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A mesh refinement method for optimal control which relies on a jump function approximation to
detect discontinuities in the solution is described. A Fourier analysis of the solution is used to gen-
erate an approximation of a jump function. The peaks of the jump function approximation provide
an estimate of possible discontinuity locations. Thresholds on the relative magnitude and decay rate
of the jump function approximation are used to verify the existence of discontinuities in the solution,
and the mesh is refined by bracketing the locations of the discontinuities. The method is demonstrated
using three examples. Results show that solving these types of trajectory optimization problems with
the new method require fewer mesh refinement iterations and less computation time when compared
with a previously developed method.

I. Introduction

Numerical methods for solving optimal control problems can be categorized into indirect methods and
direct methods. In an indirect method, the first-order optimality conditions are formulated using the calcu-
lus of variations which leads to a Hamiltonian boundary-value problem (HBVP),1 and the HBVP is solved
numerically. In a direct method, the control and/or the state are parameterized and the optimal control
problem is transcribed to a finite-dimensional nonlinear programming problem (NLP). The NLP is then
solved numerically using well known sofware.2, 3

Over the past few decades, the particular class of direct collocation methods have been used extensively
to solve optimal control problems numerically. Direct collocation methods are implicit simulation state
and control parameterization methods where the constraints in the continuous optimal control problem
are enforced at a specially chosen set of values of the independent variable called collocation points. The
approximation of an optimal control problem using collocation gives rise to a large sparse NLP,4 and the
NLP is solved using well known software.2, 3

Traditional direct collocation methods take the form of an h method (for example, Euler or Runge-Kutta
methods) where the domain of interest is divided into a mesh and the state is approximated using the same
fixed-degree polynomial in each mesh interval. Convergence of an h method is then achieved by increasing
the number of mesh points.4 In contrast to an h method, p methods have been developed in recent years.
In a p method the number of intervals is fixed and convergence is achieved by increasing the degree of
the polynomial approximation on each interval. In order to achieve maximum effectiveness, p methods
have been developed using collocation at Gaussian quadrature points.5–7 For problems whose solutions are
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smooth and well-behaved, Gaussian quadrature collocation converges at an exponential rate.8–12 Gauss
quadrature collocation methods use Legendre-Gauss6 (LG), Legendre-Gauss-Radau7 (LGR), or Legendre-
Gauss-Lobatto5 (LGL) points.

Various h or p direct collocation methods have been developed previously. Reference 13 describes a p
method that uses a differentiation matrix to identify potential discontinuities in the solution. Reference 14
develops an h method that uses a density function to generate a sequence of non-decreasing size meshes
on which to solve the optimal control problem. Reference 4 develops an error estimate for the state using
a low-order h method based on the difference between the integration of the dynamics and the integration
of the time derivative of the state.

Although h methods have been used extensively and p methods are useful on certain types of prob-
lems, both the h and p approaches have limitations. In the case of an h method, it may be required to use
an extremely fine mesh to improve accuracy. However, in a p method it may be required to use an un-
reasonably large degree polynomial to improve accuracy. In order to significantly reduce the size of the
finite-dimensional approximation, and thus improve computational efficiency of solving the NLP, a new
class of hp collocation methods has been developed in recent years. In an hp method, both the number of
mesh intervals and the degree of the approximating polynomial within each mesh interval are allowed to
vary.

While hp adaptive methods can be developed using classical discretizations (for example, using a Runge-
Kutta method where the order of the method in a mesh interval can be varied), employing Gaussian quadra-
ture has advantages over classical approaches. First, exponential convergence can be achieved by increas-
ing the degree of the polynomial approximation in segments where the solution is smooth. Second, Runge
phenomenon (where the error at the ends of a mesh interval becomes very large as the polynomial degree
increases) is eliminated using Gaussian quadrature. Third, less mesh refinement is necessary when using
Gaussian quadrature as compared to a classical method, because the mesh only needs to be refined in seg-
ments where smoothness is lost. While hp methods were originally developed as finite-element methods
for solving partial differential equations,15 in the past few years hp methods have been extended to optimal
control, and a convergence theory for these methods has been established.8–12

Even though hp methods can be effective in problems where the solution is smooth, it is often the case
that optimal control problem solutions contain nonsmooth elements. For instance, a jump discontinuity in
one or more components of the control may result in one or more state components becoming discontinuous
in its derivative. Discontinuous solutions are problematic for h, p, and hp methods, because these methods
assume a smooth parameterization of the state and/or control on each mesh interval.

Using a smooth or piecewise smooth parameterization when in fact the solution contains a discontinu-
ity results in an error which must be mitigated via mesh refinement. P methods are generally ineffective
in this case, because higher order polynomials remain smooth functions and mesh interval locations are
fixed. Employing h or hp methods can be effective, because they allow the number of mesh intervals to
vary. However, many of these methods face a major limitation. Namely, they lack the ability to detect
and accurately locate discontinuities in the solution which causes mesh intervals to conglomerate around
discontinuity locations as mesh refinement continues. Eventually, the discontinuity is contained on a small
enough mesh interval that its effect on solution accuracy is negligible. The process of containing a discon-
tinuity in such a way is costly in two ways. First, a large number of mesh refinement iterations may be
needed and each new mesh generates an NLP which must be solved. Second, the subsequent NLP may
be bigger than necessary due to mesh intervals amassing around the discontinuity location. Significant
computation time penalties may result, because most of the computation time arises from solving the NLP
on each mesh.

Motivated by current optimal control mesh refinement algorithms’ limited ability to accurately locate
discontinuities and mitigate their negative effects, the method of this paper describes a new approach where
jump discontinuities in the control are detected via an approximation of the control’s jump function. The
origin of the jump function approximation is a result due to Lukács16, 17 which asserts that a scaled version
of the Fourier conjugate sum converges to the jump function as the number of terms in the series ap-
proaches infinity. Reference 18 accelerates the convergence rate of this jump function approximation with
the introduction of so-called ”concentration factors”. Once located using the control’s jump function ap-
proximation, each discontinuity is confined to a much smaller interval on the new mesh. The mesh points
confining a particular discontinuity are reused and their locations tightened around the discontinuity loca-
tion on subsequent mesh refinement iterations. The approach used here confines discontinuities to small
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mesh intervals rapidly, and does so in a way which does not add unnecessary size to the NLP.
The method described in this paper is applicable to problems where the control solution can be ade-

quately described by a Fourier series. Therefore, it is suitable for a wide range of trajectory optimization
problems containing discontinuous solutions for components of the control. Furthermore, the methods
discussed herein can be applied to other h and hp mesh refinement methods to help alleviate the obstacles
presented by jump discontinuities in the solution to an optimal control problem.

