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MULTIPLIER METHODS FOR NONLINEAR OPTIMAL CONTROL*

WILLIAM W. HAGER?

Abstract. Error estimates are derived for an augmented Lagrangian approximation to an optimal control
problem. Convex control constraints are treated explicitly while a Lagrange multiplier is introduced for the
nonlinear system dynamics. The nonlinear optimal control problem does not fit the classical theory for
estimating the error in multiplier approximations, since the natural coercivity assumption is formulated in
a Hilbert space where the cost is not differentiable. This discrepancy between the function space setting
needed for coercivity and that needed for differentiability is compensated for by regularity results associated
with the necessary conditions. The paper concludes with an analysis of the optimal penalty parameter
corresponding to a given finite-element discretization.
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1. Introduction. This paper studies augmented Lagrangian approximations to
optimal control problems. Given an interval I [0, 1], the state x is a map from I to
R while the control u is a map from I to R m. In our model problem, the system
dynamics is possibly nonlinear, the cost is possibly nonquadratic, while the control
constraint is convex"

minimize I_ h(x(t), u(t)) dt

(1)
subject to :(t) =f(x(t), u(t)) and u(t) a.e. /,

x(0) a, (x, u) W1’ x L,
where f: Rn/’--> R n, h Rn/"--> R, 12 R" is nonempty, closed and convex, a is the
given starting condition, L is the space of essentially bounded functions, and W1’

is the space of Lipschitz continuous functions (or, equivalently, the space of essentially
bounded functions with essentially bounded derivatives).

We consider an augmented Lagrangian approximation to (1) with quadratic
penalty:

1
minimize C(z)+(ph, F(z))+-e (F(z), F(z))

(2)
subject to u(t) fl a.e. 6/, x(0) a, z (x, u) W’ L,

where z denotes the pair (x, u), ph is any approximation to a Lagrange multiplier p*
associated with the differential equation in (1), e >0 is the penalty parameter, C(z)
is the integral cost in (1), F(z)=f(z)-, and (., .) is the L2 inner product associated
with square integrable functions. Multiplier methods seem to originate from work by
Arrow and Solow 1], Hestenes 19], and Powell [28]. Additional results are developed
in the sequence of papers [31]-[33] by Rockafellar. The book [4] by Bertsekas is a
comprehensive reference. Results for problems formulated in a Hilbert space appear
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in [17], [25], and [26]. Some interesting applications of augmented Lagrangian tech-
niques to boundary-value problems are developed by Fortin, Glowinski, and their
collaborators in [12].

Multiplier methods can be viewed as a generalization of the penalty method--the
penalty method is obtained from the multiplier method by taking ph= O. Courant [7]
published the first paper studying penalty techniques for the solution of partial differen-
tial equations. In chronological order, other researchers who have studied penalty
techniques for either partial differential equations or optimal control include Russell
[34], Lions [24], Balakrishnan [3], Babuka [2], King [23], Falk [10], Falk and King
[11], Kikuchi [22], Werner [36], Chen and Mills [5], Reddy [29], Kheshgi and Luskin
[21], Chen et al. [6], and Hager [17].

Let us focus in particular on those papers related to optimal control: Russell [34]
considers state constrained problems; a penalty is introduced for the state constraint
and the convergence of solutions for the penalized problems to a solution of the original
problem is established. Lions [24] considers a quadratic cost problem with a convex
control constraint and with the system dynamics described by a parabolic partial
differential equation. After introducing a penalty for the system dynamics, Lions shows
that the solution to the penalized problem converges strongly to the solution of the
original problem. Balakrishnan also uses a penalty term to handle the system dynamics
in [3]. He gives a detailed analysis of unconstrained, quadratic cost problems with
linear system dynamics. For control constrained problems with nonlinear system
dynamics, he shows that the optimal value associated with the penalized cost function
converges to the optimal value associated with the original problem; in addition, a
maximum principle for the penalized problem is developed, and the limit of the
maximum principle as the penalty parameter tends to zero is analyzed. Chen and Mills
[5] consider an unconstrained quadratic cost problem with linear system dynamics
and with an endpoint constraint. A penalty is introduced for the endpoint constraint,
and it is shown that the deviation between the solution to the penalized problem and
the solution to the original problem is bounded by O(e). In [6] Chen et al. examine
unconstrained quadratic cost problems with linear system dynamics. A penalty term
is used to handle the system dynamics. Assuming the penalized problem is solved by
the finite-element method, a condition is formulated that leads to the uncoupling of
the penalization error and the discretization error. In 17] Hager analyzes the error in
finite-element approximations to augmented Lagrangians, and applies the results to
optimal control problems with terminal constraints. Both linear and nonlinear problems
are analyzed, as well as problems for which the system dynamics is described by a
partial differential equation.

In this paper, a penalty is introduced for the system dynamics in a nonlinear
control problem with control constraints. We obtain precise estimates for the distance
between a solution z to (2) and a solution z* (x*, u*) to (1). When we try to obtain
error estimates using classical techniques developed for the analysis of multiplier
methods (see [4], [17], or [25]), the following problem is encountered: The cost satisfies
a coercivity assumption in Hi L2 while f and h in (1) are differentiable in the L
norm; here H denotes the usual Sobolev space consisting of functions in L2 with an
L2 derivative. This discrepancy between the norm needed for coercivity and the norm
needed for differentiability is compensated for by regularity results associated with the
necessary conditions for the optimal control problem.

The error estimates and analysis in this paper are quite different from the error
estimates contained in our earlier analysis (see [13], [15], [16], and [18]) of multiplier
approximations to convex optimal control problems. In our earlier work, the penalty
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term of (2) was not present. If zh denotes a minimizer associated with the ordinary
Lagrangian, then the distance between z h and z* in the L2 norm was estimated in
terms of the distance between ph and p* in the H norm. In contrast, the analysis that
follows includes a penalty term so that nonconvex problems can be treated; however,
our estimate for the distance between z and z* is measured in the H L norm using
the quantity e llph _p,ll" Thus for the augmented Lagrangian, the error only depends
on the L2 distance between ph and p*, not the H distance.

