and x2 denote the solutions of (32) corresponding to ck qb and ck ck2, then we have

(35)

Proof. In a Hilbert space, the existence of a solution : to (32) and the correspon-
dence between a solution to (32) and a solution to (34) is found for example, in [26,
Chap. 1]. The Lipschitz result (35) is found in [20, Lemma 1] for a Hilbert space.
These Hilbert space proofs are also valid in a reflexive Banach space. I-!

The usual second-order sufficient condition for (32) has the form

(36) (A(x- ), x ) >= a IIx- for every x A,
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where a > 0. Hence, condition (33) is stronger than the second-order sufficient condi-
tion. An important difference between (33) and (36) is that after small perturbations
in A, (33) still holds for some a > 0; after small perturbations in A and 2, (36) may
not hold for any a 0.

Under the hypotheses of Lemma 4, let us consider the constraint set

(37) A={xeX: Bx+OeK},

where B:X- W is a continuous, linear operator; W is a Banach space; q W; and
K c W is a closed, convex cone with vertex at the origin. In this case, (32) takes the form

(38) minimize1/2(Ax, x)+(&, x) subject to Bx + q K.

Given x and x2 e A, observe that v x x2 has the property that By K K. Hence,
when A is given by (37), (33) holds if

(39) (Av, v)_-> llvll whenever Bv K-K.

Conversely, if B is surjective and (33) holds, then (39) holds. Hence, (39) and (33)
are equivalent when B is surjective.

Letting K + denote the polar cone defined by

K+ {, e W*: (Z, k) _-> 0 for every k e K},

suppose that there exists A K + and e X satisfying

(40) A2-B*A+=O and (A, B2+O)=O, where B2+q, eK.

It follows that

0 (AX + b, x ) -(Z, Bx + d/) <= (A + oh, x 2)

for every x X with Bx + K. By Lemma 4, is the unique solution to (32). Note
that the conditions (A, B2 + g0=0 and B: + g, K of (40) are often written in the
compact form

BX + q OK+(A),
where OK+(A) {we W**: (w,/-)>0 for each/6 K+} is the normal cone at to
the set K+.

If g is a solution to (38) and B is surjective, it is known (see Kurcyusz [25]) that
there exists a unique Lagrange multiplier 6 K + satisfying (40). Assuming that B is
surjective and (33) holds, let us study the dependence of the solution and the multiplier
associated with (38) on the parameters & and q. Given b b6 X* and q=q W
for 1 and 2, let : be the corresponding solutions to (38), and let A be the associated
multipliers satisfying (40). If x Y is any solution to Bx =-0, then by the open
mapping principle (see [7, p. 57]), B- is Lipschitz continuous, and there exists a
solution x Y to Bx =-qt such that

where c is independent of k and @2. Making the change of variables ’i Wi "47 i in
(40), we obtain

(41) Awi- B*Ai + A.i + i 0, Bw K, and (Ai, Bwi) O.

Hence, w wi is the solution to the problem

minimize 1/2(Aw, w) / (Ai + cki, w)

subject to Bw K.
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By Lemma 4, inequality (35), we have

llw,- w=ll--< I1,- =11 / Ilall 111-211 <--I1,- 211 + cllall I1,- =11.
Taking the norm of the identity x- x2 w- w2 +1- 2, and applying the triangle
inequality, we obtain

IIx,-x=ll c116,- 6=11 + cll,-

where c is independent of the 6 and the . Moreover, since B* is one-to-one and
(B*)- is a continuous linear operator, (40) implies that IIx,- A=II has a similar bound.
These observations are summarized in the following lemma.

LZMMA 5. Suppose that B is surjective and (33) holds. Ifx and h are the solutions
to (40) corresponding to and , i= 1 and 2, then there exists a constant c,
depending only on A and B, such that

IIx,-x=ll + I1,- =11 c116,- 6=11 + cll,-

Clearly, the coercivity condition (33) is preserved after small peurbations in A.
In the context of (38) with B surjective, we now show that the coercivity condition
(33) is preserved after small peurbations in B, and after arbitrary peurbations in .
Since B is surjective, we observed earlier that (33) is equivalent to (39). Since ff does
not appear in (39), coercivity is preserved after any peurbation in . Now let us
consider the effect of changes in B. Given a bounded linear operator B" X W, the
open mapping principle implies that there exists a constant c, depending only on B,
with the following propey: IfB K K, we can find v X with Bv B K K and

(42) IIv- 11 olin- 11 ell.
By the triangle inequality, we have

(43) (1-clln-ll)llollllvll(l+clln-ll)llell.

Defining 6v v- and applying (33) yields

(44) {A6, > llvll2-2<Av, 6v)+(A6v, 6v).

Utilizing the inequality 2ab paZ+ b2/p, where p is an arbitrary scalar, we have

IlallI<av, v>l Ilall Ilvll IIvll IlvllZ+ IIvll z.

This inequality, coupled with relations (42)-(44), yields the following result.
LEMMA 6. If the coercivity condition (39) holds and B is surjective, then for A in a

neighborhood ofA and for B in a neighborhood of B, there exists o > 0 such that

<Av, v>_-> llvll 2 wheneverv K-K.

We observe that in certain cases, the coercivity condition (33) holds for the set A
if it holds on a subset A f’i F.

LEMMA 7. Let F and A be convex subsets ofX, and suppose that there exists a > 0
such that

(45) (A(x, x2), x,- x2) => cr [Ixl- x=ll 2 for every x, and x2 A f’l F.

If int F, the interior of F, intersects A, then (33) holds.
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Proof Given V E A, 1 and 2, and v E int F f’] A, define /.)i(/) by

vi( v, + )v.