The remainder of this paper is organized as follows. Section II describes the Bolza form of the optimal
control problem. Section III provides the basis for the method developed in this paper based on jump
function approximations. Section IV reviews the Legendre-Gauss-Radau (LGR) collocation method. Section
V describes the new mesh refinement method with discontinuity detection for jumps in the control, and
Section VI provides an overview of the mesh refinement algorithm based on the methods described in
Section V. Section VII uses three examples from the open literature to compare and discuss the performance
of the hp-adaptive method of Ref. 19 with the algorithm of Section VI. Finally, Section VIII provides the
conclusions of this research.

II. Bolza Optimal Control Problem

The following description of a general optimal control problem written in Bolza form follows closely
with the Bolza form description of Ref. 19. Without loss of generality, consider the following general optimal
control problem in Bolza form. Determine the state y(τ) ∈ R

ny and the control u(τ) ∈ R
nu on the domain

τ ∈ [−1,+1], the initial time, t0, and the terminal time, tf , that minimize the cost functional

J = M(y(−1), t0,y(+1), tf ) +
tf − t0

2

∫ +1

−1

L(y(τ),u(τ), t(τ, t0, tf )) dτ, (1)

subject to the dynamic constraints

dy

dτ
=

tf − t0
2

a(y(τ),u(τ), t(τ, t0, tf )), (2)

the inequality path constraints

cmin ≤ c(y(τ),u(τ), t(τ, t0, tf )) ≤ cmax, (3)

and the boundary conditions
bmin ≤ b(y(−1), t0,y(+1), tf ) ≤ bmax. (4)

It is noted that the time interval τ ∈ [−1,+1] can be transformed to the time interval t ∈ [t0, tf ] via the affine
transformation

t ≡ t(τ, t0, tf ) =
tf − t0

2
τ +

tf + t0
2

. (5)

In the hp discretization, the domain τ ∈ [−1,+1] is partitioned into a mesh consisting of K mesh intervals
Sk = [Tk−1, Tk], k = 1, . . . ,K, where −1 = T0 < T1 < . . . < TK = +1. The mesh intervals have the

property that
K
⋃

k=1

Sk = [−1,+1]. Let y(k)(τ) and u(k)(τ) be the state and control in Sk. The Bolza optimal

control problem of Eqs. (1)–(4) can then rewritten as follows. Minimize the cost functional

J = M(y(1)(−1), t0,y
(K)(+1), tf ) +

tf − t0
2

K
∑

k=1

∫ Tk

Tk−1

L(y(k)(τ),u(k)(τ), t(τ, t0, tf )) dτ, (6)

subject to the dynamic constraints

dy(k)(τ)

dτ
=

tf − t0
2

a(y(k)(τ),u(k)(τ), t(τ, t0, tf )), (k = 1, . . . ,K), (7)

the path constraints

cmin ≤ c(y(k)(τ),u(k)(τ), t(τ, t0, tf )) ≤ cmax, (k = 1, . . . ,K), (8)
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and the boundary conditions

bmin ≤ b(y(1)(−1), t0,y
(K)(+1), tf ) ≤ bmax. (9)

Because the state must be continuous at each interior mesh point, it is required that the condition y(T−
k ) =

y(T+
k ), (k = 1, . . . ,K − 1) be satisfied at the interior mesh points (T1, . . . , TK−1).

III. Motivation for New Mesh Refinement Method

Optimal control problems often have nonsmooth solutions. Such discontinuities may arise in the form
of jump discontinuities in the control (for example, an optimal control problem whose optimal control
has a bang-bang structure) or discontinuities in the derivative of the state and/or the control. In order to
improve the accuracy of a numerical solution to an optimal control problem whose solution is nonsmooth,
the locations of such discontinuities need to be determined accurately.

This paper focuses on the development of a mesh refinement method which accurately locates jump dis-
continuities in the control when solving an optimal control problem using a direct collocation method. The
method developed in this paper employs a jump function approximation to identify the locations of con-
trol discontinuities. The jump function approximation is generated using the approximation of the control
obtained at the collocation points on a given mesh for which the optimal control problem is approximated.
The jump function approximation is then used to develop an iterative mesh refinement method where, on
each mesh refinement iteration, the mesh is modified using the estimates of the locations of the discontinu-
ities. The remainder of this section provides the mathematical background that serves as the basis of the
method.

A. Jump Functions

Let f(t) be an arbitrary function defined on t ∈ [t0, tf ]. The jump function, fj(t), that arises from f(t) is
defined as

fj(t) = lim
τ→t+

f(τ)− lim
τ→t−

f(τ) ∀t ∈ (t0, tf ) (10)

From Eq. (10) it is seen that a jump function, fj(t), of an underlying function, f(t), is zero everywhere except
at locations where the original function, f(t), has jump discontinuities. Moreover, at the jump locations of
f(t), fj(t) takes on the value that equals the amount of the jump discontinuity itself. Using the definition
of a jump function, the jump discontinuities can be located by observing where fj(t) is nonzero.

B. Approximation of Jump Functions

Now while in principle a jump function can be obtained using Eq. (10), in practice the underlying function
is not known because the solution is known only on a time series of data where the time points are the col-
location points on the mesh for which the approximation of the solution to the optimal control problem was
obtained. Thus, Eq. (10) must be approximated using this time series of data. A possible way to approxi-
mate a jump function is by using a Fourier series approximation of f(t). If the Fourier series approximation

of a 2L periodic function, denoted f̂(t), is written as

f(t) ≈ f̂(t) = a0 +

N
∑

k=1

[

ak cos

(

kπ

L
t

)

+ bk sin

(

kπ

L
t

)]

, (11)

then the jump function approximation, denoted f̂j(t), has the same 2L period and is defined as

fj(t) ≈ f̂j(t) =

N
∑

k=1

σ(k/N)

[

ak sin

(

kπ

L
t

)

− bk cos

(

kπ

L
t

)]