Briefly, our paper is organized in the following way" In 2 we establish regularity
results for a linear-quadratic optimal control problem. Later, the nonlinear problem
is linearized and the linear-quadratic regularity results are used. Section 3 develops
necessary conditions for the nonlinear problem, while 4 uses the necessary conditions,
the regularity results, and the implicit function theorem to estimate the distance between
an extreme point z of (2) and a solution z* of (1). Using this estimate, we obtain a
convergence result for one of the standard iterative implementations of augmented
Lagrangian techniques" Letting Pk denote the current approximation to the multiplier
p* associated with the differential equation, the new approximation Zk/l to Z* is a
local minimizer of the augmented Lagrangian (2) corresponding to ph-’Pk; the new
approximation Pk/ to the multiplier is given by Pk+ =Pk + F(Zk/)/e. In 5, we show
that near a local minimizer of (1), extreme points of (2) locally minimize the augmented
Lagrangian.

When the augmented Lagrangian (2) is optimized numerically, the space W1’ L
is replaced by a finite-dimensional approximation. Section 6 examines finite-element
approximations. In a simple example, it is seen that, as e 0, while the dimension of
the finite-element space is fixed, the finite-dimensional approximation can move away
from the solution it is approximating. To achieve good approximation properties as
e 0, the dimension of the finite-element space must increase as e decreases. We show
rigorously that, for a linear quadratic problem with piecewise linear approximations
to the state and piecewise constant approximations to the control, the optimal relation-
ship between e and the mesh spacing h is e ch, where c is an arbitrary positive
constant (independent of h). For higher-order finite-element spaces, the optimal e is
bounded by ch 2r/3, where r is the degree of approximation associated with the finite-
element space (r 1 for piecewise linear states and piecewise constant controls).

2. The linear-quadratic problem. Our analysis of the augmented Lagrangian (2)
is based on properties for a linearization of the original optimal control problem (1).
In this section, we study the following linear-quadratic problem:

minimize z(t) rp(t)z(t) d
(

subject toM(z)=O, u(t)f a.e. te/, x(O)=a, z=(x,u)HxL,
where the superscript T denotes transpose, P e L, P(t) is a symmetric matrix for
almost every t, and M" Hx L- L is defined by

M(z) Ax + Bu 2

with A L and B L. Existence of a solution to (3) is related to the following
property of a bilinear form.

LEMMA 1. Let rr be a symmetric, continuous bilinear form defined on a nonempty,
closed convex subset K ofa Hilbert space V, and let (.,.)v denote the Hilbert space inner

product. If there exists a > 0 such that

(4) r(w-v, w-v)>=c<w-v, w-v)v forall w, vK,
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then for any ch V, the quadratic program

(5)
minimize 1/2 7r( v, v) (oh, v) v

subject to v K

has a unique solution w. This solution is the unique w K that satisfies the variational
inequality zr(w, v- w)_>- (th, v-w)vfor all v K. If wi denotes the solution of (5) corre-
sponding to ch chi for i= 1 and i= 2, then we have

(6) t W W2 1-- ()2

where I1" is the norm induced by the Hilbert space inner product.
Proof. The first part of the lemma is contained in Chapter 1 of [24]. To establish

estimate (6), let us consider the variational inequality 7r(w, v-w)>= (oh, v-W)v for all
v K. Choosing 4 41, w wl, and v w2 followed by 4 42, w w2, and v Wl
and adding the resulting relations yields

/’/’(W2--Wl, W2--Wl)<t2--tl, W2-- WI>v
from which we get (6).

There are two different ways to apply Lemma 1 to the linear-quadratic optimal
control problem (3). In the first approach, we think of the state and control as
independent variables in Hi L2. Thus b=0, v=z, 7r(z,z)=(z, Pz), and K consists
of those z Hx L2 that satisfy the constraints of (3). In the second approach, we
regard the state as an affine function of the control and we take v u. From the system
dynamics of (3), x L(Bu)+ q,, where x L(y) denotes the solution to

2 Ax + y, x(O) O,

and x q, denotes the solution to 2 Ax, x(O)= a. Partitioning P in the form

(7) P
R

where Q is n n and R is m x m, the cost function in (3) can be expressed as

(z, Pz)=(L(Bu), QL(Bu))+2(L(Bu), Su)+(u, Ru)+2(O, Su+ QL(Bu))+(q, Qq).

Hence, we can apply Lemma 1 with v u:

zr(u, u)=(L(Bu), QL(Bu))+2(L(Bu), Su)+(u, Ru),

=--(ST+BTLTQ),
where LT denotes the adjoint of L. In this formulation, K consists of those u L2 that
satisfy the control constraints of (3). That is, K U, where U is the set of controls
u L2 with u(t) fl for almost every I.

When we identify the v of Lemma 1 with the z of (3) and we think of the state
and the control as independent variables, the analogue of the coercivity assumption
(4) is the following: There exists a > 0 such that

(z, Pz)>= a[(x, X>Hl’3t-<U, U)] for all z=(x, u) Hx L2

(8) with M(z) 0 and u u u2

for some u and U2 U.

Here H is the subspace of H consisting of functions that vanish at t-0 and the
inner product (.,.)t4, is defined by

<x, x>,,=<y, )+<x, x).
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Observe that if z=(x,u)EHL2 and M(z)=0, then there exists a constant c,
independent of z, such that

(, )+(x, x) <- c(u, u).

Hence, (8) is equivalent to the following condition: There exists a > 0 such that

(z, Pz) >- a(u, u) for all z (x, u) E Ho x L2 with M(z) 0 and u ul u2
(9)

for some ul and u2 U.

In other words, the cost needs only to be coercive in the control since coercivity in
the state holds automatically. Note that, when we take v u in Lemma 1 and we view
the state as an affine function of the control, assumption (4) applied to (3) reduces
to (9).

By Lemma 1, (9) implies that there exists a unique solution z*= (x*, u*) to (3).
Moreover, if z* is any solution of (3), then for any z that is feasible in (3), the convexity
of the constraints implies that

d
d-- {<P(z* + z(z z*)), z* + z(z z*))}=o >= O,

which yields

(10) (Pz*, z-z*)>=O.