Since A is convex, v(fl)e A for i= and 2, whenever /3 e [0, 1]. Since v(fl)-> v as
/3-> 0, we can choose fl > 0 small enough that v(fl)e F for i= and 2. Applying (45)
with xi vi(fl), we obtain (33). I-]

Remark 5. Suppose that B (B, B2), , (q,, q,2), and K K K2, where
is surjective, and where there exists v X with Bv + q, E K1 and B2v + q’2 int K2.
Combining Lemmas 6 and 7, we see that if the coercivity condition (33) holds, then
for A and B near A and B respectively, there exists a > 0 such that

</iv, v>_>-llvll 2 whenever Bve K1-K
5. Optimal solutions. In this section, we use Corollaries and 2 to study an

optimal solution of the problem

(46) minimize Cp(x) over XeOp,
where p is a parameter in a metric space P, fp is a closed, convex nonempty subset
of a reflexive Banach space X, and Cp" X- R. Given a local minimizer Xo of (46)
corresponding to p =0, we assume that for each p e P, the functional Cp(x) is twice
Fr6chet ditterentiable with respect to x in a neighborhood of Xo, the derivatives C’p(X)
and C(x) with respect to x are continuous in p and x in a neighborhood of p =0
and x Xo, and there exists a > 0 such that

(47) <Cg(xo)(xl-x=),x,-x=>>-llx,-x2112 for every Xl,X2E U "p.
pP

In addition, we assume that limv_.o la.-aol =o, where [A-B[= IIA-Bl/ IIB-AI is
equivalent to the Hausdortt distance between the sets A and B.

TnorM 3. For each fl > 1/a and y > c;,(xo)ll, there exists s > 0 with thefollowing
property" For each p B,(O), we can find a strict local minimizer xp of (46) such that

(48) Ilx-xoll<-/311C;(xo)-C’o(xo)ll/.// la.-aol
If C’o(Xo)=O, then we require y> IIC(xo)ll, and we replace the exponent 1/2 in (48) by

Proof Since Xo is a local minimizer of (46) and 1)o is convex, we have

(49) (C’o(Xo),X-Xo)>-O for every Xeao.
Given p e P, (47) and Lemma 4 imply that there exists a unique sop e fp satisfying the
relation

(50) (C’o(Xo)+L(p-Xo),X-p)>=O for every

where L C’(Xo). Adding (49) with x Zo and (50) with x zp to inequality (47) with
x SOp and x Xo, we get

v Xol[= <- L(p Xo), Zp Xo> / C’o(Xo), Zo- p / Zp Xo>
for every Zo E fo and Zp Op. From this, it follows that

:, xoll 2 <--IILII I1 xoll Ilxo-al / IIC’o(xo)ll(llxo-al/ I1 aol).

Consequently, SOp Xo as p- 0, and we have

(5 a) I1# xoll 2 --< (11 Eli I1# Xo[I / C;,(Xo) II)la aol.
Now let us consider the following problem"

(52) Find x, ca. such that (C’p(Xp),X-Xp)>-O for every xea..
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We apply Corollary 1 to this problem, making the following identifications:

z x. r. c;. y. C;(xo)- (Xo).

The auxiliary problem is the following:

and Fp(x) Ol’p(X).

(53) Find xlIp such that (L(x)+y, w-x)>-O for every

By Lemma 4, there exists a unique solution of (53). for each y X*, and this solution
is a Lipschitz continuous function of y with Lipschitz constant l/a, independent
of p. By Corollary and for any constant/3 > l/a, there exists a solution Xp to (52)
for p near zero, and we have

(54) IIx pll--< t c;<#)-
By the definition of yp, it follows that

Itc;(#)- L(#)- y,,II IIC’,,(#)-C’o(Xo)- e(#- xo)ll.
By the continuous ditterentiability assumptions, it follows that for any e > 0, there
exists an s > 0 such that

IIC,(,)-C’o(Xo)-L(,-xo)ll ll-xoll for every pc B(O)
and

IIc;(,,)-cg,(,)ll llC;(xo)-Cg,(xo)ll+ ll,,-xoll for every pe Bs(O).

These inequalities, combined with (51), (54), and the triangle inequality, yield (48).
By (47), Xp is a strict local minimizer of (46) for p near 0. q

Remark 6. In general, the exponent 1/2 in (48) is sharp (see [13, p. 13]). Theorem
3 is a generalization of Proposition 1.2 in [13].

Typically, Theorem 3 yields a H61der-type estimate for Xp-Xo. However, when
the constraint set is described by equalities and inequalities that possess certain
regularity properties, a Lipschitz estimate can be established. We consider the following
problem:

(55) minimize Cp x subject to Gp x e K,

where Gp:X W, W is a Banach space, and K c W is a closed, convex cone with
vertex at the origin. Letting Xo denote a local minimizer of (55) corresponding to p =0,
we assume henceforth in this section that Cp and Go possess the following smoothness
properties: Cp(x) and Gp(x) are twice Fr6chet ditterentiable in x in a neighborhood
of p 0 and x Xo, and these derivatives are continuous in p and x at p 0 and x Xo.
The functions Gp(x), C;(x), and G;(x) are Lipschitz in p e P, uniformly in x near Xo.
Let Hp denote the Lagrangian defined by

Hp(x, A)= Ce(x)-(, Gp(x)),

where e W*. The first-order necessary conditions associated with a solution to (55)
can be expressed in the following way:

(56) grxHp(xe, 1e).=0 and Gp(xe)eOK+(p), where xpeX and ,peK+.
It is well known (see [25]) that if G’o(Xo) is surjective, then there exists ,o satisfying
(56) for p=0. Our Lipschitz result is based on the following coercivity condition:
There exists a > 0 such that

(57)
<VxHo(xo. Ao)(X2-x.). x.-xOe IIx2- xll =
whenever Go(xo) + G(xo)(Xi Xo) e K, for 1, 2.
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THEOREM 4. If G’o(Xo) is surjective and the coercivity condition (57) holds, then
there exists s > 0 such that (55) has a strict local minimizer Xp for each p Bs(O), and
both Xp, and the associated (unique) multiplier Ap K+ satisfying thefirst-order necessary
condition (56), are Lipschitz continuous functions ofp Bs(O).

Proof. We apply Corollary 2 with the following identifications: z-(x, A), Z--
X xX*, =X x K+,

r
L (x) a’ and

OK+(A)

Hence, the problem "Find z f such that Tp(z) F(z)" is the same as finding x and
A satisfying the first-order necessary condition for (55). In the auxiliary problem, we
take L= T’o(Zo). Hence, the auxiliary problem is equivalent to the following: Given
X*and @W, findxXandAeK/suchthat

(58)
Ax B*A + O and

where A V Ao)Ho(xo,

Bx + q e OK+(A),

and B G’o(Xo).