, (12)

where ak and bk are the same Fourier coefficients of Eq. (11) and σ(k/N) are concentration factors.18 Con-
centration factors arise from the earlier work of Lukács16, 17 where it was shown that the conjugate Fourier
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series

˜̂
f(t) =

N
∑

k=1

[

ak sin

(

kπ

L
t

)

− bk cos

(

kπ

L
t

)]

(13)

converges to the jump function when multiplied by −π/ logN as N −→ ∞. A wider class of so-called
”concentration factors” share the same convergence property when applied to the Fourier conjugate sum
as written in Eq. (12).18 Furthermore, these concentration factors accelerate convergence to the actual jump
function, thereby making the jump function approximation computationally tractable because fewer terms
in the series are required in order to obtain an accurate approximation of the jump function. In this research,
the following concentration factor is employed:

σG
k,N = −

π

Si(π)
sin

(

πk

N

)

, Si(π) =

∫ π

0

sin t

t
dt ≈ 1.85194, (14)

where Eq. (14) is called the Gibbs concentration factor.18

While obtaining the Fourier coefficients needed in Eq. (12) can be done in many ways, it is important
that an even Fourier approximation be used as opposed to a standard or odd Fourier approximation. The
reasoning for needing an even Fourier approximation is due to the nature of the periodic behavior the
standard, odd, and even Fourier approximations imply. Specifically, consider the numerical approximation
of the solution to an optimal control problem on a given mesh where the solution data lies on the time
interval t ∈ [t0, tf ]. A standard Fourier approximation of the form in Eq. (11) will result in the Fourier
approximation of the control having a period T = 2L = tf − t0. Due to this periodicity, artificial jumps
may be present at the endpoints as illustrated in Fig. 2. The same issue arises when using the odd Fourier

approximation, f̂odd(t), which is defined as

f̂odd(t) =

N
∑

k=1

bk sin

(

kπ

L
t

)

, (15)

except now the period T = 2L = 2(tf − t0). It is noted, however, that an even Fourier approximation,

denoted f̂even(t) and defined as

f̂even(t) = a0 +

N
∑

k=1

ak cos

(

kπ

L
t

)

, (16)

has the same period as the odd approximation but does not pose the risk of creating artificial jumps at t0
or tf . An even Fourier series approximation does not produce artificial jumps at the endpoints because
the value of the function approximation at the start of any period is equal to the value of the function
approximation at the end of the previous period. In order to see the behavior of a standard, odd, and even
Fourier series approximation of a jump function, consider the following function:

f(t) =











0 , 0 ≤ t < 2,

1 , 2 ≤ t < 4,

−1 , 4 ≤ t ≤ 6,

(17)

The jump function fj(t) arising from the function f(t) defined in Eq. (17) is given as

fj(t) =











1 , t = 2,

−2 , t = 4,

0 , otherwise.

(18)

Figures 1a and 1b show, respectively, the functions f(t) and fj(t) defined in Eqs. (17) and (18). Next, Fig-
ure 2a shows the standard, odd, and even Fourier series approximations of the function f(t) defined in
Eq. (17), while Fig. 2b shows the standard, odd, and even Fourier series approximations of the jump func-
tion fj(t) defined in Eq. (18). It can be seen from Fig. 2a that all three Fourier approximations provide a
good approximation of f(t). On the other hand, Fig. 2b shows that the standard and odd Fourier approx-
imations of the jump function fj(t) defined in Eq. (18) produce artificial jumps at t = t0 and t = tf , while
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artificial jumps are not produced by the even Fourier approximation of fj(t). Because the even Fourier se-
ries approximation of a jump function does not produce artificial jumps, even Fourier approximations will
be employed in the remainder of this paper to obtain the Fourier coefficients needed in the approximation

of a jump function. Finally, for convenience, from this point forth the notation f̂(t) will be used to denote
an even Fourier series approximation.

t
0 1 2 3 4 5 6

f
(t
)

-1.5

-1

-0.5

0

0.5

1

1.5

(a) Function, f(t), defined in Eq. (17).

t
0 1 2 3 4 5 6

f
j
(t
)

-2

-1.5

-1

-0.5

0

0.5

1

(b) Jump function, fj(t), defined in Eq. (18).

Figure 1: Example function, f(t), defined in Eq. (17) alongside jump function, fj(t), defined in Eq. 18.

t
0 1 2 3 4 5 6

f̂
(t
)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Standard
Odd
Even

(a) Fourier approximation of f(t) defined in Eq. (17).

t
0 1 2 3 4 5 6

f̂
j
(t
)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Standard
Odd
Even

(b) Jump function approximation of fj(t) defined in Eq. (18).

Figure 2: Standard, odd, and even Fourier approximations of f(t) and their associated jump function ap-

proximations. Note that f̂j(t) has no artificial jumps at the endpoints for the even approximation.

Given that an even Fourier series approximation does not create artificial jumps when approximating
a jump function, suppose now the jump function fj(t) given Eq. (18) is approximated using an even N -

term Fourier series, and let this jump function approximation be denoted f̂j(t). Figure 1 shows the jump

function approximation f̂j(t) for N = {10, 20, 40}, where it is seen that the jump function approximation
approaches the true jump function as N increases. Furthermore, the locations of the maxima and minima of
the jump function approximation lie in close proximity, respectively, to the locations of the discontinuities
of the actual function f(t), and the values of the jump function approximation at these extremal points are
in close proximity to the actual jump in the original function. It is also seen that the extrema in the jump
function approximation tend to stay in the same location when a jump discontinuity is present regardless
of the value of N . Therefore, locating the maxima and minima in a jump function approximation can be
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t
0 1 2 3 4 5 6

f̂
j
(t
)

-2

-1.5

-1

-0.5

0

0.5

1
N = 10
N = 20
N = 40

Figure 3: N -term approximation of jump function fj(t) given in Eq. (18) using N = {10, 20, 40}. Note that
the coefficients used in the jump function approximation correspond to an even Fourier approximation of
funciton f(t) defined in Eq. (17).

used as a good estimate of the location of jump discontinuities of a function f(t).