The necessary conditions for (3) are obtained by simplifying this variational
inequality using the adjoint variable p defined by

+aTp+Qx+Su=O and p(1)=0.

Let p p* denote the solution of the adjoint equation corresponding to x x* and
u u*. Adding to (10) the equality

(p*,M(z-z*))=O

and integrating by parts, we obtain

(BTp*+STx*+Ru*, V--U*)>=O for all v U.

Therefore, x x*, u u*, and p p* is a solution of the system of relations

(11)

p + Arp+ Qx + Su =O,

(Brp+Srx+Ru, v-u)>=O

-+Ax+Bu=O,

p(1) =0,

for all v U,

x(0) a.

Conversely, if (9) holds, then any solution of (11) yields the optimal solution
to (3). To demonstrate this, suppose that x= x*, u= u*, and p=p* is a solution
of (11). Expanding about z*, we have

(z, Pz)= (z*, Pz*)+ 2(Pz*, z- z*)+(z- z*, P(z- z*)}.

If z is feasible in (3), then (z-z*, P(z-z*))>-O by (9). Since the inequality in (11)
is equivalent to (Pz*, z z*) >= O, it follows that (z, Pz) >= (z*, Pz*) whenever z is feasible
in (3). In summary, we have Lemma 2.

LEMMA 2. Any solution to (3) satisfies the relations (11) for some p. Moreover, if
(9) holds, then (3) and (11) have a unique solution.
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Under hypothesis (9), we now study how the solution to (11) behaves after a
linear perturbation. Let Lp denote the usual space of functions consisting of those f
with [f[P summable. Given qi and si in L and ri in L2 (for i= 1 and 2), we consider
the following perturbation of (11):

p + ATp + Qx + Su qi,

(12) (B rp + Srx + Ru, v u) >= (ri, v u}

2 + Ax + Bu s,

p() =0,

for all v U,

x(0) a.

Observe that (12) is the necessary condition corresponding to the following linear-
quadratic problem:

(z, Pz)-(qi x)-(ri, u)minimize
(13)

subjectto M(z)=s, u(t) a.e.tI, x(0)=a, z-(x,u)HlL.
Hence, there is a one-to-one correspondence between a solution to (12) and a minimizer
of (13).

We apply (6) in Lemma 1 to (13), viewing the state as a linear function of the
control. After solving for the state in terms of the control, the perturbation si, and the
starting condition a, we see that the perturbations q, ri, and si appear as linear
parameters in the optimization process. In particular, using the linear operator L and
the function introduced after Lemma 1, yields the linear terms

(gA QL(Bu)+ Su)-(L(si), QL(Bu)+ Su)-(q,, L(Bu))-(r, u).

If (9) holds, then Lemma 1 gives us the estimate

ff l’/1 "2ILL2 lit,- r2+ (ST + BTLrQ)L(Sl- s2)+ BLT(q- q2) t

If we use the standard representation for L in terms of an integral, it follows that

Ilu- u, ll-< c[ll q-qlll’ + lira- rlll+ IIs-
where x, u, and Pi is the solution of (12) corresponding to q, ri, and si. (Here and
elsewhere, c denotes a generic constant.)

Let WI’p denote the Sobolev space consisting of functions in Lp with a derivative
in Lp. (Of course, the superscript p in the spaces Lp and WI’p is unrelated to the
costate variable p.) From the state equation, it follows that

[[X2-- Xll[ W1’1 c[][q2-- ql[lL / Ilr2- r, II, / [[s2-
Also, by the adjoint equation we have

IIp2-pl w’,’--< c[llqz- q, llL’ + [[r2- r,[[ L2 + [[s2-
Collecting results gives us

For nonlinear optimal control problems, this inequality is too weak since the
control lies in L and the cost is not differentiable in L. We now give inequalities in
stronger norms under the following assumption: There exists c7 >0 (independent
of t) such that

(15) tITR(I)U >= ffuTu
whenever u ul- u2 with ul and u2 f. Let us consider the pointwise version of the
inequality in (12)"

B( t) Tpi (t) / S(t) Txi( t) / R( t)ui( t) v ui( t) >= ri( t) v ui( t)
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for all v f and for almost every L Applying Lemma 1 to this pointwise inequality,
or to the equivalent finite-dimensional quadratic program, we have

(16) ]u2(t)-u(t)]<=c[]x2(t)-x(t)l+lp2(t)-p(t)l+[r(t)-r(t)l].

Since the L norm of x-x2 and Pl-P2 is bounded in terms of the W1’ norm, it
follows from (14) and (16) that

(17) IlU2--Ul[[LO<=C[l[q2--q,[[L,W[lr2--rlllLOOnullS2--Sll[L,].

More generally, if qi and si lie in Lp, then the first and last equation in (12) coupled
with (17) yield W’p bounds for the state and adjoint variables as stated in Lemma 3.

LEMMA 3. Suppose that A, Q, qi, and si are elements of Lp and B, S, R, and r are
elements of L for i= 1 and i= 2 and for some p between 1 and 00. If (9) and (15)
hold, then the solution to (12) has the following Lipschitz property:

IIx2- x, w’,, / u=- u / Ilp2-p w’,, --< c[ q2 qlll / r= rill / s=-- s Lp]"

3. Nonlinear formulations. Now suppose that the nonlinear problem (1) has a
solution z* =(x*, u*). We assume that there exists a bounded open set E c R"+’,
where both f and h are twice continuously ditterentiable, and that there exists 6 > 0
such that z*(t)E and the distance from z*(t) to the boundary of E is at least 6
for almost every tel Letting H be the Hamiltonian defined by H(x, u,p)=
h(x, u)+p Tf(x, u), the adjoint system associated with (1) is given by

OH(x(t), u(t), p(t))
p(t) a.e. e I, p(1)=0.