By Lemma 5, the solution to (58) is a Lipschitz continuous function of and . By
Corollary 2, there exists a solution Zp (Xp, Ap) to (56), which is a Lipschitz continuous
function of p for p near 0. By Lemma 6, the coercivity condition (57) holds when the
zeros are replaced by p near 0. Hence, the second-order sufficiency condition holds
(see Maurer and Zowe [30]), and Xp is a strict local minimizer of (55) for p near 0.

Theorem 4 yields Lipschitz continuity without assuming strict complementary
slackness. For an illustration, suppose that Gp- (gp, hp) and K Kg x Kh, where Kg
and Kh are closed convex cones with vertices at the origin of the associated Banach
spaces. In this cases, the optimization problem (55) takes the form

minimize Cp(x)
(59)

subject to gp(X) e Kg, hp(x) e Kh.

The Lagrangian Hp is given by

Hp(x, tz, v)= Cp(x)-(tx gp(X))-(v, hp(x)),

where A (/, v) is the multiplier in the dual space. Again, if Xo is a local minimizer
of (59) and G(xo) is surjective, then there exists a multiplier Ao (o, Vo) satisfying
(56) for p=0. Let us assume that ho(xo)-0 and voint K+

h- In finite dimensions, hp
corresponds to the part of the inequality constraints that are active at p-0 with
associated multipliers that are strictly positive. We make the following coercivity
assumption:

(60)
whenever go(Xo) + g,(xo)(x Xo) e Ks, h’o(Xo)(X Xo) O, for i= 1,2.

By Theorem 4, the following optimization problem has a local minimizer for p
near 0 that depends Lipschitz continuously on p:

(61)
minimize Cp(x)

subject to gp(X) e Kg, h,(x) O.
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Observe that this problem differs from (59) since the constraint hp(x)E Kh associated
with (59) has been replaced by hp(x)=0. Exploiting the assumption that ’o lies in the
interior of K-, we show that this local minimizer for (61) is also a local minimizer of
(59).

COROLLARY 4. If (g(xo), h(xo)) is surjective, the coercivity condition (60) holds,
and ’o lies in the interior ofK+

h, then there exists s > 0 such that (59) has a strict local
minimizer Xp for each p Bs(O), and both Xp, and the associated multipliers tXp K +g and
,p K satisfying the first-order necessary condition, are Lipschitz continuous functions
ofp e Bs(O).

Proof. We apply the proof given for Theorem 4 to problem (61) replacing K by
Kg x {0} and replacing the coercivity condition (57) by (60). It follows that there exists
a solution xp of (61) and associated Lagrangemultipliers/.,p and Vp that are Lipschitz
continuous functions of p near 0 and that satisfy the first-order necessary conditions
for (61). Since Vp int K- for p near zero, the first-order necessary conditions for (59)
hold. By Lemma 8 of Appendix, l, Xp is a strict local minimizer of (61).

Finally, let us suppose that Gp (fp, gp, hp) and K Ky x Kg x Kh, where Ky, Kg,
and Kh are closed convex cones with vertices at the origin of the associated Banach
spaces. Hence, the optimization problem (55) takes the form

(62)
minimize Cp(x)

subject to fp(X) Ky, gp(X) Kg, hp(x) Kh.

If fo(Xo) int Kf, then under the hypotheses of Corollary 4, the solution Xp of (59) is
a Lipschitz continuous function of p and fp(Xp) Kf for p near 0. Hence, the local
minimizer Xp of (59) is a local minimizer of (62).

Remark 7. Theorem 4 and Corollary 4 yield Lipschitz continuity of a local
minimizer in a neighborhood of a reference point, without assuming strict complemen-
tary slackness. In finite dimensions, this problem was studied by Hager in [18] and
by Robinson in [37]. Note that the coercivity assumption (60) is slightly weaker, in
the infinite-dimensional context, than the coercivity assumption used in earlier work
(see [18], [23], [37]) since (60) only requires coercivity relative to those xi satisfying
the constraint go(Xo) + g’o(Xo)(X, Xo) Kg.

In comparing Corollary 4 to the recent paper [23] of Ito and Kunisch, note that
in [23] the infinite-dimensional constraints are linear inequalities, the problem is
formulated in a Hilbert space, and the nonlinear constraints for which the associated
dual multiplier can vanish are finite-dimensional. Alt presents in 1] and [3] a stability
analysis that is related to ours, but different. In [1] he considers a cone constrained
problem, under the assumption that any neighborhood of the reference point contains
a solution of the perturbed problem. In [3] he studies Lipschitz continuity of the
solution of a problem with nonlinear cone constraints and with equality constraints
under a weaker constraint qualification (Robinson’s constraint regularity condition),
but a stronger coercivitym(60) is required to hold on the kernel of the gradients of
the equality constraints; moreover, he assumes that the variation of the Lagrange
multipliers for the perturbed problem can be estimated in terms of the variation in the
solution and the variation in the parameter (under our surjectivity condition, this
hypothesis is satisfied). Recently, Malanowski [28] has obtained a Lipschitz continuity
result in a Hilbert space setting that parallels the analysis of Ito and Kunisch [23],
using a regularity condition for the constraints that is weaker than surjectivity.
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6. Optimal control. Let us consider a nonlinear optimal control problem with
control constraints

minimize f gp(X(t), u(t)) dt

(63) subjectto ( t) fp(X( t), u( t)) and u(t)U a.e.t/,

x(0)=a, x W’, uL,
where fp: R"+" R", gp: R"+" - R, U c R" is nonempty, closed, and convex, a is the
given starting condition, and 0 e 1, ]. We assume that there exists a solution (Xo, Uo)
to (63) corresponding to p 0, and we wish to show that there exists a nearby solution
for p in a neighborhood of zero. To this end, suppose that there exists a closed set
A c R" x R and a 6 > 0 such that (Xo(t), Uo(t)) lies in A for almost every /, the
distance from (Xo(t), Uo(t)) to the boundary of A is at least 6 for almost every /,
and the first two derivatives of fp(X, u) and gp(X, u) with respect to x and u exist on
A, and these derivatives, along with the function value fp(X, u), are continuous with
respect to (x, u) A and p near zero.

