
GRAPH PARTITIONING AND CONTINUOUS
QUADRATIC PROGRAMMING∗

WILLIAM W. HAGER† AND YAROSLAV KRYLYUK†

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 4, pp. 500–523

Abstract. A continuous quadratic programming formulation is given for min-cut graph parti-
tioning problems. In these problems, we partition the vertices of a graph into a collection of disjoint
sets satisfying specified size constraints, while minimizing the sum of weights of edges connecting
vertices in different sets. An optimal solution is related to an eigenvector (Fiedler vector) correspond-
ing to the second smallest eigenvalue of the graph’s Laplacian. Necessary and sufficient conditions
characterizing local minima of the quadratic program are given. The effect of diagonal perturbations
on the number of local minimizers is investigated using a test problem from the literature.

Key words. graph partitioning, min-cut, max-cut, quadratic programming, optimality condi-
tions, graph Laplacian, edge separators, Fiedler vector

AMS subject classifications. 90C35, 90C27, 90C20

PII. S0895480199335829

1. Introduction. This paper analyzes a continuous quadratic programming for-
mulation for min-cut graph partitioning problems where we partition the vertices of
a graph into disjoint sets satisfying specified size constraints, while minimizing the
sum of the weights of edges connecting vertices in different sets. As a special case,
the discrete quadratic programming formulation of Goemans and Williamson [22] for
the max-cut problem is equivalent to a continuous quadratic program in which their
discrete variables taking values −1 or +1 are replaced by continuous variables with
values between −1 and +1. Graph partitioning problems arise in circuit board and
microchip design, in other layout problems (see [33]), and in sparse matrix pivot-
ing strategies. In parallel computing, graph partitioning problems arise when tasks
are partitioned among processors in order to minimize the communication between
processors and balance the processor load. For example, an application of graph
partitioning to parallel molecular dynamics simulations is given in [44].

Another graph problem with a quadratic programming formulation is the maxi-
mum clique problem. In [36] Motzkin and Strauss show that the size of the largest
clique in a graph can be obtained by solving a quadratic programming problem, while
Gibbons et al. establish in [20] many interesting properties of this formulation.

A general approach for converting a discrete optimization problem to a continuous
problem involves a diagonal perturbation. For example, subtracting a sufficiently large
multiple of the identity from the quadratic cost matrix in the quadratic assignment
problem yields a concave minimization problem whose local minimizers are extreme
points of the feasible set, and whose global minimizers are solutions of the original
discrete optimization problem (see the book [38, p. 26] by Pardalos and Rosen and
the article [4] by Bazaraa and Sherali). One problem with this concave formulation of
a discrete minimization problem is that the continuous problem can have many local
minimizers. When a continuous optimization algorithm is applied, any of these local
minima can trap the iterates. Our approach is related in the sense that we modify
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the diagonal of the cost function. However, we are able to capture the solution of the
discrete problem without modifying the cost function to the extent that it becomes
concave. By restricting the size of the modification, the number of local minimizers
that are candidates for a global minimizer is reduced substantially.

Various approaches to the graph partitioning problem appear in the literature.
The seminal paper in this area is that of Kernighan and Lin [31] which presents
the problem, application areas, and an exchange algorithm for obtaining approximate
solutions. Four classes of algorithms have emerged for the graph partitioning problem:

(a) spectral methods, such as those in [29] and [40], where an eigenvector cor-
responding to the second smallest eigenvalue (Fiedler vector) of the graph’s
Laplacian is used to approximate the best partition;

(b) geometric methods, such as those in [21], [28], and [35], where geometric
information for the graph is used to find a good partition;

(c) multilevel algorithms, such as those in [13], [14], [30], and [32], that first
coarsen the graph, partition the smaller graph, then uncoarsen to obtain a
partition for the original graph;

(d) optimization-based methods, such as those in [5], [6], [7], [18], and [45], where
approximations to the best partitions are obtained by solving optimization
problems.

See [3] for a survey of results in this area prior to 1995.
Here we focus on optimization-based formulations. Much of the earlier work

in this area involves relaxations in which constraints are dropped in an optimization
problem to obtain a tractable problem whose optimal solution is a lower bound for the
optimal partition (see, for example, [6], [17], [41]). We also mention the work of Barnes
[5] in which a spectral decomposition of the adjacency matrix is used with the solution
of a related transportation problem (linear cost function and linear constraints) to
approximate the best partition. In [7] a diagonal perturbation of the adjacency matrix
is used to make it positive definite, and a Cholesky factorization of this perturbed
matrix leads to a transportation problem whose solution again approximates the best
partition. In contrast, our quadratic program is an exact formulation of the original
problem in the sense that it has a minimizer corresponding to the best partition. Since
the graph partitioning problem is NP-hard, this exact formulation is, in general, a
difficult problem to solve.

In [18] Falkner, Rendl, and Wolkowicz present a quadratic optimization problem
with both a quadratic constraint and linear equality and inequality constraints that
is equivalent to the graph partitioning problem, and they solve (approximately) prob-
lems from the literature using the bundle-trust code of Schramm and Zowe. Their
constraints are of the form

0 ≤ xi ≤ 1,
n∑
i=1

xi = m,
n∑
i=1

x2
i = m,

which force the solution vector to have 0/1 components. In [45] Wolkowicz and Zhao
consider another variation of the quadratic constraint, requiring that x2

i = xi, to
enforce the 0/1 constraint. A semidefinite programming relaxation of the original
problem is solved using a primal-dual interior point method. Our quadratic program-
ming formulation does not have a quadratic constraint; the constraints are simply
linear equalities and inequalities. We show that the quadratic program has a solution
with 0/1 components, and that there is a connection between the Fiedler vector used
by Pothen, Simon, and Liou in [40] to compute edge and vertex separators of small
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size and a solution to our quadratic programming problem. Our proof of the existence
of a 0/1 solution is based on the following principle exposed by Tardella in [43]: If a
function is minimized over a polyhedron, and if for each face of the polyhedron there
exists a direction in the face along which the function is concave (or quasi concave),
then there exists a vertex minimizer.

We briefly outline the paper: Section 2 presents the quadratic programming for-
mulation of the two-set graph partitioning problem. In section 3 we give necessary
and sufficient optimality conditions for a local minimizer of the quadratic program.
These conditions relate the graph structure and the first-order optimality conditions
at the given point. In section 4 we examine the effect of diagonal perturbations on the
number of local minimizers using a test problem of Donath and Hoffman [17]. The
connection between our quadratic program and the second eigenvector of the graph’s
Laplacian is studied in section 5. In section 6 we conclude with various generalizations
of our results to partitions involving more than two sets, to nonsymmetric matrices,
and to more general constraints.