Ox

If p p* denotes the solution to the adjoint equation corresponding to x x* and
u u*, it follows from the control minimum principle [27] that

(v(t)-u*(t)) dt>-O forall v U.
u*( t), p*( t))
Ou

In summary, x x*, u u*, and p p* satisfy the following necessary conditions:

p+H(x,u,p)=O, p(1) =0,

(18) (H,(x, u,p), v-u)>=O for all ve U,

f(x, u) O, x(O) a,

where the subscripts x and u denote partial derivatives with respect to x and u.
We will show that for e sufficiently small, (2) has a local minimizer z that

approaches z* as e - 0. We proceed in the following way. Assuming that there exists
a local minimizer z for (2) that is near z*, we equate the Gateaux derivative to zero
to obtain equations for z and for the multiplier approximation p ph q_ F(ze)/F,. The
equations that we obtain differ from (18) by a small perturbation. Using the Lipschitz
result contained in Lemma 3 and the implicit function theorem, we get an estimate
for the errors in z and p. Finally, we show that z is a local minimizer for the
augmented Lagrangian (2).

To begin, suppose that (2) has a local minimizer z=(x, u) near z*. Given
v UfqL, we define 3u=v-u. If x W’ with x(0)=0 and z=(3x, u), it
follows that

(19) C(z+’z)+(ph, F(z+r,3z))+Ts_(F(z+’z),F(z+riz)) >=0.
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Taking the derivative in (19), we conclude that

(20) (hz(z), 6z)+(p,f(z)6z-6)>=O,

where p=ph+F(z)/e. Since (20) holds for all 6x W1’ with 6x(0)=0, the
equivalence class associated with p contains an absolutely continuous function (see
16]). Hence, there is no loss of generality in assuming that p is absolutely continuous.
Integrating (20) by parts gives

-p(1)6x(1)+(p + Hx(x, u, p), 6x)+(H,(x, u, p), 3u)>=O.

Taking 6u 0 and varying 6x, we conclude that

(21) p(1) =0 and 16 +Hx(x, u,p)=0.

Taking 6x 0 and replacing 6u by v- u, we have

(Hu(x, u,p), v-u)>=O for all v U.

Finally, let us rearrange the definition p ph+ F(z)/e to obtain

f(x, u)--: e(p --ph) =o.
Combining these observations, we see that x x, u u, and p p satisfy the relations

+H,(x,u,p)=O, p(1) =0,

(22) (H,(x, u, p), v u) >= 0 for all v U,

f(x, u)--2--e(p--ph)=o, x(O)=a.

Observe that (18) and (22) are identical except for the e term. Hence, (x*, u*, p*)
and (x, u, p) satisfy nearly the same equations. We will use the implicit function
theorem to estimate the distance between a solution (x*, u*, p*) to (18) and a solution
to (22).

4. Error estimates. A nice treatment of the implicit function theorem for a vari-
ational inequality appears in Robinson’s paper [30]. Although Robinson’s setting does
not exactly fit our application, these differences can be handled with appropriate
changes in the problem formulation and in the analysis. For completeness, we now
give a development of the implicit function theorem for inequalities, providing explicit
estimates for the constants that appear in the bounds and relating the implicit function
theorem to the classical contraction mapping principle. Robinson’s paper considers
an equation involving a parameter, giving estimates for the change in the solution
relative to a change in the parameter. The analysis that follows is more in the spirit
of our paper 17] in which we estimate the distance between a given point and a root
of an equation. In [17] there are no constraints, while in [30] the constraint set is
assumed to be convex. In the analysis below, the constraint set is arbitrary.

Let X be a Banach space, let Y be a normed subspace of the dual space X*, and
let K be a subset of X. Given a map T from X to Y, let us consider the following
variational inequality.

(23) Find ’K such that (T(’), r/-sr)x_->O for all

where (., )x denotes the usual pairing between a space and its dual. We will formulate
conditions under which (23) has a solution ’1 in the neighborhood of some given point
sro. Our analysis is based on the classical contraction mapping theorem (for example,
see [20, p. 110]), which is stated below.
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LEMMA 4. Suppose that is a map from the Banach space X to itself 0 is an
element of X, y is a real number with 0-_< y < 1, and r is any real number satisfying

(24) r>=
1-y

If satisfies the Lipschitz condition

whenever; and n lie in X and ]];- 0]] n 01] r, then thefixedwoint equation ;
has a unique root inside the ball with center 0 and radius r.

To apply this result to the variational inequality (23), the equation is linearized
and a mapping is constructed to which we apply Lemma 4. Let L be any bounded
linear operator mapping X Y and consider the following linear variational inequality:

(25) Find K such that (L( o) + , n )x 0 for all n K.

It is assumed that for Yo Y, (25) has the solution o. Defining the parameter
Do by

sup ’[]-

where the prime denotes a Fr6chet derivative, we have Theorem 1.
THEORE 1. Let , p, and be parameters that satisfy the relations

r;o) yol
0 . < 1, + r;o) yogi.

Suppose the T is continuously Frdchet differentiable in a ball with center o and radius p,
and for each in Y with ]-yo], the linearized variational inequality (25) has a
solution ( such that (Yo)= o and the Lipschitz condition

holds whenever ]-Yo ]]2-Yol . en variational inequality (23) has a solution
that satisfies the inequality

(26) ][1- o] T(o) Yo]].

Proof We apply Lemma 4 with 0= o, r= A]]T(o)-Yo]]/(1-AD,), y= AD, and
(X) (T(x) L(X- o)). Thus a fixed point of is a solution of the variational
inequality (23). To begin, the fundamental theorem of calculus yields

r()-yo-L(-o)= r(o)-yo+ {r’[s+(1-s)o]-L}(-o) ds.

Taking norms, it follows that T()-yo- L(- o)11 whenever I1- oll o. Hence,
by the Lipschitz propey for , we have

whenever - oll oll o. Again, expressing T()- T() as the integral of the
derivative evaluated along the line segment connecting to , we conclude that



1070 WILLIAM W. HAGER

whenever I1-oll IIn- oll . Hence, the contraction property of Lemma 4 holds
with y= ADo. Finally, we estimate the difference II o-a>( o)ll, Since (yo) sro, it
follows that

I1o-(o) II(yo)- (T(o))II Ilyo-

Condition (24) in Lemma 4 holds since

p>=r= >=

Hence, by Lemma 4, has a fixed point r and the distance from ro to r is at
most r. This establishes (26) since the right side of (26) is r.