Let Hp denote the Hamiltonian defined by

Hp(x, u, A)= gp(X, u)+ A rfp(X, u).
If (Xp, Up) is a solution of (63), then the minimum principle [22, p. 134] implies the
following:

V,Hp(xp(t), Up(t),Zp(t))r(V-Up(t))>-O a.e. te 1 and for every ve U,
where Z Zp is the solution of the adjoint equation

(t) =-VxHp(x(t), u(t), Z(t)) a.e. e I, Z(1) =0,
associated with X=Xp and u Up. Let f*o(t) and H*o(t) stand for fo(Xo(t), Uo(t)) and
Ho(xo(t), Uo(t), Zo(t)), and define the matrices

a(t) =Txf*o(t), B(t)=V,f*o(t), Q(t)=TZxH*o(t),
R(t) V H*o(t) S(t) V 2 H*o(t)

The following coercivity assumption will be utilized: There exists a > 0 such that

(64) f (x(t)VQ(t)x(t)+u(t)TR(t)u(t)+2x(t)VS(t)u(t)) dt >=a f lu(t)l :z dt
d

whenever xW’:, x(O)=O, uL:, =Ax+Bu, u=v-w for some v and wL:
with v(t) and w(t) U for almost every t L By taking v= w except on a small
interval, it can be shown, below, that a pointwise coercivity condition holds (see the
recent paper [15]):
(65) urR(t)u>-alul a.e. tlwheneveru=v-wwith rand weU.

THEOREM 5. Ifthe eoercivity condition (64) holds, then there exists positive constants

K, r, and s such thatfor each p B.(O), (63) has a strict local minimizer (Xp, Up) Br(xo, Uo)
and the relation

holds whenever p and q Bs (0).
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Proof We apply Corollary 2 where the z of Corollary 2 is identified with (x, u, A),
while 1), Tp, and F are defined in the following way:

l)= {(x, u, A)" x W1", u L, A Wl’, x(O) a,

A(1)=O, u(t) U a.e. tI},

Tp(x, u, A)= VuHp(x, u, A) and F(x, u, A)= 0 u)

The space Y containing the range of Tp is L x Lx L. We make the following choice
for the operator L of Corollary 2: L(z)= M(z-Zo), where

M(x, u, ) Ru + Srx + BrA
Ax + Bu

It can be verified that under the smoothness assumptions, Er(p) 0 as p and r tend
to zero, where Er(p) is defined in (12).

Given qi and si in L and r in L for i= and 2, let us consider the following
problem:

(66) Find(x,u,A)lIsuchthat L(x,u,)+ r F(x,u,A).

In [20, Lemma 3], we show that when the coercivity assumptions (64) and (65) hold,
(66) has a unique solution (x, ui, Z), and the following Lipschitz property holds"

Ilx-Xll]’,+ Ilu- u, ll+ II=- ,11 ’,
[llq- qlllL -+- [Ir- r, + Ilsz- SlllL].

Hence, q is Lipschitz, and by Corollary 2, problem (11) has a locally unique solution
that satisfies the conclusion of Theorem 5. Since the estimate of Theorem 5 yields an
L perturbation in both state and the control, and since the coercivity assumption (64)
is preserved after small perturbations in Q, R, S, A, and B, it follows from Corollary
5 in Appendix 1 that the solution of (11) provided by Corollary 2 is a strict local
minimizer for the optimal control problem (63) when p is near zero.

We show by an example that Lipschitz continuity can be obtained without the
coercivity condition (64). Consider the following problem:

minimize x(1) + x2(1)

(67) subject to 21 px sin x2 + u, 22 u2, x(0)= 1, x2(0) 1,

U 2<2,+U2=
where p is a real parameter. For p =0, the optimal solution is Uo (-1,-1) and
Xo (1 t, t), and the corresponding adjoint variable is Ao (- 1, 1). The auxiliary
problem has the form

i Ui -t- Si, xi(O 1, Jt q, /i(1) 1, for 1, 2,

(A+r)r(v-u)>=O whenever Vl+V=<2.
The control solving the auxiliary problem is

u w/Iwl, where w(t)= ri(t)- + q(s) ds.
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Hence, the solution of the auxiliary problem is unique and Lipschitz continuous, with
respect to y- (s, r, q) around 0, as a function from L to WI’ L. By Corollary 2
and for p near zero, there exists a solution (Xp, Up, Ap) of the first-order necessary
conditions associated with (67), which is unique in a neighborhood of (Xo, Uo, Ao) and
which is a Lipschitz continuous function of p near 0. Using the uniqueness of (Xo, u0),
it can be shown that (Xp, Up) is the unique solution of (67). In this example, we use
the strong convexity of the constraining set instead of the coercivity condition to ensure
Lipschitz continuity.

Remark 8. Lipschitz results for problems with convex cost, linear dynamics, and
linear inequality state and control constraints are obtained by Dontchev [13, Chap. 2]
using duality theory and the regularity of the optimal control established by Hager
[18]. Later, Malanowski [27] studied a problem with a quadratic cost functional, linear
inequality state and control constraints, and system dynamics that are linear with
respect to the control. A similar problem without state constraints, but with convex
control constraints, is considered by Alt in [3] using Robinson’s strong regularity
condition. In [2] Alt considered a nonlinear problem with inequality control constraints.
He obtains an estimate for the optimal control, assuming existence of a solution to
the perturbed problem in a neighborhood of the reference point (see Remark 7).

7. Euler’s method. Again, let us consider a nonlinear control problem with control
constraints, below:

minimize f g(x(t), u(t)) dt

(68) subject to 2(t) =f(x(t), u(t)) and u(t) c U a.e. c I,

x(0)=a, x Wl’, uL,
where f" R"+" R", g" Rn+m - R, U R is nonempty, closed, and convex, and a is
the given starting condition. We assume that there exists a solution (x*, u*) to (68)
with u* Riemann integrable, that there exists a closed set A Rn+" where both f
and g are twice continuously differentiable, and that there exists 6>0 such that
(x*(t), u*(t))A and the distance from (x*(t), u*(t)) to the boundary of A is at least
6 for every L When we write 2", we mean a function whose values on I coincide
with those of f(x*, u*).