2. Two-set partitions. Let G be a graph with n vertices V :

V = {1, 2, . . . , n},
and let aij be a weight associated with the edge (i, j). For each i and j, we assume
that aii = 0, aij = aji, and if there is no edge between i and j, then aij = 0. The sign
of the weights is not restricted. Given a positive integer m < n, we wish to partition
the vertices into two disjoint sets, one with m vertices and the other with n − m
vertices, while minimizing the sum of the weights associated with edges connecting
vertices in different sets. This optimal partition is called a min-cut. We show that
for an appropriate choice of the diagonal matrix D, the min-cut can be obtained by
solving the following quadratic programming problem:

minimize (1− x)T(A + D)x

subject to 0 ≤ x ≤ 1, 1Tx = m.
(1)

More precisely, for an appropriate choice of D, (1) has a solution y for which each
component is either 0 or 1. The two sets V1 and V2 in an optimal partition are given
by

V1 = {i : yi = 1} and V2 = {i : yi = 0}.(2)

The following theorem shows how to choose D.
Theorem 2.1. If D is chosen so that

dii + djj ≥ 2aij(3)

for each i and j, then (1) has a 0/1 solution y and the partition given by (2) is a
min-cut. Moreover, if for each i and j,

dii + djj > 2aij ,(4)

then every local minimizer of (1) is a 0/1 vector.
Proof. Given a solution y to (1), we now construct a piecewise linear path, taking

us from y to a solution z of (1) whose components are either 0 or 1. Let F(y) be the
inactive (or free) components of the vector y:

F(y) = {i : 0 < yi < 1}.(5)
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Let f be the cost function of (1):

f(x) = (1− x)T(A + D)x.(6)

Either F(y) is empty, and z = y, or F(y) has two or more elements since the con-
straint 1Tx = m of (1), where m is an integer, cannot be satisfied when x has a single
noninteger component. If F(y) has two or more elements, we show that there exists
another minimizing point ȳ with F(ȳ) strictly contained in F(y), and f(x) = f(y)
for all x on the line segment connecting y and ȳ. Utilizing this property in an induc-
tive fashion, we conclude that there exists a piecewise linear path taking us from any
given minimizer y to another minimizer z with F(z) = ∅ (that is, all the components
of z are either 0 or 1), and f(x) = f(y) for all x on this path.

If F(y) has two or more elements, then choose two elements i and j ∈ F(y), and
let v be the vector all of whose entries are zero except that vi = 1 and vj = −1. For ε
sufficiently small, x = y + εv is feasible in (1). Expanding f in a Taylor series around
x = y, we have

f(y + εv) = f(y)− ε2vT(A + D)v.(7)

The O(ε) term in this expansion disappears since f(y + εv) achieves a minimum at
ε = 0, and the first derivative with respect to ε vanishes at ε = 0. In addition, from
the inequality

f(y + εv) ≥ f(y) for all ε near 0,

we conclude that the quadratic term in (7) is nonnegative, or equivalently,

vT(A + D)v = diiv
2
i + djjv

2
j + 2aijvivj = dii + djj − 2aij ≤ 0.(8)

Since dii+djj−2aij ≥ 0 by (3), it follows that dii+djj−2aij = 0 and f(y+εv) = f(y)
for each choice of ε. Let ε̄ be the largest value of ε for which x = y + εv is feasible
in (1). Defining ȳ = y + ε̄v, F(ȳ) is strictly contained in F(y) and ȳ achieves the
minimum in (1) since f(y + εv) = f(y) for all ε. In summary, for any given solution
y to (1), we can find another solution ȳ with F(ȳ) strictly contained in F(y) and
f(x) = f(y) for all x on the line segment connecting y and ȳ. This shows that there
exists a 0/1 solution y of (1).

Now, if y is a 0/1 vector, then f(y) is equal to the sum of the weights of the
edges connecting the sets V1 and V2 in (2). Conversely, given a partition of V into
disjoint sets V1 and V2 and defining zi = 1 for each i ∈ V1 and zi = 0 for each i ∈ V2,
f(z) is the sum of the weights of the edges connecting V1 and V2. Combining these
two observations, we conclude that the partition associated with y is a min-cut.

Finally, suppose that (4) holds, y is a local minimizer for (1), and y is not a 0/1
vector. As noted above, F(y) has two or more elements, and the expansion (7) holds
where the quadratic term satisfies (8), contradicting (4). We conclude that F(y) is
empty and y is a 0/1 vector.

Note that condition (3) is equivalent to requiring that f in (6) is concave in the
direction v, where v is the vector all of whose entries are zero except that vi = 1
and vj = −1. Hence, concavity is not assumed over the entire space Rn, only along
directions corresponding to the edges of the constraint polyhedron. The technique
we use in the proof of Theorem 2.1 to convert a noninteger minimizer to an integer
minimizer by moving in the direction of the vector v is also employed by Ageev and
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Sviridenko in [1]. Although the first part of Theorem 2.1 asserts the existence of a 0/1
solution to (1), there are instances where (1) has solutions that are not 0/1 vectors.
For example, if the off-diagonal elements of A are all equal to 1 and D = I, then any
feasible point is optimal.

We now consider a slightly more general form of the graph partitioning problem
where we still minimize the sum of weights of edges connecting the two sets. However,
the size of a set is specified by upper and lower bounds rather than by a fixed number
m. Our quadratic programming formulation of this min-cut problem is the following:

minimize (1− x)T(A + D)x

subject to 0 ≤ x ≤ 1, l ≤ 1Tx ≤ u,
(9)

where l and u are given integers satisfying 0 ≤ l < u ≤ n. The corresponding gener-
alization of Theorem 2.1 involves an additional constraint on the diagonal elements
of D.

Corollary 2.2. If D is chosen so that

dii + djj ≥ 2aij and dii ≥ 0(10)

for each i and j, then (9) has a 0/1 solution y and the partition given by (2) is a
min-cut. Moreover, if for each i and j,

dii + djj > 2aij and dii > 0,(11)

then every local minimizer of (9) is a 0/1 vector.
Proof. Let y be a solution of (9) and define m = 1Ty. If m is not an integer,

then l < m < u since m lies between the integers l and u. For i ∈ F(y), the free
set defined in (5), let e be the vector all of whose entries are zero except that ei = 1.
The function f(y + εe), where f is defined in (6), has a local minimum at ε = 0 since
y is the global minimizer of (9) and y + εe is feasible for small perturbations in ε.
Expanding in a Taylor series around ε = 0 gives

f(y + εe) = f(y)− diiε2.(12)

Since dii ≥ 0 by (10), it follows that dii = 0 or else the local optimality of y in (9) is
violated. Hence,

f(y + εe) = f(y)(13)

for each choice of ε.
For each i ∈ F(y), we increase yi until either yi reaches the upper bound 1 or

1Ty reach the upper bound u. These adjustments in yi do not change the value of f
due to (13), and after these adjustments, 1Ty must be an integer. Therefore, without
loss of generality, we can assume that m = 1Ty is an integer. Since y is a solution of
(9) and the feasible set of (1) is contained in the feasible set of (9), we conclude that
y is a solution of (1) as well as (9). By Theorem 2.1, (1) has a 0/1 solution which
must be a solution of (9).