Remark. Referring to the proof of Lemma 4 and of Theorem 1, we see that T and
its derivative are evaluated only in a convex set containing both ’o and points in K
near sro.

We apply Theorem 1 to the necessary conditions (18) and (22) associated with
the optimal control problem in the following way: The Banach space X corresponding
to the triple (x, u, p) is W’p L W’p, where 1 _-< p _<- , Y is Lp L tp, and for
(q, r, s) Y, the associated linear functional that operates on elements (x, u,p) of
W’PL W’p is given by

[q(t)x(t)+ r(t)u(t)+ s(t)p(t)] dt.

The constraint set K is the collection of (x, u, p) in W’p L
U, and p(1)= 0. The operator T is given by

T(x, u, p) To(x, u, p) + 0

e(ph --p)

where

+Hx(x,u,p)
ro(x, u, p)= H,(x, u, p)

f(x, u) 2

The point ’o is (x*, u*, p*) while yo is To(’o) and L is T(sro). Defining the matrices
A, B, and P by

Of(x*( t), u*( t)) Of(x*( t), u*( t)) 02H(z*( t), p*( t))
B(t)= P(t)= z:A(t)

Ox Ou 0

and partitioning P as in (7), the Fr6chet derivative of To evaluated at sro can be
expressed as

T;[’o](X, u, p) Brp+ Srx + Ru
Ax+ Bu-2

By our differentiability assumptions for h andf, the Fr6chet derivative of T is continuous
in a neighborhood of ’o. Under the hypotheses of Lemma 3, linearization (25) has a
unique solution for all choices of the perturbation, and this solution is a Lipschitz
continuous function of the data. This implies that the o- of Theorem 1 is oo. If h denotes
the Lipschitz constant of Lemma 3, then we can choose p and e sufficiently small that
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ADo < 1. Since T(o)-Yo[I ellp h -p’IlL, we can also choose e sufficiently small that
o --> r(o) yoll! (1 Oo). Hence, the assumptions of Theorem 1 are satisfied, and
we have Theorem 2.

THEOREM 2. Suppose that (1) has a solution z*, that there exists a bounded open
set 2, c Rn+m, where both f and h are twice continuously differentiable, and that there
exists 6 > 0 with z*(t) Z and the distance from z*(t) to the boundary of 2, at least 6

for almost every I. If (9) and (15) hold and ph Lp for some p between 1 and
then for e lip h p* , sufficiently small, (22) has a solution (x, u, p) (x, u, p) that
satisfies

x --Xll wI’P + uF. U:q4l[ ]--’+ I[P6 --P*[I WI’p

I_ID

where Do 0 as e- 0 and A is the Lipschitz constant c of Lemma 3.
In practice, augmented Lagrangians are used in an iterative fashion. At iteration

k, the current value of the penalty parameter is ek, and the current approximation to
the multiplier p* associated with the differential equation is Pk. The new approximation
Zk+a =(Xk+l, Uk+) to a solution of the optimal control problem (1), and the new
approximation Pk+ to the multiplier, satisfy (22) when e= ek and ph=pk. Hence,
starting from an initial approximation Po to the multiplier, this iteration generates a
sequence (Xk, Uk, Pk), k 1,2,’’’, that converges to (x*, u*,p*), hopefully. (Note
that by the last equation in (22), Pk+ =Pk + F(Zk+)/ek.)

TO analyze the convergence of this iteration, we apply Theorem 2 to obtain an
estimate of the form

Ilp+l w’,p Clk lip h P* p* 2 *P* < L" Ce IlP " Ce ]]p p w"",

If Cek r < 1 for every k, then

rk p*Ilp p* wTM [IPo Lp"

Moreover, by Theorem 2, we have

<_rk p*IIx-x*ll1,/ll-*ll Ilpo- I1o
These observations are summarized in Corollary 1.

COROLLARY 1. Under the hypotheses of Theorem 2 andfor eollPo-P*ll and sup ek
sufficiently small, there exists a sequence (Xk, Uk, Pk), k--1, 2,’’’, with the following
properties" (x, u,p)=(Xk, Uk, Pk) satisfies (22) when e ek- and ph =Pk-I, and

I]Xk-X*l]w,p+ ]]Uk-- U*[]L+ ]lpk--p*llW,p <- rkllpo--p*]]

for some O<- r < l and fork=l,2,....

5. Optimality. We now show that for e sufficiently small, the x and u given by
Theorem 2 locally minimize the augmented Lagrangian (2). We begin by stating a
result whose proof is contained in Theorem 2.5 and Lemma 2.6 of [17].

LEMMA 5. Let 7r be a symmetric, continuous bilinearform defined on a Hilbert space
V with inner product (.,.)v, let K be a convex subset of V, and let L:V- V be a linear
map. Suppose that there exist positive p and ce such that

(27) 7r( v, v) >= o (v, v) v .for all v K with L(v) O,

and that any v6 K can be expressed v= v, +v2, where Vl K, L(Vl) =0, and liLy211
oily211. Ifap> 1111( / I111), where

sup sup r(v, w),
V V

ilvll- Ilwll--
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then there exists ] > 0 such that

1
r(v, v)+-(L(v),L(v))>=(v, V)v foreveryvK.

E

The constant fl is independent of e for e sufficiently small
Assuming that the coercivity assumption (8) holds, we apply Lemma 5 to the

linear-quadratic problem of 2. If z =(x, u) Hi L2, x(0)--0, and u vl-v2 for
some v and v2 U, then we can write z z + z2, where zl- (xl, u) with u u and
Xl the solution to

M(x,ul)=O and Xl(0)=0,
and z2=(x2, u) with u2=0 and x=x-x. Since u2=0, it follows that M(Zz)--
Axe-. Since u 0 and x(0)= 0, there exists p > 0 such that

(28) (M(z2), M(z2)) -> p2[(x2, XZ)H +(U2, UZ)].
Lemma 5 and (8) and (28) give us the following lemma.

LEMMA 6. If (8) holds, then for some positive constants g and fl, we have

1
(29) (z, Pz)+-(M(z),M(z))>-fl[(x,x)H+(u,u)]

E

whenever O<e<=g and z=(x, u)HL2 with x(0)=0 and u=ul-u2 for some u
and u2 U.