Let H denote the Hamiltonian defined by

H(x, u, h)= g(x, u)+ h rf(x, u),

and let h h* be the solution of the adjoint equation

(69) (t) -VxH(x(t), u(t), h(t)) a.e. c I, (1)-0,

associated with x x* and u u*. By the minimum principle [22, p. 134], we have

(70) VuH(x*(t),u*(t),A*(t))r(v-u*(t))>=O a.e. tI andforevery vU.

Given a natural number N, let h 1/N be the mesh spacing, and let xi and ui
denote approximations to x(t) and u(t) at ti ih. We consider the Euler discretiz-
ation of (68) given by

minimize
N-1

E hg(xi,
i=0

(71) subject to x+l X "JI- hf(xi, ui) and

u6 U, i=0, 1,..., N-l, xo=a.
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If (x h, u h) denotes a solution to (71), let A =/h denote the solution of the discrete
adjoint equation

(72) Ai Ai+ + hVxH(x, u,/i-+-1), N- 1, N-2,..., 0, AN =0,

associated with x xh and u uh. By the discrete minimum principle [22, p. 280], we
have

(73) V,H(xh,uh,Ah+,)T(v--uhi)>=O forallvU, i=0,1,...,N-1.

To estimate the distance between (x*, u*) and (xh, uh), we need a coercivity-type
assumption for the discrete problem. Define the following matrices:

2a( t) Vxf*( t), B( t) V,f *( t), Q( t) VxxH t),

R(t)=V H*(t), S(t)=V H*(t)

Heref*(t) and H*( t) stand forf(x*( t), u*( t)) and H(x*( t), u*( t), A*(t)), respectively.
Letting A, B, Qi, S, and R denote the corresponding time-varying matrices evaluated
at t, we assume that there exists a scalar a > 0, c independent of N, such that

(74) u rRu >= a[ul2, 0 =< =< N- 1 whenever u v- w with v and w U,
N-I N--I

(75) Y xfQixi + ufRu + 2xfSu >= a , Iblil 2
=0 =0

whenever ui v- w for some v and wi U, and

(76) xi+=xi+hAixi+hBiui, i=0, 1,..., N-l, Xo=0.
Obviously, the discrete condition (74) holds if there exists a > 0 such that

urR(t)u>=lul2 for every tl and for each u=v-w with v and weU.

In Appendix 2, we show that assumption (75) for the discrete problem can be deduced
from an analogous assumption for the continuous problem. In analyzing the discrete
problem (71), we utilize a discrete Lp norm defined by

N-1

(llullLp) p= hlulP, l<-p<o, and IlUlll(R)=maximum{luil:O<=i<U}.
i=0

If b and v satisfy the finite difference system

c+ c + hAci + hl)i, O, 1,..., N- 1, do O,

then there exists a constant c, independent of h, such that

(77) ]jIC]]V]]L’C]IV]]L for each j 0, 1,..., N.

Squaring this inequality, multiplying by h, and summing over j yields

Hence, if" the coercivity condition (75) holds relative to the control, then the following
joint state-control coercivity condition holds: There exists a > 0 such that

h Y’, xTiQixi "3
I- urR,u, + 2xTiSitli t(llxll=+

i=0

whenever u v- w for some vi and w U, and

xi+i xi + hAx + hBiui, O, 1,..., N- 1, Xo O.
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Our convergence result for the discrete problem is expressed in terms of a modulus
of smoothness introduced by Sendov and Popov [42]. The local modulus of continuity
to(u; t, h) of the function u is defined by

to(u; t, h) sup ([u(a)- u(b)]: a, b It- h/2, + h/2] f’) Z},

while the average modulus of smoothness r is given by

r(u; h)= f to(u; t, h) dt.
d

In [42, pp. 8-11] it is shown that r(u; h)-->O as h -->0 if and only if the bounded function
u is Riemann integrable on I; moreover, r(u; h) O(h) if and only if u has bounded
variation on L The main result in this section is the following theorem.

THEOREM 6. If U* is Riemann integrable and the coercivity assumptions (74) and
(75) hold, then for all N sufficiently large, there exists a local minimizer (x h, u h) of (71)
such that

maximum ]u*(ti)-- uhi =O(h + r(u*; h)),
Oi<_N-I

maximum Ix*( t,) x?l O( h + ’(u*; h)),

maximum I,x*(t,)-,x,l-O(h+(u*; h)),

maximum *(ti)- =O(h+r(u*; h)).
O<=i<=N--1 h

Hence, if u* has bounded variation, then each of these error estimates is of order h.
Proof. We apply Corollary to the necessary conditions associated with the

discrete problem (71). The parameter p of Corollary is identified with the mesh
spacing h the set fp consists of discrete triples (x, u, A), where ui U for each i.
Component i, O_-<i-<_ N-1, of the operators Tp and Fp, denoted T/h and Fh, respec-
tively, is the following"

u,, Ai+l)-k-(Ai+,-Ai)/h 1T(x, u, A)= V,H(x,, l,, //+1)
f(xi, ui)-(Xi+l-Xi)/h

and I 1Fi (x, u, A)= OU(tli)
0

Given z (x, u, A) in the discrete space Zp associated with fp, we use the L norm
for each of the three components x, u, and A of z. In the discrete space Yp associated
with the range of Tp, we use the L norm for the first and last component, and the L
norm for the middle component. That is, if y (a, b, c) Yp, then

Ilyllp-Ilallc / Ilbll+ Ilcllc,
The point Zp of Corollary 1 is given by Zp (x , u , A I), where

X[ x*(ti), tl[ tl*(ti), A[ A*(ti).