Now suppose that (11) holds. If 1Ty is not an integer, then we must have l <
1Ty < u. By (11) dii > 0 for each i. If i ∈ F(y), then according to (12) the local
optimality of y is violated. Hence, we conclude that 1Ty is an integer that we denote
by m, and y is a local minimizer for (1) as well as for (9). By Theorem 2.1, y is a
0/1 vector.
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Remark 2.1. The proofs of Theorem 2.1 and Corollary 2.2 involve quadratic
expansions of the cost function. The linear terms in these expansions all vanish due
to the optimality of y. Hence, both of these results are valid if linear terms are added
to the cost functions in (1) and (9) since linear terms do not effect the quadratic terms
in the expansions.

Now let us consider various applications of Theorem 2.1. If aij = 1 for each edge
of the graph G, then A is simply the graph’s adjacency matrix. And if y is a 0/1
vector, then f(y) is equal to the number of edges connecting the sets V1 and V2 in
(2) for the partition associated with y. Notice that when A is the adjacency matrix
of the graph, conditions (3) and (10) are satisfied by taking D = I.

Let W be an n×n symmetric matrix whose elements are nonnegative with wii = 0
for each i and consider the choice A = −W. Since A ≤ 0, it follows that the
conditions (3) and (10) are satisfied by taking D = 0. Hence, for this choice of A and
for D = 0, the quadratic programs (1) or (9) have 0/1 solutions. Since minimizing
f is equivalent to maximizing −f , the minimization problem (9) is equivalent to the
following max-cut problem:

maximize (1− x)TWx

subject to 0 ≤ x ≤ 1, l ≤ 1Tx ≤ u.
(14)

If l = 0 and u = n, then there are no constraints on the size of the sets in the partition.
In [22] the following discrete formulation is given for the weighted max-cut problem
without constraints on the set size:

maximize
1

2

∑
i<j

wij(1− zizj)

subject to zi ∈ {−1, 1}, 1 ≤ i ≤ n.
(15)

The cost function of this discrete quadratic program is equal to 1
4 (1TW1 − zTWz),

and with the substitution z = 2x− 1, we obtain the equivalent problem

maximize (1− x)TWx

subject to xi ∈ {0, 1}, 1 ≤ i ≤ n.
(16)

Taking l = 0 and u = n, Corollary 2.2 implies that (14) has the same maximum
as (16). Moreover, there exists a 0/1 solution y of (14) for which the associated
partition (2) maximizes the sum of the weights of the edges connecting V1 and V2.
As a consequence, if the constraint zi ∈ {−1, 1} in (15) is changed to −1 ≤ z ≤ 1,
then the resulting continuous quadratic program has the same maximum value as
the discrete program (15). This property for bound-constrained minimization was
observed by Rosenberg [42] in the following context: If a polynomial is linear with
respect to each of its variables, then its minimum over a box is attained at one of the
vertices. Since wii = 0, the function zTWz is linear in each variable and Rosenberg’s
result can be applied.

Graph partitioning problems have application to ordering strategies for sparse
matrix factorization. In the minimum degree algorithm, we permute two rows and
the same two columns of a symmetric positive definite matrix P in order to obtain as
many zeros as possible in the first column. The column and the row that are moved
to the first row and column correspond to the positive component of a 0/1 solution
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of (9) associated with l = u = 1, where aij = 1 if pij 6= 0 and aij = 0 otherwise.
Likewise, taking l = u = n/2, assuming n is even, we obtain a partitioning akin to
nested dissection in which all those columns and rows associated with indices in V1

are permuted to the front of the matrix. Viewed in this graph partitioning context,
another ordering emerges. For example, we could take l = 1 and u a number slightly
larger than 1 to obtain an ordering similar to minimum degree. Or we could take
l < n/2 and u > n/2 to obtain an ordering similar to nested dissection that allows
some freedom in the size of the sets in the partition.

3. Necessary and sufficient optimality conditions. In this section, we for-
mulate necessary and sufficient optimality conditions for the quadratic programs of
section 2. For a general quadratic program, deciding whether a given point is a local
minimizer is NP-hard (see [37], [39]). On the other hand, for the quadratic program
associated with the graph partitioning problem, we show in this section that local
optimality can be decided quickly. Given any x that is feasible in (1), let us define
the sets

U(x) = {i : xi = 1} and L(x) = {i : xi = 0}.

Given a scalar λ, we define the vector

µ(x, λ) = (A + D)1− 2(A + D)x + λ1.

We also introduce subsets U0 and L0 defined by

U0(x, λ) = {i ∈ U(x) : µi(x, λ) = 0} and L0(x, λ) = {i ∈ L(x) : µi(x, λ) = 0}.

The first-order optimality (Karush–Kuhn–Tucker) conditions associated with a local
minimizer x of (9) can be written in the following way: For some scalar λ,

0 ≤ x ≤ 1, 1Tx = m, and x ∈ N (µ(x, λ)),(17)

where N (µ) = N1(µ)×N2(µ)× · · · × Nn(µ) is a set-valued map, and

Ni(µ) =

 R if µi = 0,
{1} if µi < 0,
{0} if µi > 0.

Here R denotes the set of real numbers. The first two conditions in (17) are the
constraints in (1), while the last condition is complementary slackness and stationarity
of the Lagrangian.

Theorem 3.1. Suppose that (3) holds and m is a real number with 0 < m < n.
A necessary and sufficient condition for y to be a local minimizer in (1) is that all of
the following hold:

(P1) For some λ, the first-order conditions are satisfied at x = y.
(P2) For each i and j ∈ F(y), where F is the free index set defined in (5), we have

dii + djj = 2aij.
(P3) Consider the three sets U0(y, λ), L0(y, λ), and F(y). For each i and j in two

different sets, we have dii + djj = 2aij.
The motivation for (P2) and (P3) follows. Those indices in U0(y, λ), L0(y, λ),

and F(y) correspond to those components of the multiplier µ(y, λ) that vanish. If the
cost function f(x) in (6) is expanded in a Taylor series around y, then the linear terms



GRAPH PARTITIONING 507

in the expansion corresponding to zero multiplier components are all zero. If v is a
vector all of whose components are zero except that vi = 1 and vj = −1, where i and j
are indices corresponding to multiplier components that vanish, then vT(A+D)v ≥ 0
by (3). Conditions (P2) and (P3) are devised so that vT(A + D)v = 0 whenever v is
a feasible direction at y (if vT(A + D)v > 0, then y is no longer a local minimizer).

Proof. If y is a local minimizer in (1), then the first-order conditions (17) hold
automatically, while in the proof of Theorem 2.1, we saw that dii+djj = 2aij for each
i and j ∈ F(y) — see the discussion around (8). For the remainder of the proof, we
let µ and the various sets L, U , F , L0, and U0 stand for µ(y, λ), L(y), U(y), F(y),
L0(y, λ), and U0(y, λ), respectively. We also define complementary sets

L′ = L \ L0 and U ′ = U \ U0.

L′ is the set of indices for which yi = 0 and µi > 0, while U ′ is the set of indices for
which yi = 1 and µi < 0.