Returning to the general augmented Lagrangian (2), we use Lemma 6 to prove
local strict convexity of the cost functional.

LEMMA 7. Suppose that (1) has a solution z* (x*, u*), that there exists a bounded
open set Z c R"+", where both f and h are twice continuously differentiable, and that
there exists a 6 > 0 with z*(t) Z and the distance from z*(t) to the boundary of Z at
least 6 for almost every L If (8) holds, then for some positive y and g, and for every
z and p in an L neighborhood of z* and p*, we have

1
(30) (6z, Hzz(Z, p)6z)+-(f(z)6z- x,f(z)6z- x)>=

e

whenever 0< e <= g and 6z (6x, 6u) H L with 6x(O) =0 and 6u Ul- u for some
u and uz U.

Proof For z z* and p =p*, it follows from Lemma 6 that there exist positive
constants/3 and g such that

1
(31) (6z, H=(z*,p*)6z)+-(fz(Z*)6z-x,f(z*)6z-x)>=[(6x, 6X)H+(6U, 6U)]

E

whenever 0< e _-< g and 6z (6x, 6u) H L2 with 6x(O) =0 and 6u ul u2 for some
Ul and u U. Since decreasing e increases the second term on the left side of (30),
let us examine the expression

1
(z, Hz(Z, p)6z)+-(fz(Z)Z- x,f(z)6z- x).

From (31) it follows that, for z and p in an L neighborhood of z* and p*, we have

(6z, Hz(Z, p)6z)+- (fz(Z)6Z- X, fz(Z)6Z- X)>=-: [(6x, 6x) +(6u, 6u)].
E

Replacing g by e completes the proof. [3

THEOREM 3. If the hypotheses of Theorem 2 hold, then for e[Ip h --p*[[/p sufficiently
small, the x and u. given by Theorem 2 locally minimize the augmented Lagrangian (2).
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Proof Let Nz and Np denote L neighborhoods of z* and p* where (30) holds.
Choose Nz small enough that it is contained in the sphere with center z* and radius
6. Choose e _-< g small enough that z Nz and p Np. Let N c Nz denote a neighbor-
hood of z in W’ for which ph + F(z)! e lies in Np for each z N. For every z N
and 6z (6x, 6u) wl’cx L, we have

6,,/.2 C(z+"I’z)[-p h, F(z + 7"6z))+-e (F(z + ’6z), F(z + ’3z))
=o

(32)
1

=(6z, H(z, p)6z)+-(fz(Z)6Z- X,L(z)6z- ,x),

where p=ph+F(z)/e. By Lemma 7 it follows that if 6x(0)=0 and 6U=U--U2 for
some u and u2 U, then the second derivative in (32) is positive whenever 6z O.
This positivity for the second derivative coupled with (19) for the first derivative implies
that z is the unique minimizer of the augmented Lagrangian (2) over feasible points
in N. [-I

6. Finite-dimensional approximations. In practice, the minimization of the aug-
mented Lagrangian is carried out in a finite-dimensional space. In this section we
determine the relationship between the dimension of the finite-dimensional space and
the size of e so that the total error is minimized. To simplify the discussion, we drop
the constraint u(t) 12 and set ph-----0. That is, we consider the following augmented
Lagrangian:

1
(33) minimize C(z) + (F(z), F(z)),

Z "E
where Z {(x, u) W’ L: x(0) a}. Given a subspace Zh of Z, the approximating
problem is

1
(34) minimize C(z)+z--(F(z), F(z)).

zZ 2e

We will consider finite-element approximations in which case h typically denotes the
diameter of the largest mesh interval associated with the finite-element space.

First, let us observe that if e 0 while h is held fixed, the solution to (34) generally
moves away from the solution to the original problem (1). The following simple problem
illustrates this property:

minimize C (x, u)
(3)

subject to (t) x(t) + u(t) a.e. /, x(0) 1.

Partitioning the interval I [0, 1] into a uniform mesh, let us approximate u by a
piecewise constant function, and x by a continuous, piecewise linear function. For
fixed h, let z (x, u) denote the minimizer in (34). As e 0 in (34), the penalty term
forces F(z)= x + u- to zero. Since both u and the derivative of x are piecewise
constant and

x, F(z)+ : u,

it follows that as e- 0, x approaches a piecewise constant function. Since x is a
continuous piecewise linear function and x(0)= 1, we conclude that x approaches
the function x(t)= 1 for every t. Moreover, if F(z)O and x approaches 1, then u
approaches the function u(t) =-1 for every t[0, 1]. On the other hand, x(t)= 1 and
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u(t)=-I for every t[0, 1] is not the solution to (35) in general. Therefore, letting
e 0 while holding h fixed moves us away from the desired solution.

The fundamental problem with letting e 0 while holding h fixed is that the null
space of M, the linear system dynamics, is not "rich" enough to achieve a good
approximation to z*. That is, as e- 0, the augmented Lagrangian approximation to
(35) approaches the null space of M restricted to Zh. However, for every choice of h,
the null space of M restricted to Zh is the single pair (x, u), where x(t)= 1 and
u(t)=-I for every tel0, 1]. Since there is only one element in the null space of M
restricted to Zh, we cannot achieve a good approximation to z* as e 0. Chen et al.
[6] give a necessary and sufficient condition under which the error in the solution to
(34) can be decomposed into the sum of a term depending only on h and a term
depending only on e. There is one exceptional case where it is possible to achieve
good approximations even as e -* 0: The system dynamics is u and the finite-element
space used to approximate u is the derivative of the finite-element space used to
approximate x.

Nonetheless, as problem (35) indicates, h generally needs to approach zero as
e - 0 to ensure that the solution to (34) is a good approximation to the solution of the
original problem. Let us now examine the optimal relation between h and e. We begin
with a theoretical analysis for an abstract linear-quadratic problem:

minimize 1/27r(v, v)
(36)

subject to L(v) f,
where 7r is a symmetric, continuous coercive bilinear form defined on a Hilbert space
V, 7r(v, v) >= or(v, V)v for some a > 0 and for every v V, and L is a continuous linear
operator whose range is a Hilbert space W that contains f The penalty approximation
v to the solution v* of (36) is obtained by solving the problem

(37)
1

minimize "rr(v, v) + (L(v) -f, L(v) -f) w.
vEV E

The classical analysis of penalty approximations gives us an estimate of the form
v- v* II--< c,

Replacing the space V of (37) by a finite-dimensional subspace Vh yields the
approximation

1
(38) minimize 7r(v, v)+-(L(v)-f L(v)-f)w.