C. Even Fourier Series Approximation of Jump Functions Using Unevenly Spaced Data

In the example that was studied in Section III.B, the underlying function, f(t), was known. As a result,
it was possible to obtain the Fourier coefficients of the jump function, fj(t), of f(t), analytically. Note,
however, that the solution obtained by solving the NLP that arises from the transcription of an optimal
control problem via collocation leads to an approximation of the state and control at discrete (sampled)
data points. Moreover, this discrete approximation is obtained at points that are not evenly spaced. Thus,
any jump function approximation that would be used to determine the locations of discontinuities in the
solution must be obtained using this discrete data. In this paper, an even Fourier approximation of unevenly
spaced data that lies on t ∈ [t0, tf ] is obtained as follows. First, the unevenly spaced data is interpolated
to N + 1 evenly spaced points on the time interval t ∈ [t0, tf ]. Second, these interpolated data points are
reflected about tf (excluding the points at t0 and tf ) to create a sampling of an even function with period
2(tf − t0). The Fast Fourier Transform (FFT) is then utilized to calculate the first N Fourier coefficients
(excluding a0) of the even Fourier approximation of the data on the period 2(tf − t0). The choice of N is
somewhat arbitrary so long as the resulting Fourier approximation reasonably describes the original set
of unevenly spaced data. Figs. 4a and 4b show, respectively, the even Fourier series approximations of
unevenly spaced data alongside the corresponding jump function approximations for N = {10, 20, 40}.

Examining Fig. 4, it is seen that the jump function approximation obtained using unevenly spaced data
has similar features to the jump function approximation obtained in Fig. 4 where the function f(t) is known.
Specifically, the global extrema of the jump function approximation shown in Fig. 4 obtained using un-
evenly spaced data correspond closely with the locations of the discontinuities in the sampled function as
is the case in Fig. 4 where the function f(t) is known. Moreover, these extrema locations do not tend to
vary as N is increased. However, it is observed that the values of these extrema tend to decrease as N
is increased. The decrease is due to the linear interpolation step when calculating the even Fourier series
coefficients using the approach described previously. Despite this new drawback, these extreme points
of each jump function approximation remain good estimates for the locations of jumps in the underlying

function of the unevenly sampled data. The extrema of a jump function approximation f̂j(t) is obtained by

determining the the zeros of the derivative of f̂j(t), where the derivative of f̂j(t) is given as

df̂j(t)

dt
=

N
∑

k=1

σ

(

k

N

)

kπ

L

[

ak cos

(

kπ

L
t

)

+ bk sin

(

kπ

L
t

)]

. (19)
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t
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f̂
(t
)

-1.5

-1

-0.5

0

0.5

1

1.5
N = 10
N = 20
N = 40
Data

(a) Even Fourier approximations of unevenly spaced data.

t
0 2 4 6 8 10

f̂
j
(t
)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
N = 10
N = 20
N = 40

(b) Jump function approximations of the unevenly spaced
data in Fig. 4a.

Figure 4: N -term Fourier and jump function approximations of unevenly spaced data for N = {10, 20, 40}.
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IV. Legendre-Gauss-Radau Collocation

Although the ideas of Section III can be applied to many different collocation methods for solving an
optimal control problem of the form described in Section II; here we choose Legendre-Gauss-Radau (LGR)
collocation as the vehicle for explaining and demonstrating the behavior of the mesh refinement method of
this paper. The following description of the LGR collocation method follows closely with the LGR method
described in Ref. 19.

The multiple-interval form of the continuous-time Bolza optimal control problem in Section II is dis-
cretized using collocation at LGR points.7, 20–23 In the LGR collocation method, the state of the continuous-
time Bolza optimal control problem is approximated in Sk, k ∈ [1, . . . ,K], as

y(k)(τ) ≈ Y(k)(τ) =

Nk+1
∑

j=1

Y
(k)
j ℓ

(k)
j (τ), ℓ

(k)
j (τ) =

Nk+1
∏

l=1

l 6=j

τ − τ
(k)
l

τ
(k)
j − τ

(k)
l

, (20)

where τ ∈ [−1,+1], ℓ
(k)
j (τ), j = 1, . . . , Nk + 1, is a basis of Lagrange polynomials,

(

τ
(k)
1 , . . . , τ

(k)
Nk

)

are the

Legendre-Gauss-Radau (LGR)24 collocation points in Sk = [Tk−1, Tk), and τ
(k)
Nk+1 = Tk is a noncollocated

point. Differentiating Y(k)(τ) in Eq. (20) with respect to τ gives

dY(k)(τ)

dτ
=

Nk+1
∑

j=1

Y
(k)
j

dℓ
(k)
j (τ)

dτ
. (21)

The dynamics are then approximated at the Nk LGR points in mesh interval k ∈ [1, . . . ,K] as

Nk+1
∑

j=1

D
(k)
ij Y

(k)
j =

tf − t0
2

a(Y
(k)
i ,U

(k)
i , t(τ

(k)
i , t0, tf )), (i = 1, . . . , Nk), (22)

where

D
(k)
ij =

dℓ
(k)
j (τ

(k)
i )

dτ
, (i = 1, . . . , Nk, j = 1, . . . , Nk + 1)

are the elements of the Nk × (Nk + 1) Legendre-Gauss-Radau differentiation matrix7 in mesh interval Sk, k ∈
[1, . . . ,K]. The LGR discretization then leads to the following nonlinear programming problem (NLP).
Minimize the LGR quadrature approximation to the cost functional

J ≈ M(Y
(1)
1 , t0,Y

(K)
NK+1, tf ) +

K
∑

k=1

Nk
∑

j=1

tf − t0
2

w
(k)
j L(Y

(k)
j ,U

(k)
j , t(τ

(k)
j , t0, tf )) (23)

subject to the collocation constraints

Nk+1
∑

j=1

D
(k)
ij Y

(k)
j −

tf − t0
2

a(Y
(k)
i ,U

(k)
i , t(τ

(k)
i , t0, tf )) = 0, (i = 1, . . . , Nk), (24)

the discretized path constraints

cmin ≤ c(Y
(k)
i ,U

(k)
i , t(τ

(k)
i , t0, tf )) ≤ cmax, (i = 1, . . . , Nk), (25)

and the discretized boundary conditions

bmin ≤ b(Y
(1)
1 , t0,Y

(K)
NK+1, tf ) ≤ bmax. (26)

It is noted that the continuity in the state at the interior mesh points (T1, . . . , TK−1) is enforced via the
condition

Y
(k)
Nk+1 = Y

(k+1)
1 , (k = 1, . . . ,K − 1). (27)
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Computationally, the constraint of Eq. (27) is eliminated from the problem by using the same variable for

both Y
(k)
Nk+1 and Y

(k+1)
1 . Finally, we note that

N =
K
∑

k=1

Nk (28)

is the total number of LGR points on τ ∈ [−1,+1].