Also, in Corollary 1, component of the point yp, denoted y/, is the triple

0

yh V.H(x[. ui A,
0
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Observe that with this choice for yp, we have yp F(zp). We define a linear operator
Mh that acts on a discrete triple (x, u, A) to produce a vector whose ith component is

AfAi+l + Oixi + Siui + (Ai+I- zi)/h’]
mi (x, u, A)-- Riui + Sfx, + BA,+, J.Aix + Biu (xi+ xi)/ h

Taking Lp(z)= M(x, u, A)-Mh(x, u t, A), observe that Lp(zp)=O.
It can be verified that under the smoothness assumptions and for p smaller than

6, we have Do (h) 0 as h O. Now consider the term

i+l-Ai)/h
:s) r,,)-y,),= v.x, u[,a+,)-v.x, .i,a,)

fx,y)-+,-x[)/

The middle component of this vector is O(h) since A* is Lipschitz continuous. Since
the analysis of the first and last component in (78) is similar, we only focus on the
last component

h
If(x u[) *(t)l dt

(79)

where c denotes a generic constant, independent of h. Multiplying (79) by h, summing
over i, and exploiting the inequality (u; kh)Nk(u; h) for each natural number k
(see [42, p. 11]), it follows that

rp(zp)- ypllp =O(h + ,(u*; h)).

Next, we must analyze the auxiliary problem and establish the existence of a
constant satisfying (9). The analysis essentially parallels that of [20] except that
continuous norms are replaced by their discrete analogues. We must examine how the
solution to the following system depends on the peurbations qi, ri, and si:

Afhi+ Af. Qixi + Siui + -1- qi O, hN 0,

(80) (Riui-I-STixi-FnTAi+l-Fri)(v-tli)>O for every v U,

Xi+ Xi
Aixi + Bil,li __t_ si O, X0 a,

h

0, 1,..., N 1. Note that system (80) constitutes the first-order necessary conditions
(see [22, p. 280]) associated with the following quadratic program:

minimize
1

h - xTiQixi-1-- tlTRitli-1- xTSiu Av qTix + rTu
i=o

(81) subject to Xi+ X -It- hAixi-I- hBiui + hsi and

//i U 0_-<i-<_N-1, xo=a.
By Lemma 4 and the discussion that follows it, there is a one-to-one correspondence
between a solution to (81) and a solution to (80) when (75) holds.
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Now consider the perturbations (qi, r i, s ) for i= 1 and 2. Let (X i, !,t i, h i) denote
the associated solutions to (80). Referring to Lemma 4 (see [20, 2] for more details),
we have

Ilu
where c is a constant independent of h. Utilizing (77), we also conclude that

(82)

Finally, by (74) and Lemma 4, we have

Ilu
Combining this with (82) yields

[Ix
c(llq q=ll + Ilr’- r=ll  + IIs s=ll c).

Hence, there exists a constant
By Corollary 1, there exists a solution to the discrete necessary conditions (72)

and (73) associated with (71) that satisfies the first three estimates of Theorem 6. The
discrete and continuous state equations, along with the previously established error
estimates, imply that

x+,-x
h)).

which gives the last estimate of Theorem 6. The fact that x h and u h are local minimizers
for (71) follows from Corollary 6 in Appendix 1, the coercivity condition (75), and
the fact that coercivity condition (75) is preserved after small peurbations in Q, R,
S, A, and B.

Remark 9. Note that the coercivity assumptions (74) and (75) do not necessarily
imply that an optimal control is either unique or continuous. For example, if g(x, u)
(u2 1), f 0, and U R , then for each measurable set M c 1, the function defined
by

u(t)=l for teM and u(t)=-I for tM

is an optimal control that satisfies (74) and (75).
Remark 10. Results most closely related to Theorem 6 include the papers of

Budak, Berkovich, and Solov’eva [8] and Cullum [11] in which convergence of the
optimal value associated with discrete approximations to state and control constrained
problems is established. Mordukhovich [31] shows that the discrete optimal cost
converges to the true optimal cost if and only if a relaxation of the control problem
is stable. Estimates for the error in the optimal control associated with higher-order
discretizations of unconstrained nonlinear problems are derived by Hager 17]. Dont-
chev [12] obtains an error estimate for Euler’s approximation applied to an optimal
control problem with convex cost, linear system dynamics, and linear inequality state
and control constraints.

Appendix 1: Sufficient optimality conditions. We begin by establishing the sufficient
optimality result needed for Corollary 4. Let us consider the following optimization
problem:

minimize C(z)
(83)

subject to g(z) Kg, h(z) K,,
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where g Z Wg and h Z Wh, Wg and Wh are Banach spaces, and Kg and Kh are
closed, convex cones with vertices at the origin of their respective spaces. The
Lagrangian H associated with (83) is given by

H(z, be, u)= C(z)-<be, g(z)>-<u, h(z)>,

where be Wg* and v e Wh*. Letting z* be a point that is feasible in (83), we assume
that C, g, and h are twice Fr6chet differentiable at z*. The first-order necessary
conditions associated with (83) have the following form: There exists be K and
v K such that

(84) VzH(z*, , ,,)=0, (, g(z*))=o, (, h(z*))=O.

Although the following lemma makes the same surjectivity assumption that appears
in Corollary 4, this assumption can be replaced by any condition that ensures regularity
of the linearized system (see Robinson [35] or Maurer and Zowe [30]).

+ +LEMMA 8. Suppose that z* is feasible in (83), be Kg, v int Kh, the first-order
necessary conditions (84) hold, the operator

h’(z*)]
g’(z*)J

is surjective, and there exists a > 0 such that

(V2zzH(z*, be, u)(z-z*), z-z*) >- allz- z*ll 2

whenever g(z*)+g’(z*)(z-z*)eK and h’(z*)(z-z*)=O.

Then z* is a strict local minimizer for (83).
In comparing this result to Maurer and Zowe’s classic sufficient optimality result

[30], observe that the constraint h’(z*)(z-z*)=O in the coercivity condition above
corresponds to a constraint of the form h’(z*)(z- z*) Kh in [30]. In this respect, the
coercivity condition of Lemma 8 is weaker than that of [30]. On the other hand, Lemma
8 assumes that u int K- while [30] only assumes that u K /

h"

Proof Throughout this proof, we let e denote a generic positive constant that can
be made arbitrarily small for z sufficiently close to z*, we let a denote a generic positive
constant that is uniformly bounded away from zero for z near z*, and we let/3 denote
a generic constant that is uniformly bounded from above for z near z*. Expanding
H(z, be, u) in a Taylor series about z z*, we have

H(z, be, u)= H(z*, be, u)+VzH(z*, be, u)(z-z*)

+1/2VzH(z*, , ,,)(z-z*, z-z*)+ R(z),

where R(z) <- ellz-z*ll . By the first-order necessary conditions, H(z*, be, u)= C(z*)
and VzH(z*, be, u)=O. Hence, it follows that

C(z) C(z*)+ M(z)+ R(z),

where M(z)= (be, g(z))+(u, h(z))+1/2VZzzH(z*, be, u)(z-z*, z-z*).