If v h denotes the solution to (38), then the classical analysis of finite-element approxima-
tions (see [35]) gives the estimate

(39) 7r(v-vh, V--vh)<= inf 7r(v--v, v--v),
V

where 7r(v, v)= (v, v)+ e-(L(v), L(v))w. For standard finite-element spaces and
regularity assumptions, it follows from (39) that

(40) a v v hll + e -1 t(v v)II 2 --1 O(h2r),
where r is the degree of approximation associated with the finite-element space (when
the control is approximated by a piecewise constant function and the state is approxi-
mated by a continuous, piecewise linear function, r= 1). Finally, by (40) and the
triangle inequality, we conclude that

(41) IIv*--vhllllv*--vll+llv--vllc +
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For fixed h, the right side of (41) is minimized by taking e (hr/2) 2/3, and this choice
for e gives v*- v" O(h2r/3).

In numerical experiments, it is observed that e cher/3 is not optimalthe optimal
e approaches zero even faster than h 2r/3 does, since the error term in (41) associated
with the finite-element space overestimates the actual error. We now show rigorously
that, for a linear quadratic problem with the state approximated by continuous piecewise
linear finite elements and with the control approximated by piecewise constant finite
elements, e ch is optimal. For simplicity, the following problem is our model:

(42)
minimize Ix(t) +lu(t)l dt

subject toM(z)=0, x(0)=a, z=(x,u)HxL,
where M(z) Ax + Bu 2 with A and B constant, time-invariant matrices. The penalty
approximation z to the solution z* of (42) is obtained by solving the problem

1
(43) minimize cry(z, z) where 7re(z, z)=(z, z)+-(M(z), M(z)).

z=(x,u)EHlxL
x(0)=a

Introducing a finite-dimensional subspace Zh Xh x Uh c H x L2, we have the follow-
ing discrete approximation to (43):

(44) minimize 7r z, z ).
z=(x,u)EZ
x(0)=a

Let zh=(xh, u h) denote the solution to (44) (which depends on e) and let

z (x, u) denote the solution to (43). From the vanishing ofthe first variation, we have

7r(z, b) =0 for all 4 Hx L2, 7r(zh, oh)=0 for all b e Zh ffl Hx L2.
It follows that

(45) 7r(zh--z1,b)=Tr(z-z1,b) for allz Zh and qbZhfqHxL2.
Although the x and u components of z are independent of each other, the distance
between xh and x can be bounded in terms of the distance between u h and u I, and
the distance between z and z I, as stated in Lemma 8.

LEMMA 8. If Z
h denotes the solution to (44) and z denotes the solution to (43),

then for any z =(x I, uI)Z with xI(0)=a, we have

IIM(z--Z’)II<--clIz--Z’IIHI= and IIx-x’llHl<-cllz-z’ll.,2/cllu-u’ll
where c is independent of e for e sufficiently small

Proof Inserting b zh zl in (45) gives

(46)

From the relation 2(f, g)<-(f,f)+(g, g), we conclude that

(47) IIM(z-z’)II2<-IIz-z’II=/IIM(z-z’)II 2,
which yields the first inequality of Lemma 8. To obtain the second inequality, we start
with the relation

Ilxll.’--< cll- axll=-- cllnu M(x, u)ll for every x H and u L2.
Inserting (x, u) zh Z gives

IIx -x’ I1.’ -< ]]M( zh 2I)11 / ell u u’ II.
The first inequality of Lemma 8 completes the proof.
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In order to show that e ch is optimal when the state is approximated by
continuous, piecewise linear finite elements and when the control is approximated by
piecewise constant finite elements, we assume that the meshes associated with X h and
with Uh are identical, quasi-uniform meshes. That is, the ratio between the width of
the largest and the smallest mesh interval is bounded by a uniform constant. If h
denotes the width of the largest mesh interval, then the interpolation error has the
following bounds (see [35]):

(48) Ilx’-x*ll.<-chllx*ll,, and Ilu’-u*ll2<-chllu*ll...
On the other hand, except for special choices of x* and u*, a lower bound of the form

minimum II/ -x*ll.,/ [lu- u*ll=--> ch,
xhxh,uh U

c > 0, also holds. Consequently, if we can show that

(49) IIx x* I1., / Ilu u* - O(h)

for e ch, then e ch is optimal in the sense that the error is (asymptotically) as small
as possible.

THZORZM 4. If Xh consists of continuous piecewise linear polynomials and U
consists ofpiecewise constant polynomials, then for a quasi-uniform mesh and e ch with
c > O, estimate (49) holds.

Proof By Theorem 2,

IIx-x*lln / Ilu- u*ll2/ IIp-p*ll, O(e)- O(h)

since e ch. From the necessary condition (22) associated with (43), we conclude that
p, x, and u are infinitely differentiable with the norm of each derivative bounded
uniformly in e for e sufficiently small. The distance between z and zh is estimated
using (46) with z constructed in the following way: zI= (x I, u), where u is the L2

projection of u into Uh and x= x+ ex2, where x interpolates the solution x to

(50) 22 Axz-p, x2(O) O,

and x x is the solution to the problem

minimize 1121-
xX

subject to 2 Ax + Bu, xl(O) a x(O).