A. Approximation of Solution Error

In this Section the approach of Ref. 23 for estimating the relative error in the solution on a given mesh is
reviewed. The relative error approximation derived in Ref. 23 is obtained by comparing two approxima-
tions to the state, one with higher accuracy. The key idea is that for a problem whose solution is smooth,
an increase in the number of LGR points should yield a state that more accurately satisfies the dynamics.
Hence, the difference between the solution associated with the original set of LGR points, and the approxi-
mation associated with the increased number of LGR points should yield an approximation of the error in
the state.

Assume that the NLP of Eqs. (23)–(26) corresponding to the discretized control problem has been solved
on a mesh Sk = [Tk−1, Tk], k = 1, . . . ,K, with Nk LGR points in mesh interval Sk. Suppose that the

objective is to approximate the error in the state at a set of Mk = Nk + 1 LGR points
(

τ̂
(k)
1 , . . . , τ̂

(k)
Mk

)

, where

τ̂
(k)
1 = τ

(k)
1 = Tk−1, and that τ̂

(k)
Mk+1 = Tk. Suppose further that the values of the state approximation at the

points
(

τ̂
(k)
1 , . . . , τ̂

(k)
Mk

)

are denoted
(

y(τ̂
(k)
1 ), . . . ,y(τ̂

(k)
Mk

)
)

. Next, let the control be approximated in Sk using

the Lagrange interpolating polynomial

U(k)(τ) =

Nk
∑

j=1

U
(k)
j ℓ̂

(k)
j (τ), ℓ̂

(k)
j (τ) =

Nk
∏

l=1

l 6=j

τ − τ
(k)
l

τ
(k)
j − τ

(k)
l

, (29)

and let the control approximation at τ̂
(k)
i be denoted u(τ̂

(k)
i ), 1 ≤ i ≤ Mk. The value of the right-hand

side of the dynamics at (Y(τ̂
(k)
i ),U(τ̂

(k)
i ), τ̂

(k)
i ) is used to construct an improved approximation of the state.

Let Ŷ(k) be a polynomial of degree at most Mk that is defined on the interval Sk. If the derivative of Ŷ(k)

matches the dynamics at each of the Radau quadrature points τ̂
(k)
i , 1 ≤ i ≤ Mk, then we have

Ŷ(k)(τ̂
(k)
j ) = Y(k)(τk−1) +

tf − t0
2

Mk
∑

l=1

Î
(k)
jl a

(

Y(k)(τ̂
(k)
l ),U(k)(τ̂

(k)
l ), t(τ̂

(k)
l , t0, tf )

)

, j = 2, . . . ,Mk + 1,

(30)

where Î
(k)
jl , j, l = 1, . . . ,Mk, is the Mk × Mk LGR integration matrix corresponding to the LGR points

defined by
(

τ̂
(k)
1 , . . . , τ̂

(k)
Mk

)

. Using the values Y(τ̂
(k)
l ) and Ŷ(τ̂

(k)
l ), l = 1, . . . ,Mk+1, the absolute and relative

errors in the ith component of the state at (τ̂
(k)
1 , . . . , τ̂

(k)
Mk+1) are then defined, respectively, as

E
(k)
i (τ̂

(k)
l ) =

∣

∣

∣
Ŷ

(k)
i (τ̂

(k)
l )− Y

(k)
i (τ̂

(k)
l )

∣

∣

∣
,

e
(k)
i (τ̂

(k)
l ) =

E
(k)
i (τ̂

(k)
l )

1 + max
j∈[1,...,Nk+1]

k∈[1,...,K]

∣

∣

∣
Y

(k)
i (τ

(k)
j )

∣

∣

∣

,

[

l = 1, . . . ,Mk + 1,

i = 1, . . . , ny,

]

. (31)

The maximum relative error in Sk is then defined as

e(k)max = max
i∈[1,...,ny ]

l∈[1,...,Mk+1]

e
(k)
i (τ̂

(k)
l ). (32)
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V. Mesh Refinement Method with Discontinuity Detection

The mesh refinement method used in this paper combines the hp-adaptive scheme of Ref. 19 with the ap-
proach described in Section III for approximating jump functions. This discussion is restricted to detecting
discontinuities and does not provide a discussion of the mesh refinement method of Ref. 19.

Suppose that the NLP of Eqs. (23)-(26) arising from the LGR collocation method is solved solved on on
a mesh that has either been supplied (that is, an initial mesh) or a mesh that has been computed using a
mesh refinement method (for example, the hp-adaptive method of Ref. 19). After solving the NLP on the
initial mesh, the error is approximated using the error approximation method given in Section IV.A. For
each mesh interval on the mesh where the maximum relative error tolerance, ǫ, is exceeded, the following
discontinuity detection procedure is employed. First, for each component of the control, a jump function
approximation is constructed using an even Fourier series approximation as described in Section III. The
global extrema of these jump function approximations are determined and are used as the basis for deter-
mining the existence of jump discontinuity. When a discontinuity is detected, the current mesh is refined
by bracketing the discontinuity with three new mesh points (one at the estimated discontinuity location
and two more surrounding the estimated discontinuity location). When no discontinuity is detected, the
hp mesh refinement method of Ref. 19 is employed. The result of refining each mesh interval in the afore-
mentioned manner leads to a new mesh. The optimal control problem is then approximated on this new
mesh using the LGR collocation method given in Section IV and the NLP of Eqs. (23)-(26) is solved. The
process of constructing a new mesh using the hp-adaptive method of Ref. 19 together with the aforemen-
tioned discontinuity detection method is repeated until the relative error tolerance ǫ is satisfied on every
mesh interval.