If z is feasible in (83) then since u int K +
h, we have (v, h(z))>= IIh(z)ll. Thus we have

(be, g(z))+(u, h(z)) c IIh(z)ll.
By the complementary slackness condition, h(z*)=0, and by the differentiability
assumption,

h(z)- h’(z*)(z-z*)+o(llz-z*ll) and g(z)- g(z*)+g’(z*)(z-z*)+o(llz-z*ll).
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Referring to [35, Thm. 1], the surjectivity assumption implies that for each z near z*,
there exists an associated y Z such that h’(z*)(y z*) O, g(z*) + g’(z*)(y z*) Kg,
and

[[y-z[I <-1311h’(z*)(z- z*)ll + inf {[[g(z*)+ g’(z*)(z- z*)- k[[" k e gg}.

This bound, combined with the Taylor expansions of g and h, implies that for
each z near z*, with z feasible in (83), there exists an associated y eZ such that
h’(z*)(y-z*)=O, g(z*)+g’(z*)(y-z*)eKg, and Ily-zll<-1311h(z)ll/llz-z*ll.
Applying the triangle inequality yields

I}Y- zll-<- t h(z)ll + elly- z*ll.
By the coercivity assumption,

Vzn(z*, , )(z-z*, z-z*)>- llY-z*ll=-llY-z*ll IlY-z[I
These inequalities, along with the relation h(z*)=0, imply that for z near z* with z
feasible in (83), we have

M(z) >- a]]h(z)] + ally- z*l] 2.

Recall that the remainder term R has the bound R(z)<= ellz-z*ll =. By the triangle
inequality,

IIz- z*ll--< IIz- yll / Ily- z*ll _<-(1 / )lly- z*ll //3 h(z) II,
from which it follows that

Ilz- z*l12--< t Ily- z*ll =/ h (z) 2.

Hence, for z near z* with z feasible in (83), we have

C(z)- C(z*)= M(z)/ R(z)>- h(z)ll / [lY-

-->

which completes the proof.
Next, we obtain sufficient optimality conditions that are applicable to optimal

control problems. A number of relevant sufficient optimality conditions have appeared
in the literature; for example, see Ioffe [21] and, in particular, the results of Maurer
[29]. Although the basic strategy for obtaining sufficient optimality results in the optimal
control setting is developed nicely by Maurer in [29], the precise results that we need
in 6 and 7 are not stated in his paper. For completenesss, we give a brief, self-
contained treatment of the results needed in our paper. We begin with the abstract
problem

minimize C(z)
(85)

subject to z A,

where A is a subset of a normed vector space Z, and C is a real-valued function. As
in [29], we assume that there are two different norms, denoted by I1" and II1"111,
associated with Z.

LEMMA 9. Suppose that z* satisfies the constraints of (85) and that there exists a

functional M and a scalar a > 0 with the following property"

(86) M(z) >-_ lllz- z*lll for each z A with lie- z*ll sufficiently small



598 ASEN L. DONTCHEV AND WILLIAM W. HAGER

and

C(z)-C(z*)-M(z)
(87)

Illz- z’Ill - o as IIz- z*ll- 0 with z A.

Then z* is a strict local minimizer for (85).
Proof By the hypotheses above, we have

C(z)- C(z*) >_ , IIIz z’Ill= / o(lllz z*lll2)
as ]lz- z*ll O with z A, which implies that z* is a strict local minimizerfor (85).

In the application of Lemma 9, the following observation is helpful.
LEMMA 10. Suppose that there exists a scalar ce > O, a bilinearform b that is bounded

relative to the norm II1" III, and a set T such that

b(z z*, z- z*) >-_ lllz z*lll for every z T.

Iffor each z A, there exists y T such that IIIz- ylll- o([llz- z*lll), then for each < c,
we have

b(z- z*, z z*) >- lllz- z’Ill2 for all z A with IIz- z*ll sufficiently small.

Proof Given z6 A, let y T be the hypothesized point for which Illz-ylll-
o(lllz-z*lll). Since the bilinear form b is bounded, there exists a constant c such that

b(z- z*, z- z*)>- ,IllY z’Ill- clllz-Ylll2- cl[Iz- ylll lily

The inequality

lily z*lll--> IIIz z*lll- IIIz ylll- IIIz z*lll- o(lllz
completes the proof.

We now apply Lemmas 9 and 10 to optimal control problems. Note that in the
following result, we neither assume an interior point nor controllability.

COIOLLAR 5. Suppose that x* and u* arefeasiblefor the optimal control problem
(68), that f and g satisfy the differentiability conditions given below (68), that , ,* is
the solution to the adjoint equation (69) associated with x x* and u u*, and that the
minimum principle (70) holds. If there exists cr > 0 such that

,,]

whenever x W’2, x(0) 0, u L2, Ax + Bu, u v u* for some v L2 with v( t) E U
for almost every I, then u* is a strict local minimizer for (68).

Proof We apply Lemmas 9 and 10 with the following identifications: The z of
Lemma 9 is the pair (x, u), the space Z is W"x L, the norm I[[" [[[ associated with Z
is the Lz inner product norm, C(z) is the integral cost function in (68), and A consists
of those (x, u) in a convex neighborhood of (x*, u*) that satisfy the constraints

F(z)=0, where F(z)=f(x,u)-, u(t)U a.e. tI, and x(0)=a.

The functional M is defined by

M(z)=(V,H(x*, u*,h*), u-u*)+b(z-z*,z-z*),z=(x, u),

where

b(6z, 6z)= f (x(t)rQ(t)6x(t)+6u(t)rR(t)6u(t)+26x(t)rS(t)u(t)) dt,

,z ,x, ,u ).
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The set T of Lemma 10 is given by

T={z=(x, u)Z: F’(z*)(z-z*)=O,x(O)=a, u(t) U a.e. tI}.