To establish (P3), we expand the cost function in a Taylor series around y. Let
L be the Lagrangian defined by

L(x) = f(x) + λ(1Tx−m)−
∑
i∈L

µixi −
∑
i∈U

µi(xi − 1),

where f is the cost function in (6). By the complementary slackness condition in (17)
and by the definition of µ, we have L(y) = f(y) and ∇L(y) = 0. Expanding the
Lagrangian around y, we have

L(y + z) = L(y) +∇L(y)z +
1

2
zT∇2L(y)z = f(y)− zT(A + D)z.

It follows that

f(y + z) = L(y + z)− λ(1T(y + z)−m) +
∑
i∈L

µi(yi + zi) +
∑
i∈U

µi(yi + zi − 1)

= f(y)− zT(A + D)z− λ1Tz +
∑
i∈L

µizi +
∑
i∈U

µizi.(18)

Suppose that i ∈ U0 and j ∈ F and let v be the vector all of whose entries are zero
except that vi = −1 and vj = 1. The vector x = y + εv satisfies the constraints of
(1) for ε sufficiently small, and by the definition of U0, µi = 0. By (18), we have

f(y + εv) = f(y)− ε2(dii + djj − 2aij).

Since y is a local optimizer in (1), we must have dii + djj ≤ 2aij ; while by (3),
dii + djj ≥ 2aij . Hence, dii + djj = 2aij . A similar argument can be used for all
the other possible ways of choosing i and j from different sets U0, L0, and F . This
completes the proof of (P3).

Now consider the converse. That is, we assume that (P1)–(P3) all hold and we
wish to show that y is a local minimizer in (1). Suppose that x satisfies the constraints
of (1) and define z = x− y, so that x = y + z. Let Z denote the set defined by

Z = F ∪ L0 ∪ U0 = {i : µi = 0},(19)

and let Z ′ be the complement:

Z ′ = L′ ∪ U ′ = {i : µi 6= 0}.(20)
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F
L0

U0

Z ′

F L0 U0 Z ′
= = = ?
= ? = ?
= = ? ?
? ? ? ?


Fig. 3.1. Structure of A + D.

In the case that Z ′ is nonempty, we define the parameter

σ = min {|µi| : i ∈ Z ′},
which is positive by the definition of Z ′. For the remainder of the proof, we assume
that Z ′ is nonempty, and at the end of the proof, we point out the adjustments
that are needed to handle the case where Z ′ is empty. Since x = y + z satisfies the
constraints in (1), we have zi ≥ 0 and zj ≤ 0 for all i ∈ L and j ∈ U . Since µi ≥ 0
and µj ≤ 0 for all i ∈ L and j ∈ U , it follows that∑

i∈L
µizi +

∑
j∈U

µjzj =
∑
i∈Z′

µizi ≥ σ
∑
i∈Z′
|zi|.(21)

If ‖ · ‖ and ‖ · ‖Z′ denote the vector 1-norms defined by

‖z‖ =
n∑
i=1

|zi| and ‖z‖Z′ =
∑
i∈Z′
|zi|,

then the relation (21) can be expressed∑
i∈L

µizi +
∑
j∈U

µjzj ≥ σ‖z‖Z′ .(22)

Now let us consider the quadratic term in (18). The structure of A is depicted
in Figure 3.1. In this figure, an equal sign means that for the elements in that part
of the matrix, we have dii + djj = 2aij , while a question mark means that we do
not know anything about the elements in that region. The equal sign in the (F ,F)
position corresponds to (P2) while the remaining six equal signs correspond to (P3).

We now make a careful study of the quadratic term in (18) which can be expressed

−zT(A + D)z = −
∑
i,j∈Z

aijzizj −
∑

(i,j)6∈Z×Z
aijzizj −

n∑
i=1

diiz
2
i .

For those (i, j) that lie in the part of the matrix in Figure 3.1 corresponding to the
equal signs, the relation aij = (dii + djj)/2 holds. With this substitution, a little
algebra reveals that

−zT(A + D)z = −d
(∑
i∈Z

zi

)
+

1

2

∑
i,j∈L0

(dii + djj − 2aij)zizj

+
1

2

∑
i,j∈U0

(dii + djj − 2aij)zizj −
∑

(i,j)6∈Z×Z
aijzizj −

∑
i∈Z′

diiz
2
i ,(23)



GRAPH PARTITIONING 509

where d is defined by

d =
∑
i∈Z

diizi.(24)

Since x is feasible in (9), we have zi ≥ 0 for all i ∈ L0 and zi ≤ 0 for all i ∈ U0. Since
dii + djj ≥ 2aij by (3), we deduce that∑

i,j∈L0

(dii + djj − 2aij)zizj +
∑
i,j∈U0

(dii + djj − 2aij)zizj ≥ 0.(25)

Hence, we have

−zT(A + D)z ≥ −d
(∑
i∈Z

zi

)
−

∑
(i,j)6∈Z×Z

aijzizj −
∑
i∈Z′

diiz
2
i .(26)

Combining the lower bounds (22) and (26), we conclude from (18) that

f(y + z) ≥ f(y) + σ‖z‖Z′ − d
(∑
i∈Z

zi

)
−

∑
(i,j)6∈Z×Z

aijzizj −
∑
i∈Z′

diiz
2
i .(27)

Since both x = y and x = y + z satisfy the constraint 1Tx = m, it follows that
1Tz = 0, from which we obtain the relation∑

i∈Z
zi = −

∑
i∈Z′

zi.

Taking absolute values gives ∣∣∣∣∑
i∈Z

zi

∣∣∣∣ ≤ ‖z‖Z′ .
Also, observe that

|zizj | ≤ ‖z‖‖z‖Z′ when (i, j) 6∈ Z × Z

since either i ∈ Z ′ or j ∈ Z ′. Combining these observations with (27) yields

f(y + z) ≥ f(y) + ‖z‖Z′ (σ − c‖z‖) ,(28)

where c is a constant that can be bounded in terms of the elements of A and D.
Hence, when ‖z‖ is sufficiently small, f(y + z) ≥ f(y), which implies that y is a local
minimizer of f .

To conclude, we consider the case where Z ′ is empty. In this case, all the com-
ponents of µ vanish by (19). Hence, the last two terms in the Taylor expansion (18)
vanish, while the 1Tz term vanishes since both x = y and x = y + z satisfy the
constraint 1Tx = m. For the quadratic term in (18), the first term in the identity
(23) vanishes since 1Tz = 0, the next two terms are nonnegative by (25), and the
last two terms are not present since the complement of Z is empty. Combining these
observations, f(y + z) ≥ f(y) whenever x = y + z is feasible in (1). Hence, y is a
global minimizer for (1). This completes the proof.
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Remark 3.1. For quadratic programming problems and a point y satisfying the
first-order conditions (17), a necessary and sufficient condition for y to be a local
minimizer is the copositivity of the quadratic cost matrix over a certain cone (see [12]
and [15]). In our context, this copositivity condition is equivalent to the inequality

vT(A + D)v ≤ 0

whenever v lies in the set

Γ = {v ∈ Rn : 1Tv = 0, vi ≤ 0 if yi = 1, vi ≥ 0 if yi = 0,vT(A + D)(1− 2y) = 0}.