A. Method for Obtaining Fourier Coefficients

Assume that at least one mesh interval exists on the current mesh for which the estimated relative error
of the solution is larger than the relative error tolerance, ǫ. Fourier coefficients corresponding to an even
Fourier series approximation must then be calculated so that the jump function of each control component
may be approximated. The necessary Fourier coefficients are generated from the set of estimated values
of the control at the collocation points obtained by solving the NLP of Eqs. (23)-(26) on mesh M . The
number of sdata points used to approximate the jump function can range from the data on a single mesh
interval to the data on the entire mesh. It is desirable to use as many of the collocation points in the Fourier
approximation as possible, because computing one set of Fourier coefficients for all K of the mesh intervals
will be faster than producing K sets of Fourier coefficients with one set for each interval. Note, however,
that the mesh fraction (ratio of the mesh interval time span to the total time span of the mesh) of individual
mesh intervals may be widely different. Large differences between the mesh fractions cause the collocation
data to be concentrated in some areas of the mesh and sparse in others, and such unevenly spaced data can
result in a poor Fourier series approximation.

In this research, a grouping algorithm is developed such that mesh intervals are grouped together ac-
cording to their mesh fractions. A group, Gg , is defined as a set of adjacent mesh intervals for which the
following condition holds:

Tk − Tk−1

max
j∈{Kg+1,...,Kg+kg}

(Tj − Tj−1)
≥ ρ1, ∀k ∈ {Kg + 1, ...,Kg + kg}, (33)

where

Kg =

g−1
∑

i=1

ki, g = 1, . . . , G,

and ρ1 ∈ [0, 1] is a user-defined threshold, kg are the number of mesh intervals in group Gg , G is the number

of groups,
G
∑

i=1

ki = K, and
G
⋃

g=1

Gg = {S1, ..., SK}.

Mesh intervals are grouped in the following manner. We start with one group containing all of the mesh
intervals in the current mesh (G1 = {S1, . . . , SK}). If one or more of its members does not satisfy Eq. (33), G1

is split into G new groups, G1 = {S1, . . . , Sk1
},G2 = {Sk1+1, . . . , Sk1+k2

}, . . . ,GG = {SKG+1, . . . , SK}. Each
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new group contains kg adjacent mesh intervals which either all satisfy or all do not satisfy Eq. (33). Each of
the new groups undergo the same division process until Eq. (33) is satisfied by all mesh intervals in each
group.

In this research, ρ1 = 0.05. Adjusting ρ1 to be larger or smaller will effect how many groups are created
as well as the degree to which mesh interval’s mesh fractions can vary within a group. For example, ρ1 = 1
would cause each mesh interval to be assigned to its own distinct group if that particular mesh interval
is not identical in length to its neighbors. Alternatively, ρ1 = 0.01 results in each group containing mesh
intervals with corresponding mesh fractions which are no more than two orders of magnitude apart.

After grouping is complete, we can produce an accurate even Fourier series approximation for any par-
ticular group. The data used in the Fourier approximation for a particular group, Gg , are the estimated
control values at each of the collocation points corresponding to each mesh interval in the group as well as
the endpoint of the final mesh interval in the group. The data is linearly interpolated to N+1 evenly spaced
points spanning [TKg

, TKg+kg
]. The evenly spaced points (excluding the first and last points at TKg

and
TKg+kg

) are mirrored about TKg+kg
to create a sampling of an even function with period 2(TKg+kg

− TKg
).

The Fast Fourier Transform is then utilized to calculate the first N Fourier coefficients of the even approxi-
mation (an = a1, . . . , aN , bn = 0). The choice of N is somewhat arbitrary so long as the resulting Fourier
approximation reasonably describes the control solution. Here, N is equal to the number of collocation
points used in the even Fourier series approximation for the current group.

B. Method for Locating and Verifying Discontinuity Locations

Assume now that all of the mesh intervals on the current mesh have been divided into groups. Assume
further that the maximum relative error tolerance, ǫ, is exceeded on a particular mesh interval, Sk, within a
particular group, Gg . Assume once more that the first N Fourier coefficients of the even Fourier series ap-
proximation to the group’s control collocation data have been calculated for each component of the control.
The location of any existing jump discontinuity within Sk must be identified for each control component.

As a preliminary test, a jump in a particular control component, u, is deemed likely when the following
criteria is met. There are two points, uk

i and uk
i−1, on the current mesh interval Sk in current group Gg that

have the highest magnitude linear slope between them. The reasoning behind choosing uk
i and uk

i−1 in this
manner is due to the fact that the absolute value of the slope between two points on opposite sides of a jump
discontinuity approaches infinity in the limit as those two points approach the discontinuity location from
either side. Therefore, uk

i and uk
i−1 are the most likely candidates to contain a jump discontinuity between

them. They have a relative difference

∆r =
uk
i − uk

i−1
(

max
k∈{Kg+1,...,Kg+kg} , i∈k

(

uk
i

)

)

−

(

min
k∈{Kg+1,...,Kg+kg} , i∈k

(

uk
i

)

) , (34)

where uk
i is inclusive of the endpoint of the interval uk

Nk+1 = uk+1
1 . Note that division by zero in Eq. (34) is

possible only if uk
i is constant for all i ∈ k , k ∈ {Kg +1, . . . ,Kg +kg}. In such a case, no jump discontinuity

is likely. Therefore, we stop searching for jump discontinuities in that particular control component before
the division by zero can occur. In all other cases, if the absolute value of ∆r exceeds a user-set threshold
ρ2 ∈ [0, 1], then the search for a jump discontinuity in that particular control component is continued.

The threshold applied to ∆r in this research is ρ2 = 0.1. Raising the value of ρ2 helps limit the search
for jump discontinuities to larger, more easily distinguishable jumps. The threshold also assists in avoiding
unnecessary calculations when there are either no jump discontinuities or the jumps are too small to detect
accurately.

Assuming that ∆r ≥ ρ2 for a particular control component, the location of the jump discontinuity and
the value of the jump must be estimated. Earlier, in Section III, it was shown that the location of the maxi-

mum or minimum of the jump function approximation, f̂j(t), of Eq. (12) can be a good approximation for
the location and value of the jump in f(t). We now seek to obtain an extremum of the control component’s
jump function approximation, denoted as ûj(t), within the current mesh interval.

An extremum of ûj(t) can be found by implementing Newton’s method to find a zero for its derivative
d
dt
ûj(t). We use the midpoint between the times corresponding to uk

i and uk
i−1 (the same points used to

calculate ∆r in Eq. 34) as our initial guess. Once a zero of d
dt
ûj(t) is obtained, the second derivative of the
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jump function approximation d2

dt2
ûj(t) is used to verify that the concavity matches the jump, because we

should converge to a local max if the jump is positive and a local min if the jump is negative. The process of
locating an extremum of d

dt
ûj(t) is done twice; once using all N Fourier coefficients, and once more using

the first N
2 (rounded up to the nearest integer) coefficients. The values and locations of each extremum are

stored for further analysis. In the case where we are unable to converge to an extremum within Sk and with
the correct concavity, the search for a jump discontinuity is ceased for that particular control component.