By the interpolation error estimate (48) and by the classical theory (see [35]) for
the error in elliptic projections, we have

(52) Ilu-u’ll-- O(h)-- llx,-x, ll,,- O(h)- llx=-xgll,.,.
Since x satisfies (22) while x and x2 satisfy the differential equations in (50) and
(51), it follows that x x + ex2 and

-xIllll=O(h)(53) IIx-x’ll. <-IIx-xll. /llx=
Below, we will derive the following bound for the last term in (46):

(54) (M(z-z’),M(z-z’))<-_O(h3)+O(h)[lu-u’]].
Consequently, by (46) and the inequality 2(f, g)<-(f, f)+ (g, g), we have

e[[z h z 112/ 21lM(zh z’)ll2 <_
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Dividing by e and putting e ch leads to

IIU h /,/’ 2 [[Z Z’ 2 + O(h2) + O(h)llu" u’
which yields Ilu-uIII- O(h) rom (52) and (53). Moreover, by Lemma 8, we have

[Ix h x IIH <= CIIz Z I1.’/ cllu u IlL O(h).

Finally, the triangle inequality and Theorem 2 complete the proof:

IlXh--X*llH l<- Ilxh--xIllH’/ IIx’- x I1,, / IIx- x*ll,,-- O(h),

u- u*ll2-< Ilu h- u’ 112/ Ilu’- u 112/ Ilu- u*ll O(h).

Let us now verify (54). Since Mz ep e(Ax2-22) and since

-u)+A(xl-xl)-(xlM(x1, u )-" Bu -t-Ax1--21 B(u .1

it follows that

(55) M(z-z’)= e[(2-22)-a(x-xz)]+[(2-2)-a(x-x)-B(u -u)].

Hence, the left side of (54) decomposes into three terms:

(M(z-zt), M(z z’)) T + T2 T3,

where

T=(e[(2-22)-A(x-xz)]-A(x-x), M(zh--z’)),
T2=((2-2,)-B(u’-u), (2’--2h)--B(u’--uh)),

_U),A(xI__xh)).T3 ((x,

Starting with the first term, we apply the interpolation error bound (52) to obtain

(56) II(g-)-A(xg-x)[I O(h).

By the Aubin-Nitsche duality trick (see [35]) for estimating the L2 error in an elliptic
projection,

(57) IIe(x’ Xl)I[ O(h

Combining (56), (57), and the first inequality of Lemma 8, we conclude that T1 O(h3).
Since u is the orthogonal projection of u into Uh, u- u is orthogonal to the space
of piecewise constant functions. Similarly, from the structure of the minimization
problem used to generate x 1, the difference 21--X is orthogonal to all piecewise
constant functions. Thus T: 0. Finally, let q denote the projection of x- xh into the
space of piecewise constant functions. Again, exploiting orthogonality, we have

((21 --21)- B(u u), Aq)= O,

so that T3 can be expressed

T3 ((21I_ 21 B(u Ue), A(x xh q)).

By the Schwarz inequality, the interpolation error estimate (48), and Lemma 8, we have

T3 <-- ch = x’ xll H, <---- ch + ch 211 u h u II.
Combining these bounds for T, T2 and T yields (54).

Remark. Although the size of the penalty parameter is crucial when an augmented
Lagrangian is discretized, it is less crucial if an optimal control problem is discretized
and the discrete problem is solved by a multiplier method. As e - 0 in the augmented
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Lagrangian for the discrete problem, the solution to the penalized problem typically
converges to a solution ofthe discretized problem. And for an appropriate discretization
(for example, see [8], [9], or [14] and the references they cite), the solution to the
discrete problem converges to the solution of the continuous problem as the mesh is
refined. Hence, letting e -, 0 while fixing the discretization does not interfere with the
convergence when the discretization is "appropriate."

7. Numerical experiments. The dependence between the optimal e and h was
investigated using four problems. The first problem was

(P1)

minimize - x(1 + u( t)2 dt

subject to 2(t) x(t) + u(t), x(O) 1,

with the optimal solution

x*(t) e’+ e- e ], u*(t) -be-t, 2e2

l+e2"

The second problem was

(P2)

minimize 2x(t)2+ u(t)2 dt

subject to 2(t) .Sx(t) + u(t), x(O) 1,

with the optimal solution

x*(t)
1.5t -1.5tce -e 2 e-l5t + c e 1"5t

U*(t)
C--1

c -2 e-3.

The third problem was

(P3)
minimize 1.25x(t)2 + x(t)u(t) + u(t) dt

4

subject to 2(t) .5x(t) + u(t), x(O) 1,

with the optimal solution

x*(t)
cosh (1 t)
cosh (1)

The fourth problem was

minimize

u*(t) -x*(t)[tanh (1-t) +.5].

(P4)
l+3e

subject to2(t)=x(t)+etu(t), x(0)=2(l_e), u(t)<-l,

with the optimal solution

x*(t)=e’(t+x(O)), u*(t)=l, O<=t=<,
1.x*(t)=(e2’-e2)/d, u*(t)=(e -e2-t)/d, -=t 1,

where d x/(1- e). Note that (P1)-(P3) are unconstrained quadratic cost problems
while (P4) has a control constraint.

1 Iot e_2tx(t) + u(t) dt
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TABLE
The optimal e and error for the test problems.

1/h

10
20
40
80
160
320

54.4
108.5
216.7
433.1
866.1

1731.7

P1

Error

.02442

.01265

.00644

.00325

.00163

.00082

41.3
81.5

161.8
322.5
643.2
1286.4

P2

Error

.00959

.00525

.00275

.00141

.00071

.00036

32.9
66.1
132.6
265.4
530.4

1065.0

P3

Error

.00522

.00278

.00144

.00073

.00037

.00018

9.6
17.6
34.0
66.8
132.4
263.5

P4

Error

.31600

.16840

.08681

.04405

.02219

.01113

For the finite-dimensional problem (34), we employed a uniform mesh with mesh
spacing h. The controls were approximated by piecewise constant polynomials while
the states were approximated by continuous, piecewise linear polynomials. Table 1
gives the optimal e corresponding to various choices of h (actually 1/e is given for
various choices of l/h). The optimal e was chosen to minimize the expression

(58) (X xh, x* xh)Hl"-(U* uh UCa-- uh),
where (x h, u h) denotes the solution to (34) (which depends on e). The column labeled
"Error" in Table 1 gives the square root of the optimal expression (58). Clearly, both
the optimal e and the optimal error are asymptotically proportional to h.

Acknowledgments. The author thanks the reviewers for carefully reading the manu-
script and for their perceptive and stimulating comments which led to a more complete
presentation.
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