Utilizing the expansion (18), it can be shown that

Γ = {v ∈ Rn : 1Tv = 0, vi ≤ 0 if i ∈ U0, vi = 0 if i ∈ U \ U0 or i ∈ L \ L0,

vi ≥ 0 if i ∈ L0}.

With further analysis, analogous to that given in the proof of Theorem 3.1, the copos-
itivity condition is equivalent to (P2) and (P3). Other references concerning coposi-
tivity and its application to optimality in quadratic programming include [8], [9], [10],
[11], [16], [26], and [27].

Remark 3.2. Continuous optimization algorithms typically converge to a point y
that satisfies the first-order conditions (17). Theorem 3.1 provides two conditions (P2)
and (P3) that can be checked to determine whether y is a local minimizer. Moreover,
if y is not a local minimizer, then careful study of the proof of Theorem 3.1 reveals
a direction of descent for the quadratic cost function. In particular, suppose that
dii + djj > 2aij for indices i and j described in either (P2) or (P3). Let v be a vector
whose entries are all zero except for entries i and j which are chosen so that vi = −vj
and |vi| = 1. From (18) it follows that

f(y + εv) = f(y)− (dii + djj − 2aij)ε
2(29)

since all the terms linear in z = εv vanish. In any of the following cases, we take
vi = −1 and vj = 1: (a) i, j ∈ F(y) or (b) i ∈ U0(y, λ) and j ∈ F(y) or (c)
i ∈ U0(y, λ) and j ∈ L0(y, λ). In the case that i ∈ L0(y, λ) and j ∈ F(y), we take
vi = 1 and vj = −1. Choosing v in this way, x = y + εv is feasible in (1) for ε > 0
sufficiently small and by (29) the value of the cost function is strictly smaller.

We now examine the case when a local minimizer is strict. If V ⊂ V is a collection
of vertices from the graph, let Vi denote the set of edges formed by i and the elements
of V:

Vi = {(i, j) : j ∈ V}.

Given a collection of edges E , let |E| denote the sum of the weights of the edges:

|E| =
∑

(i,j)∈E
aij .

Corollary 3.2. A feasible point y for (1) is a strict local minimizer if and only
if F(y) = ∅ and

min
i∈L(y)

|Li(y)| − |Ui(y)| > max
j∈U(y)

|Lj(y)| − |Uj(y)|.(30)
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Proof. Suppose that y is a strict local minimizer for (1). That is, f(x) > f(y)
when x is near y and x is feasible in (1). If F(y) is nonempty, then as seen in the
proof of Theorem 2.1, F(y) has at least two elements. By (P2) of Theorem 3.1,
dii + djj = 2aij for each i and j ∈ F(y). Letting v be a vector whose elements are
all zero except that vi = 1 and vj = −1, the expansion (7) implies that

f(y + εv) = f(y)(31)

for all choices of ε. Since this violates the assumption that y is a strict local minimizer,
we conclude that F(y) is empty. By the first-order conditions (17), we have

(A1− 2Ay)i + λ ≥ 0 ≥ (A1− 2Ay)j + λ(32)

for all i ∈ L(y) and j ∈ U(y). Since F(y) is empty, (A1)i = |Li(y)| + |Ui(y)| and
(Ay)i = |Ui(y)|. Hence, we have

(A1− 2Ay)i = |Li(y)| − |Ui(y)|,(33)

and (32) yields

|Li(y)| − |Ui(y)| ≥ |Lj(y)| − |Uj(y)|
for each i ∈ L(y) and j ∈ U(y). If equality holds, for some i ∈ L(y) and j ∈ U(y),
then equality must hold in (32) as well:

(A1− 2Ay)i + λ = 0 = (A1− 2Ay)j + λ.

This implies that i ∈ L0(y) and j ∈ U0(y). By (P3) of Theorem 3.1, dii + djj = 2aij .
Choosing v as we did earlier, x = y + εv is feasible in (1) for ε > 0 sufficiently small,
and (31) holds, which violates strict local optimality.

Conversely, suppose that F(y) = ∅ and (30) holds. In this case, we can choose λ
such that

|Li(y)| − |Ui(y)|+ λ > 0 > |Lj(y)| − |Uj(y)|+ λ

for each i ∈ L(y) and j ∈ U(y). Utilizing (33) gives

(A1− 2Ay)i + λ > 0 > (A1− 2Ay)j + λ,

for each i ∈ L(y) and j ∈ U(y). For this choice of λ, the first-order conditions (17)
hold and both L0(y, λ) and U0(y, λ) are empty. Hence, the set Z ′ in (20) is simply

Z ′ = {1, 2, . . . , n}.
In this case, the lower bound (28) implies that y is a strict local minimizer.

We now consider the quadratic program (9) with inequality constraints. In this
case, the first-order KKT conditions are the following: For some λ,

0 ≤ x ≤ 1, l ≤ 1Tx ≤ u, 1Tx ∈M(λ), and x ∈ N (µ(x, λ)),(34)

where M(λ) is the set-valued map defined by

M(λ) =

 R if λ = 0,
{l} if λ < 0,
{u} if λ > 0.

Corollary 3.3. Suppose that (10) holds. A necessary and sufficient condition
for y to be a local minimizer in (9) is that (P1)–(P3) hold along with the following
additional condition:
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(P4) In the case that λ = 0 in the first-order condition (34), dii = 0 for each
i ∈ F(y)∪L0 ∪U0 if l < 1Ty < u, dii = 0 for each i ∈ F(y)∪U0 if 1Ty = u,
and dii = 0 for each i ∈ F(y) ∪ L0 if 1Ty = l.

Proof. We use the notation introduced in the proof of Theorem 3.1. If y is
a local minimizer in (9), then the first-order conditions (34) hold automatically for
some scalar λ. Since y is a local minimizer in (1) with m = 1Ty, it follows from
Theorem 3.1 that (P2) and (P3) hold as well. If λ = 0 and e is a vector whose
components are all zero except that ei = 1 for some i ∈ Z, then the expansion (18)
yields

f(y + εe) = f(y)− ε2dii.(35)

It follows that the local optimality of y is violated unless dii = 0 in all the cases cited
in (P4).