An example of locating an extremum of ûj(t) is depicted in Fig. 5 along with visualizations for the first
and second derivatives of ûj(t). As can be seen, the initial guess is quite close to the extremal point of ûj(t)
which results in rapid convergence.
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(a) Even Fourier approximation of control collocation data.
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(b) N -term approximation of uj(t).
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(c) First derivative of ûj(t).
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(d) Second derivative of ûj(t).

Figure 5: Example of the mesh algorithm being implemented to find the maximum of the jump function on
the current mesh interval. The red circles correspond to the initial guess and the green circles correspond to
the maximum of the jump function. Convergence to the maximum was acheived using Newton’s method.
Note that the x-axis is labeled ”group fraction” which corresponds to the ratio of Tk−Tk−1 over Tkg

−Tk1−1.

Let ûj,N (t) denote ûj(t) when N terms are used in the approximation. Assume now that we have located
two respective extrema for ûj,N (t) and ûj,N2

(t). Let the locations of each extremum be denoted t∗N and t∗N
2

.

Three final criteria must be met in order to declare t∗N a jump discontinuity location. The first criterion is

|ûj(t
∗
N )|

(

max
k∈{Kg+1,...,Kg+kg} , i∈k

(

uk
i

)

)

−

(

min
k∈{Kg+1,...,Kg+kg} , i∈k

(

uk
i

)

) ≥ ρ2, (35)
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where ρ2 is the same threshold used previously on ∆r.
The second and third criteria are used to verify that the jump function approximation is reliable. They

are expressed, respectively, as
|ûj,N (t∗N )− ûj,N2

(t∗N
2

)|

|ûj,N (t∗N )|
≤ ρ3, (36)

and
|t∗N − t∗N

2

|

TKg+kg
− TKg

≤ ρ4, (37)

where TKg
and TKg+kg

are the endpoints of the current group and ρ3 and ρ4 are user-defined thresholds.
In this research, ρ3 = 0.5 and ρ2 = 0.02. If the criteria of Eq. (35)-(37) are all satisfied, then t∗N is consid-
ered a reliable estimate for the location of a jump discontinuity in the current control component under
investigation.

C. Mesh Refinement Actions

Assume now that a discontinuity has been detected on mesh interval Sk and its location identified to be t∗N .
The mesh interval is refined by splitting the mesh at t∗N and at two adjacent points t∗N + ∆t and t∗N − ∆t.
The choice for ∆t should be some function which scales with the length of the mesh interval (Tk − Tk−1).
In this research, we choose

∆t =
1.2

Nk(Tk − Tk−1

(

2
|ûj,N (t∗N )− ûj,N2

(t∗N
2

)|

|ûj,N (t∗N )|
+ 1

)

.

The adjacent mesh point located at (t∗N +∆t is omitted from the new mesh if (t∗N +∆t ≥ Tk. Similarly, the
adjacent mesh point at (t∗N − ∆t is omitted from the new mesh if (t∗N − ∆t ≤ Tk−1. Should two separate
discontinuities be identified on the same interval and their respective bracketing mesh points overlap, the
overlapping mesh points are omitted from the new mesh and the midpoint between the two discontinuities
is used instead.

On subsequent mesh iterations, the following caveat is used to keep the number of mesh intervals small
(and thereby the size of the NLP as well). If a mesh interval which is known to contain a discontinuity,
identified on the previous mesh M − 1, does not meet the mesh error tolerance on the current mesh M , and
that mesh interval is identified as having a discontinuity again; shrink the three original bracketing mesh
points on mesh M around the new estimated discontinuity location and add one collocation point to the
adjacent mesh intervals whose mesh fractions grow as their neighbor’s mesh fraction shrinks. Recycling
mesh points in this manner rather than creating three new mesh points each time a discontinuity is re-
identified helps limit the growth of the NLP.

VI. Mesh Refinement Algorithm

A summary of our mesh refinement algorithm appears below. The hp-adaptive scheme of Ref. 19 pro-
vides the shell to which our discontinuity detection algorithm is added. The mesh number is denoted by M
and is incremented by one with each loop of the algorithm. M also corresponds to the number of mesh re-
finement iterations, because M is initialized at 0. This algorithm terminates when either the error tolerance
is satisfied in Step 5 or when M reaches a prescribed limit Mmax.

Mesh Refinement with Discontinuity Detection

Step 1: Set M = 0 and supply initial mesh, S =

K
⋃

k

Sk = [−1,+1], where
K
⋂

k

Sk = ∅.

Step 2: Solve Radau collocation NLP of Eqs. (23)–(26) on mesh M .
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Step 3: Group adjacent mesh intervals such that Eq. (33) is satisfied for each group G.

Step 4: Compute scaled error e
(k)
max in Sk, k = 1, . . . ,K, using Eq. (32).

Step 5: If e
(k)
max ≤ ǫ for all k ∈ [1, . . . ,K] or M > Mmax, then quit. Otherwise, proceed to Step 6.

Step 6: For every mesh interval Sk, k ∈ [1, . . . ,K],

(a) if e
(k)
max ≥ ǫ, locate any jump discontinuities in the control components on Sk and bracket them

using the method of Section V. If no discontinuities are found, refine using h or p as normal.

(b) if e
(k)
max < ǫ, determine if the mesh size can be reduced using the method of Ref. 19

Step 7: Increment M by one and return to Step 2.

VII. Results and Discussion

The following example problems from the open literature are used to test the performance of the algo-
rithm described in Section VI when compared with the base algorithm of Ref. 19 which does not actively
search for jump discontinuity locations. All solutions to the example problems contain jump discontinuities
in at least one component of the control. All computation times (CPU times) shown are based on an average
time obtained by solving each problem ten times. The computations were performed using a MacBook Pro
with a 2.8 GHz Intel Core i7 processor and 16 GB of RAM.