To verify identity (87), first note that for z A, we have

C(z) f g(z)+ F(z)rA*dt.

Hence, after an integration by parts and a Taylor expansion, we obtain (87). By the
minimum principle (70), M(z) >-_ b(z- z*, z- z*). By the coercivity condition (88) and
the fact that coercivity with respect to the control implies coercivity with respect to
the state (see [20]), we have

b(z z*, z z*) >= a[llz z*[]l for some a > 0.

Thus (86) follows from Lemma 10 if, for each z=(x, u)e A, we can establish the
existence of y T with [I]z- Y]II o(111 z -z*l[])-We construct y in the following way: Let
w be the solution to

(89) Vx/(x*, u*)w-F’(z*)(z-z*), w(0) 0,

and define y (w + x, u). Observe that y T. Also, by (89) we have

where c is a generic constant. From the re|ation

[IF’(z*)(z- z*)II --IlF(z)- F(z*)- F’(z*)(z- z*)ll2 o(llz- z* 11,2),

we conclude that z- y w o(11 z z* which completes the proof. El
Now let us consider the finite-dimensional optimization problem

minimize C(x, u)
(9o)

subject to F(x, u) O, u f c R", x R",

where f is convex and F maps R "+n to R n. Let z denote the pair (x, u), and for
A e R ", let H be the Lagrangian defined by

H(z, A)= C(z)+ A F(z).
COROLLARY 6. Suppose that x* and u* arefeasiblefor (90), that F and C are twice

differentiable at z* =(x*, u*), and that VxF(x*, u*) is nonsingular. If there exists a

multiplier * R such that

VH(x*,u*,A*)=0 and VuH(x*,u*,A*)r(u-u*)>=0 for every uf

and

(z Z
: TV2zz H(z*, X*)(z z*)=> alz z*]

whenever F’(z*)(z-z*)=O for some z=(x, u) with uf, then z* is a local minimizer

for (90).
Proof We apply Lemma 9 with

M(z) VzH(z*, X)(z- z*)+1/2(z- z*) rVZzzH(z*, X*)(z- z*).

The set T of Lemma 10 is given by

T={z=(x, u)6 R"+": F’(z*)(z-z*)=O, ufl}.
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The y of Lemma 10 is constructed in the following way: Given z (x, u) with u f,
y (x + w, u), where w is the solution to

VxF(x*, u*)w -F’(z*)(z- z*).

Observe that y e T. If F(z)= 0, then

IF’(z*)(z- z*)l I(z)- F(z*)- F’(z*)(z z*)l o(Iz z*l).
Since V,,F(x*, u*) is nonsingular, we have

Iz-yl-Iwl-< clF’(z*)(z-z*)l- o(Iz-z*l).
Appendix 2: The coercivity condition. Here we show that the discrete coercivity

condition (75) of 7 can be deduced from an analogous continuous condition.
LEMMA 11. Suppose that the matrices A, B, Q, R, and S of 7 are continuous and

that there exists fl > 0 such that

(91) f (x(t)TO(t)x(t)+u(t)rR(t)u(t)+2x(t)7"S(t)u(t))d,>-_ f ]u(t)]2 d,

whenever x Wl’z, x(O) O, u 6 L2, Ax + Bu, u v w for some v and w L2 with
v(t) and w(t) 6 Ufor almost every L Then there exists a > 0 satisfying the discrete
coercivity condition (75).

Proof Given sequences {xi} and {ui} that satisfy the linear equation (76) where
u vi- wi for some v and w 6 U, let u h denote the piecewise constant extension of
the u defined by

uh(t)--Ui, ti<=t<ti+l, i=0, 1,..., N-l,

and let xh be the solution of

h Axh + Bu h, xh (0) O.

Define y xh(t) and let yh be the piecewise constant extension of the y. Since uh is
piecewise constant,

lu(t)l2 dr- h 2
i=0

We will show that, for x x h and u u h,
N-I

(92) Ileft side of (91)-left side of (75)1-< he h E lu, =,
i-----0

where e h denotes a generic constant that tends to zero as h tends to zero. Hence, (75)
follows from (91) when h is sufficiently small.

Let us begin with the quadratic control terms in (75) and (91). Since u h is equal
to ui on the interval Its, t+l], it follows that

N-I I N-1

h , ufR,u,- uh(t)7g(t)uh(t)dt=h ur6R,u,,
=0 i=0

where

(93) ilti+l6R, R, -- R( t) dt.



LIPSCHITZIAN STABILITY 601

Since R(t) is continuous in t, (93) approaches zero, uniformly in i, as N-. Hence,
we have

h
=0 =0

Now let us consider the quadratic state terms in (75) and (91). As with the quadratic
control term, we have

N--1 ff N--1

(94) h
=0 =0

From the differential equation satisfied by x h, we have

N-1

(95) Ilyll2 IlYhll IIxll cllu[l= ch lu, =,
i=0

where c denotes a generic constant that is independent of h for h suciently small.
Combining (94) and (95) yields

(96) h
=0 =0

Since yh is the piecewise constant extension of xh, it follows from the equation
for xh that

]ly h -xhl[L2 h 11II chluhl].
This estimate, along with (95), implies that

(97)
=0

Finally, let us consider the difference

N--I

2 2 xx.
i=0

Integrating the differential equation for x over the interval [, +] gives

y+ yi + hAyi + hBu + e,(98)

where

ti+l
e=-htSBiu-htAy+ A(t)(xh(t)--y) dt.

li

The factors Ai and Bi are defined by

tAi Ai -- ’,

A( t) dt and tB Bi -- B( t) dt.

Subtracting the finite difference equation (76) from (98) gives

N-I

ly xl =< c y le, I.
i=0

From the definition of e, we have

le, l<-h(lu, l/ly, I).
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It follows that

Summing over j yields

Hence, we have

N-1

i=0

N-1

h Z ]y-x]211112.
j=0

N-1

(99) h Y yf Qiy, x Q,xi < e"ll
i=0

The triangle inequality, along with (96), (97), and (99), gives

N-1 I N-I

h Z xfQixi- x(t)rQ(t)x(t)dt <--heh X lu,
=o =o

Since the cross-product term xrSiu can be analyzed in a similar manner, the proof of
(92) is complete. [3
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