Conversely, let us assume that (P1)–(P4) all hold. We wish to show that y is
a local minimizer in (9). Given a feasible point x for (9), define z = x − y. In
Theorem 3.1, 1Tz = 0 and consequently, the λ term in (18) disappeared. Now this
term needs to be included on the right side of (27) to obtain

f(y + z) ≥ f(y) + σ‖z‖Z′ − λ1Tz

−d
(∑
i∈Z

zi

)
−

∑
(i,j)6∈Z×Z

aijzizj −
∑
i∈Z′

diiz
2
i .(36)

In the proof of Theorem 3.1, we showed that the last two terms in (36) can be bounded
by c‖z‖‖z‖Z′ . Moreover, utilizing the identity∑

i∈Z
zi = 1Tz−

∑
i∈Z′

zi,

(36) yields

f(y + z) ≥ f(y) + (σ − c‖z‖)‖z‖Z′ − (d+ λ)1Tz.(37)

If l < 1Ty < u, then λ = 0 by (34) and d = 0 by (P4). It follows from (37) that y
is a local minimizer. If 1Ty = u, then 1Tz ≤ 0 when x = y + z is feasible in (9). If
λ = 0, then by (P4), we have

d =
∑
i∈L0

diizi ≥ 0

since zi ≥ 0 for each i ∈ L. Again, by (37) and the relation 1Tz ≤ 0, y is a local
minimizer. If λ > 0, then by choosing ‖z‖ small enough that d+ λ > 0, we see from
(37) that y is a local minimizer (since the last term in (37) is nonnegative). The case
1Ty = l is treated in an analogous fashion. This completes the proof.

4. An example. Theorem 2.1 and Corollary 2.2 require that the diagonal ele-
ments of D should be chosen large enough to satisfy (3) and (10), respectively. On
the other hand, as we now observe, choosing D too large can lead to a miserable
optimization problem. In the case that D = sI, the quadratic program (1) becomes

minimize (1− x)T(A + sI)x

subject to 0 ≤ x ≤ 1, 1Tx = m.
(38)
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Fig. 4.1. An example graph.

Dividing the cost function in (38) by s and taking the limit as s tends to infinity, we
obtain the problem

minimize (1− x)Tx

subject to 0 ≤ x ≤ 1, 1Tx = m,
(39)

The extreme points of the feasible set in either (1) or (38) or (39) is the set

X = {P1m : P ∈ P},

where P is the set of n × n permutation matrices. Since x = 0 or x = 1 is a strict
local minimizer of the function x(1−x), we conclude that any element of X is a strict
local minimizer in the problem (39). In fact, for s sufficiently large, any element of X
is a strict local minimizer in the problem

minimize (1− x)T(I + 1
sA)x

subject to 0 ≤ x ≤ 1, 1Tx = m.

Hence, as s tends to infinity in (38), every extreme point of the feasible set becomes a
local minimizer, and consequently, checking the local minimizers in order to determine
the global minimum involves checking every extreme point of the feasible set. As s
decreases, fewer of these extreme points become local minimizers in (38), and there
are fewer candidates for the global optimum.

As an illustration, let us consider the 20 node graph displayed in Figure 4.1 (see
[17, Table 3], [41]) and let A be the adjacency matrix of the graph. In other words,
the weight is 1 for each edge of the graph and 0 otherwise. For this choice of A, we
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Fig. 4.2. Number of local minimizers for Figure 4.1 graph and optimization problem (38).

(1− x)TAx Minimizers
13 2
14 6
15 18
16 36
17 42
18 126
19 304

(1− x)TAx Minimizers
20 464
21 440
22 414
23 292
24 164
25 26

Fig. 4.3. The number of local minimizers in (1) for each value of the cost function.

should choose s ≥ 1 in (38) to ensure that (3) holds. Following [17], we take m = 10,
in which case the minimum number of edges separating the two sets of 10 nodes is
13 (the optimal partitioning is shown in Figure 4.1). For the example of Figure 4.1,
we computed all the local minimizers of (38) for each value of s ≥ 1. As s increases,
the number of local minimizers increases monotonically. The values of s, where there
is a change in the number, are always integers. Figure 4.2 shows the total number of
local minimizers as a function of s. The number of local minimizers ranges from 2334
when 1 < s < 2 up to 184756 for s ≥ 13. Hence, there are about 79 times as many
local minimizers for (38) when s ≥ 13 as compared to the number of local minimizers
when s is between 1 and 2.

For s between 1 and 2, the 2334 local minimizers of (38) yield the distribution of
values for the cost function of (1) shown in Figure 4.3. Hence, out of the 2334 local
minimizers of (1), only two of them are global minimizers. Note, however, that if we
compute any local minimizer of (38), the largest value it can have is 25. Moreover,
using 20 iterations of the gradient algorithm (optpack) described in [24], starting
from a point near x = (m/n)1, we converge to a local minimizer of (1) with value
(1 − x)TAx = 14. Hence, a simple gradient approach provides a partitioning of the
vertices that is very close to the optimal partitioning (1− x)TAx = 13.
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In contrast, if we take s = 21, 11, 6, 3, and 2 in (38) and use exactly the same
gradient algorithm and starting point, then we converge to locally minimizing values
of 29, 26, 17, 15, and 14, respectively. Thus the smaller values of s yield computed
minimizers whose values are closer to the global minimum 13.

The eigenvalues of the matrix −(A + I) are the following:

−7.0429, −4.1375, −3.1908, −2.7637, −2.4979, −2.2031, −1.8808,
−1.7844, −1.3706, −1.0552, −0.9066, −0.4584, 0.0901, 0.2508,

0.4315, 1.0217, 1.4759, 1.8608, 1.9740, 2.1869

Since there are both positive and negative eigenvalues, the choice D = I in the
quadratic program (1) has not changed the cost function to the extent that it became
concave.

5. Graph eigenvectors. In [40], Pothen, Simon, and Liou propose using an
eigenvector associated with the second largest eigenvalue of the Laplacian of a graph
in order to compute edge and vertex separators of small size. In this section, we relate
this eigenvector to a solution of the quadratic program (1). Let δi be the sum of the
weights of edges emanating from vertex i:

δi =
n∑
j=1

aij .

(Using the notation of section 3, δi = |Vi|.) The Laplacian L associated with G is
defined by

lij =

{
δi
−aij

if i = j,
otherwise.

Let g(x) = xTLx be the quadratic form associated with the Laplacian, and let f
be the cost function of the quadratic program (1). See [45] for the first part of the
following result.

Proposition 5.1. We have f(x) = g(x) for all x ∈ Ω, where

Ω = {x ∈ Rn : xi = 0 or 1, 1Tx = m}.
Hence,

min{f(x) : 0 ≤ x ≤ 1, 1Tx = m} = min{g(x) : x ∈ Ω}.
Proof. Observe that (1− x)TAx = δTx− xTAx and

xTLx =
n∑
i=1

δix
2
i − xTAx.

It follows that

f(x)− g(x) =

n∑
i=1

δi(xi − x2
i ) = 0(40)

for every x ∈ Ω. Since the quadratic program (1) has a solution in Ω by Theorem 2.1,
the proof is complete.
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By Gerschgorin’s theorem (see [23, p. 341] or [25, p. 250]) L is positive semidef-
inite and clearly 1 is an eigenvector of L corresponding to the eigenvalue 0. Let
ei, i = 1, . . . , n, denote a linearly independent, normalized set of eigenvectors for L,
where e1 = 1/

√
n, and where the remaining eigenvectors are ordered so that for the

associated eigenvalues, we have

0 = λ1 ≤ λ2 ≤ · · · ≤ λn.
Since g(1) = 0, it follows that for any vector x, g(x) = g(Qx) where Q is the
projection of a vector onto the orthogonal complement of 1. It is easily checked that

Qx = x− 1Tx
n 1.