A. Minimum Control Effort Landing on the Moon

Consider the following optimal control problem. Minimize the objective functional

min J =

∫ tf

0

u(t)dt (38)

subject to the dynamic constraints and boundary conditions

ḣ(t) = v(t) , (h(0), h(tf )) = (10, 0),

v̇(t) = −g + u(t) , (v(0), v(tf )) = (−2, 0),
(39)

and the control inequality constraint
0 ≤ u(t) ≤ 3, (40)

where (h(t), v(t)) ∈ R
2 is the state, u(t) ∈ R is control, and g is a constant. The optimal control problem

given in Eqs. (38)–(40) was solved using a mesh refinement relative error tolerance ǫ = 10−6. It is known
that the solution to the optimal control problem defined in Eqs. (38)–(40) has a bang-bang optimal control
with a single control discontinuity at t ≈ 1.41 where the control switches from its minimum allowable
value to its maximum allowable value. The control solution is shown in Fig. 6. The mesh histories using
the hp-adaptive method of Ref. 19 without and with the discontinuity method developed in this paper are
shown in Fig. 7, while the corresponding final mesh characteristics and CPU times are shown in Table 1.

When discontinuity detection is applied, the problem solves on the second mesh, needing only a single
mesh refinement iteration. Without discontinuity detection, however, the interval containing the disconti-
nuity is cut into thirds on the first mesh refinement iteration, then consecutively halved twice on the second
and third iterations of mesh refinement before the mesh error tolerance, ǫ, is satisfied. Although the method
of Ref. 19 does a good job of dividing only the nonsmooth mesh interval on each mesh refinement itera-
tion, it divides in an evenly spaced manner without regard to the location of the discontinuity. As a result,
as opposed to locating the discontinuity and dividing the interval using the method of Section V C, extra
mesh refinement iterations are required. Moreover, as seen in Table 1, both the final mesh and the required
CPU time without discontinuity detection are larger than the final mesh and the CPU time required with
discontinuity detection.
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Figure 6: Control solution for Example A.
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(a) hp-adaptive method of Ref. 19 without discontinuity detec-
tion.
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(b) hp-adaptive method of Ref. 19 with discontinuity detection.

Figure 7: Mesh histories using hp-adaptive method of Ref. 19 without and with discontinuity detection for
Example A.

Table 1: Final Mesh Characteristics for and Computation Times for Example A.

Without Discontinuity Detection With Discontinuity Detection

Number of Meshes 4 2

Number of Mesh Intervals 7 6

Number of Collocation Points 23 22

CPU Time 0.253 0.154

B. Minimum Time Reorientation of a Robot Arm

Consider the following optimal control problem. Minimize the objective functional

min J = tf (41)
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subject to the dynamic constraints

ẋ1(t) = x2(t) , (x1(0), x1(tf )) = (9/2, 0),

ẋ2(t) = u1(t)/L , (x2(0), x2(tf )) = (0, 0),

ẋ3(t) = x4(t) , (x3(0), x3(tf )) = (0, 2π/3),

ẋ4(t) = u2(t)/Iθ , (x4(0), x4(tf )) = (0, 0),

ẋ5(t) = x6(t) , (x5(0), x5(tf )) = (π/4, π/4),

ẋ6(t) = u3(t)/Iφ , (x6(0), x6(tf )) = (0, 0),

(42)

and the control inequality constraints

|ui(t)| ≤ 1, (i = 1, 2, 3). (43)

where (x1(t), x2(t), x3(t), x4(t), x5(t), x6(t)) ∈ R
6 is the state, (u1(t), u2(t), u3(t)) ∈ R

3 is the control, Iφ =
((L − x1(t))

3 + x3
1(t))/3, and Iθ = Iφ sin

2(x5(t)). The optimal control problem given in Eqs. (41)–(43) was
solved using a mesh refinement relative error tolerance ǫ = 10−8. It is known that each component of
the optimal control for the example given by Eqs. (41)–(43) has a bang-bang structure with a total of five
control discontinuities located at t ≈ {2.28, 2.80, 4.57, 6.35, 6.86}. The control solution for the example given
by Eqs. (41)–(43) is shown in Fig. 8. The mesh histories using the hp-adaptive method of Ref. 19 without and
with the discontinuity method developed in this paper are shown in Fig. 9, while the corresponding final
mesh characteristics and CPU times are shown in Table 2. The final mesh characteristics and computation
times respectively, in Tables 2.

The discontinuity detection algorithm of this paper was able to successfully detect all five jump discon-
tinuities on the first mesh refinement iteration. As can be seen in Fig. 9 (b) the mesh point triplets which
bracket each discontinuity are successfully reassigned with each mesh refinement iteration. The reassign-
ment of discontinuity bracketing mesh points has the visual effect of each mesh point triplet shrinking
around the discontinuity location with each successive mesh refinement iteration. Reassigning mesh points
in this manner has the desirable effect of keeping the number of mesh intervals on each new mesh smaller
than it would have been had the mesh points not been reassigned. Table 2 indicate a more efficient use of
mesh points and collocation points as well as a faster convergence to the solution when comparing the algo-
rithm of this paper to the algorithm without jump discontinuity detection. In fact, the average computation
time is nearly cut in half.

Table 2: Final Mesh Characteristics and Computation Times for Example B.

Without Discontinuity Detection With Discontinuity Detection

Number of Meshes 7 4

Number of Mesh Intervals 33 22

Number of Collocation Points 182 118

CPU Time 1.780 0.909

VIII. Conclusions

A mesh refinement method for optimal control has been developed that can detect jump discontinuities
in control components. A jump function was defined and a method for approximating a jump function us-
ing an even Fourier series approximation was developed. The locations of discontinuities in the solution of
an optimal control problem were then approximated by locating the extrema of the jump function approx-
imation. A mesh refinement method was then described that employed discontinuity detection together
with a previously developed adaptive mesh refinement method. The mesh was refined by bracketing the
locations of jump discontinuities. The method was applied to two example, and the results indicate that
a smaller final mesh size, fewer mesh refinement iterations, and less computation time were needed to
solve the optimal control problem using collocation by including the discontinuity detection method when
compared with excluding the discontinuity detection method.
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(a) Control component u1(t).
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Figure 8: Control solution for Example B.
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(a) Without discontinuity detection.
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(b) With discontinuity detection.

Figure 9: Mesh histories using hp-adaptive method of Ref. 19 without and with discontinuity detection for
Example B.
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