Hence, if x ∈ Ω, then

Qx = x− m
n 1 and ‖Qx‖2 =

√
m(n−m)

n ,(41)

where ‖ · ‖2 is the Euclidean norm. The function g(y), with y restricted to a sphere
in the orthogonal complement of 1, attains its minimum in the eigenspace associated
with the second smallest eigenvalue λ2. By the computation (41), all points of the
form Qx with x ∈ Ω lie on the sphere of radius R =

√
m(n−m)/n. Hence, the

problem of minimizing g(x) over x ∈ Ω is related to the problem of finding the x ∈ Ω
whose projection onto the orthogonal complement of 1 is closest to the eigenspace
associated with λ2.

In [40] the authors focus, in particular, on the case where the vertices are parti-
tioned into two sets of roughly equal size. This case corresponds to taking m = n/2
in our notation. Since the eigenvectors associated with the second smallest eigenvalue
are all orthogonal to 1, the average of the components for any of these eigenvectors is
zero. If all the components are of comparable size, then half the components should
be positive and the other half should be negative. The x ∈ Ω for which Qx is closest
to a vector of this form is given by xi = 1 for the positive components and xi = 0
for the negative components. These considerations provide an alternative rationale
for the methodology of [40] where the vertices are partitioned according to the sign
of the components of an eigenvector corresponding to the second smallest eigenvalue.

This connection, provided by Proposition 5.1 between the quadratics f and g,
leads to upper and lower bounds for f over Ω. In particular, since

λ2‖Qx‖22 ≤ g(Qx) ≤ λn‖Qx‖22,
it follows from (41), Proposition 5.1, and the identity g(x) = g(Qx) for x ∈ Ω that

λ2R
2 ≤ min

x∈Ω
f(x) ≤ max

x∈Ω
f(x) ≤ λnR2,(42)

where again R =
√
m(n−m)/n. The following lemma provides a small refinement

to these bounds using adjacent eigenvalues:
Lemma 5.2.

λ3R
2 − (λ3 − λ2)t2 ≤ min

x∈Ω
f(x) ≤ max

x∈Ω
f(x) ≤ λn−1R

2 + (λn − λn−1)tn,(43)

where

ti = max
x∈Ω

(eT
i x)2,
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with ei the normalized eigenvector associated with the ith eigenvalue.
Proof. We focus on the lower bound since exactly the same procedure can be

applied to the upper bound. Given x ∈ Ω, we let zi denote the coordinates of Qx
relative to the eigenvectors:

Qx =
n∑
i=2

ziei.

By (41), we have

n∑
i=2

z2
i = R2 and z2

2 = R2 −
n∑
i=3

z2
i .

By the definition of g, it follows that

g(Qx) =

n∑
i=2

λiz
2
i

= λ2R
2 +

n∑
i=3

(λi − λ2)z2
i

≥ λ2R
2 + (λ3 − λ2)

n∑
i=3

z2
i

= λ2R
2 + (λ3 − λ2)(R2 − z2

2)

= λ3R
2 − (λ3 − λ2)z2

2 .

Since z2 = eT
2 x, it follows that z2

2 ≤ t2. This completes the proof.
In (42) and (43), we give bounds for the minimum and maximum of f over Ω

relative to the eigenvalues of the graph Laplacian L. To the extent that the minimum
or maximum in (42) or (43) can be evaluated, these inequalities can be used to obtain
bounds on the eigenvalues themselves. For example, in the case m = 1, the minimum
of f over Ω is simply the minimum of δi, 1 ≤ i ≤ n, while the maximum of f over Ω
is the largest of δi, 1 ≤ i ≤ n. Letting δ and δ̄ denote the minimum and maximum of
the δi, we have the estimate (see [19])

λ2 ≤ n

(n− 1)
δ ≤ n

(n− 1)
δ̄ ≤ λn.

6. Multiset generalizations. In the previous sections, we studied problems
that were equivalent to partitioning the vertices of a graphG into two sets of given size,
while minimizing the sum of the weights of edges connecting the sets. In this section,
we consider the more general problem of partitioning the vertices into k distinct
sets S1,S2, . . . ,Sk, with a given number of vertices m1,m2, . . . ,mk in each set, while
minimizing the number of edges connecting different sets. Multiset partitions have
application in VLSI design (see [3]) and in block iterative techniques for sparse linear
systems, where rows and columns are permuted in order to minimize the number of
nonzero elements outside the given diagonal blocks.

Let X be an n× k matrix, and let us define

xij =

{
1 if i ∈ Sj ,
0 if i 6∈ Sj .
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If xj is the jth column of X, then the expression xT
j Axj equals the sum of the weights

of edges connecting vertices in Sj . The sum of the weights of edges connecting different
sets in the partition is minimized when the sum of the weights of edges connecting
vertices within the individual sets of the partition is maximized. Hence, the min-
cut multiset partitioning problem is equivalent to the following discrete quadratic
maximization problem:

maximize tr XTAX

subject to X1 = 1, XT1 = m, X ∈ Λ,
(44)

where tr denotes trace and

Λ = {X ∈ Rnk : xij = 0 or 1, 1 ≤ i ≤ n, 1 ≤ j ≤ k}.
The constraints X1 = 1 and X ∈ Λ are equivalent to saying that each vertex is
contained in precisely one of the sets Sj . The constraint XT1 = m is equivalent
to saying that there are mj vertices in set Sj for each j. This discrete quadratic
programming formulation of the multiset partitioning problem can be found in [7],
for example.

If X satisfies the constraints of (44), then

tr XTDX =
k∑
j=1

xT
j Dxj =

n∑
i=1

di.

Consequently, for any choice of the diagonal matrix D, the problem (44) is equivalent
to the following problem (since the cost functions differ by a constant, independent
of the X):

maximize tr XT(A + D)X

subject to X1 = 1, XT1 = m, X ∈ Λ.
(45)

Our goal in this section is to replace the discrete problem (44), where we impose
the constraint xij = 0 or 1, by a continuous problem as in section 2. For example,
in the special case k = 2, we seek to partition the vertices of the graph into two sets
to maximize the total number of edges in the sets. The constraint X1 = 1 in (44)
implies that x2 = 1− x1, and the cost function in (45) can be rewritten

tr XT(A + D)X = xT
1 (A + D)x1 + xT

2 (A + D)x2

= −2(1− x1)T(A + D)x1 + 1T(A + D)1.

Hence, after negation and after identifying the x of (1) with x1, we see that the cost
functions of (45) and of (1) differ only by a constant. Below, the notation X ≥ 0
means that every element of the matrix X is nonnegative.

Theorem 6.1. If D is chosen to satisfy (3), then the continuous problem

maximize tr XT(A + D)X

subject to X1 = 1, XT1 = m, X ≥ 0,
(46)

has a maximizer contained in Λ, and hence, this maximizer is a solution of the discrete
problem

maximize tr XT(A + D)X

subject to X1 = 1, XT1 = m, X ∈ Λ.
(47)
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Conversely, every solution to (47) is also a solution to (46). Moreover, if (4) holds,
then every local maximizer for (46) lies in Λ.

Proof. Let Y denote any solution to (46), and let F denote the cost function
defined by

F (X) = tr XT(A + D)X.

If an entry in Y lies on the open interval I = (0, 1), then we show that there exists
another matrix Ȳ with the following properties:

(a) Ȳ is feasible in (46),
(b) Ȳ has at least one fewer entries contained in I than Y, and
(c) F (X) = F (Y) for all X on the line segment connecting Y and Ȳ.

Using these properties in an inductive fashion, we obtain, as in the proof of Theo-
rem 2.1, a piecewise linear path taking us from Y to an optimal point Z for (46), and
the elements of Z are either 0 or 1.

Proceeding with the construction, if Y has at least one entry in I, then by inter-
changing rows and columns if necessary, we can assume, without loss of generality,
that y11 ∈ I. Since the column sums are integers, there is at least one more entry in
column 1 of Y in I. (No entry of Y is larger than one since the row sums are all one.)
Again, without loss of generality, we assume that y21 ∈ I. Since the row sums are
integers, there is at least one more entry in the second row Y in I. Again, without
loss of generality, we assume that y22 ∈ I.

Continuing this construction, we obtain the piecewise linear path depicted in
Figure 6.1, where each point on the path corresponds to an index pair (i, j) for which
yij ∈ I. Eventually, we reach an entry yij ∈ I with the property that either the
row index i or the column index j agrees with one of the predecessors. As depicted
in Figure 6.1, we focus on the case where the row index i agrees with one of the
predecessors; an analogous argument applies to the case where the column index
agrees with that of a preceding column.

We discard the part of the path in Figure 6.1 that precedes the (i, i) element.
Each entry of Y corresponding to an element of the path lies in I. Let V be the
matrix that is entirely zero except for entries associated with elements on the path.
We define vll = 1 for i ≤ l ≤ j, while the entries of V corresponding to the other
elements on the path are all −1. Since the row and column sums of V all vanish,
Y + εV satisfies the linear constraints of (46) for any choice of ε. Since the elements
of Y corresponding to points on the path in Figure 6.1 all lie in I, Y + εV ≥ 0 for ε
sufficiently close to 0.

Expanding in a Taylor series, we have

F (Y + εV) = F (Y) + ε2F (V),(48)

where the O(ε) term in the expansion vanishes since F (Y + εV) attains a local max-
imum at ε = 0. By the structure of V, we have

F (V) =

(
dii + djj − 2aij +

j−1∑
l=i

dll + dl+1,l+1 − 2al,l+1

)
.(49)

By assumption (3), F (V) ≥ 0. If F (V) > 0, then the optimality of Y is contradicted.
Hence, F (V) = 0, and we have F (Y + εV) = F (Y) for all choices of ε. If ε̄ is the first
value of ε for which a positive component of Y + εV becomes zero, then the matrix
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(1,1)

Fig. 6.1. Indices of entries in Y that lie on the open interval (0, 1).

Ȳ = Y + ε̄V has at least one more zero than Y. This completes the proof of (a)–(c)
above.

Now suppose that dii + djj > 2aij for all i 6= j and let Y be any local maximizer.
If Y has an element in I, then arguing as we did in the first part of the proof, we can
construct a matrix V with elements 0, 1, and −1, whose nonzero elements correspond
to elements of Y in I, and which satisfies (48) and (49). Since the right side of (49) is
positive, we contradict the local optimality of Y. Hence, each element of Y is either
0 or 1.

Theorem 6.1 can be generalized in the following ways:
• Inspecting the proof, we utilize only the fact that the right side of the con-

straint X1 = 1 is an integer; the fact that the integer is 1 is used only to
bound the components of X by 1. Hence, in (46) we can replace the right
side of the constraint X1 = 1 with a more general vector of positive integers
if we add the additional constraint X ≤ 1, where, in this matrix setting, 1 is
the matrix whose elements are all 1.
• The proof of Theorem 6.1 also works if the cost function of (46) is replaced

with

k∑
l=1

xT
l (Al + D)xl,

where xl denotes column l of X and each Al is symmetric matrix with zero di-
agonal that satisfies (3). (In circuit design, we may wish to associate different
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costs with the edges in different sets.)
• Since the proof of Theorem 6.1 utilizes a Taylor expansion of the quadratic

cost function, a linear term can be added to the cost function without chang-
ing either the expansions or the conclusions.
• For a nonsymmetric matrix A, we have

tr XTAX = 1
2 tr XTAX + 1

2 tr XTATX = tr XTSX,

where S = 1
2 (A + AT) is symmetric. Hence, Theorem 6.1 can be applied

to the symmetric matrix S if the elements satisfy the condition (3). After
making the substitution sij = (aij + aji)/2, we see that the condition (3) of
Theorem 6.1 is satisfied if

dii + djj ≥ aij + aji for all i and j.(50)

Collecting these observations, we have the following corollary.

Corollary 6.2. If Al, l = 1, 2, . . . , k, are n×n matrices, each of which satisfies
the condition (50), and Φ is a given k × n matrix, then the continuous problem

maximize tr ΦX +
k∑
l=1

xT
l (Al + D)xl

subject to X1 = r, XT1 = m, 0 ≤ X ≤ 1,

(51)

where r is a vector of positive integers, has a maximizer contained in Λ whenever
the feasible set is nonempty, and hence, this maximizer is a solution of the discrete
problem

maximize tr ΦX +
k∑
l=1

xT
l (Al + D)xl

subject to X1 = r, XT1 = m, X ∈ Λ.

(52)

If D also satisfies the strict inequality

dii + djj > alij + alji for all i 6= j, 1 ≤ l ≤ k,

where alij is the (i, j)-element of Al, then every local maximizer of (51) lies in Λ.

Since the problem (52) with r = 1 and m = 1 is a special case of the quadratic
assignment problem, Corollary 6.2 also provides an instance where the quadratic
assignment problem can be replaced by a continuous quadratic programming problem
whose Hessian is not necessarily positive definite. If Al = 0 for each l, then (51) is
a linear programming problem with transportation constraints [34, p. 15]. If Al = 0
for each l, X is a square matrix, and r = m = 1, then (51) is the linear assignment
problem [2, p. 215]. Hence, for these linear problems, Corollary 6.2 yields, as a special
case, the existence of a 0/1 solution. For comparison, the existence of integer solutions
in network flow problems can be found, for example, in [2, p. 245].



522 WILLIAM W. HAGER AND YAROSLAV KRYLYUK

REFERENCES

[1] A. A. Ageev and M. I. Sviridenko, Approximation algorithms for maximum coverage and
max cut with given sizes of parts, in Integer Programming and Combinatorial Optimization,
Lecture Notes in Comput. Sci. 1610, G. C. Cornuéjols, R. E. Burkard, and G. J. Woeginger,
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