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A GRADIENT-BASED IMPLEMENTATION OF THE POLYHEDRAL

ACTIVE SET ALGORITHM ∗

JAMES D. DIFFENDERFER† , WILLIAM W. HAGER‡ , AND HONGCHAO ZHANG§

Abstract. The Polyhedral Active Set Algorithm (PASA) is designed to optimize a general non-
linear function over a polyhedron. Phase one of the algorithm is a nonmonotone gradient projection
algorithm, while phase two is an active set algorithm that explores faces of the constraint polyhedron.
A gradient-based implementation is presented, where a projected version of the conjugate gradient
algorithm is employed in phase two. Asymptotically, only phase two is performed. Comparisons are
given with IPOPT using polyhedral constrained problems from CUTEst and the Maros/Meszaros
quadratic programming test set.
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1. Introduction. The polyhedral active set algorithm PASA is designed to solve
the problem

min f(x) subject to x ∈ Ω,(1.1)

where f : Rn → R and Ω is a polyhedron. Throughout the paper, it is assumed that

Ω = {x ∈ R
n : Ax ≤ b},(1.2)

where A ∈ R
m×n and b ∈ R

m. The PASA software, on the other hand, utilizes the
representation

Ω = {x ∈ R
n : bl ≤ Ax ≤ bu, lo ≤ x ≤ hi},(1.3)

with bl and bu ∈ R
m and lo and hi ∈ R

n; any of the inequalities could be vacuous.
The software is designed to exploit sparsity in A.

The algorithms implemented in PASA have been developed over more than 20
years. In one series of papers [10, 15, 16, 17, 20], Timothy Davis and William Hager
developed techniques for modifying a sparse Cholesky factorization of a matrix of the
form AAT after adding or deleting a small number of columns and rows from A.
These update/downdate techniques are optimal in the sense that their running time
is proportional to the number of nonzeros in the Cholesky factorization that change.
In another series of papers [18, 19, 32, 33, 34, 35, 36, 37], Hager developed the Dual
Active Set Algorithm (DASA), first in a general context, and then with Donald Hearn,
it was applied to quadratic network optimization; later with Timothy Davis [18, 19],
it was applied to linear programming using the newly developed update/downdate
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techniques. More recently, in [45] both DASA and the update/downdate techniques
were used in an algorithm PPROJ to project a point onto a polyhedron.

In another series of papers, [38, 39, 42] William Hager and Hongchao Zhang
developed a fast version of the conjugate gradient method known as CG DESCENT
since the search directions were always descent directions, independent of the line
search. In [43], CG DESCENT was enhanced using limited memory techniques. As
an application of CG DESCENT, an active set method for purely bound constrained
problems was developed in [40, 41]. This active set algorithm had two phases, in phase
one the gradient projection algorithm and a cyclic Barzilai/Borwein [3, 14] step were
used to identify active constraints, and in phase two, an unconstrained solver, such
as CG DESCENT, optimized the objective over faces of the polyhedral constraint.
Whenever a new constraint in the polyhedron became active, the optimization was
restricted to the resulting smaller face of the polyhedron.

The polyhedral active set algorithm PASA in [44] is a generalization of the two
phase algorithm in [40] from bound constraints to polyhedral constraints. Under
nondegeneracy type assumptions, only the second phase is executed asymptotically;
consequently, the asymptotic convergence speed coincides with that of the algorithm
used to optimize the objective over the faces of a polyhedron. For a general polyhe-
dron, the projected gradients of phase one are computed using PPROJ, while in the
special case where the polyhedron is a knapsack-type constraint

{x ∈ R
n : bl ≤ aTx ≤ bu, lo ≤ x ≤ hi}, a ∈ R

n,

the projection is computed using the Newton/heap-based algorithm NAPHEAP of
[21]. The current version of PASA uses a projected conjugate gradient iteration in
phase two to optimize over a shrinking series of faces of the polyhedron.

2. Literature Review. We briefly summarize continuous nonlinear optimiza-
tion algorithm development during the past 30 years. Early codes in this timeframe in-
clude MINOS [48], NPSOL [25], OPTPACK [30, 33], and LANCELOT [13]. Murtagh
and Saunders’ MINOS is based on Robinson’s algorithm [49] which is locally quadrat-
ically convergent. The Lagrangian in Robinson’s algorithm is replaced by an aug-
mented Lagrangian, and the subproblem associated with the linearized constraints
are solved by a reduced gradient algorithm combined with a quasi-Newton method
as described in [46, 47]. Gill, Murray, Saunders, and Wright’s NPSOL is a sequen-
tial quadratic programming method (SQP) where a positive definite quasi-Newton
approximation to the true Lagrangian Hessian is utilized. The resulting quadratic
programming problem is solved by codes in the LSSOL package [26], which employs
active set methods and dense linear algebra to solve constrained linear least-squares
problems and convex quadratic programming problems. OPTPACK [30, 33] alter-
nates between a constraint step based on Newton’s method and an optimization step
based on the minimization of an augmented Lagrangian over linearized constraints.
The combined steps are locally quadratically convergent, and the implementation
employs dense linear algebra. Conn, Gould, and Toint’s LANCELOT treats nonlin-
ear constraints using an augmented Lagrangian which is minimized within a region
defined by the bound constraints. The bound constrained problem is solved by an
algorithm that combines projected gradient techniques [11] and special structures to
exploit the group partially separable structure of a problem [12].

More recently, NPSOL was the starting point for SNOPT (Sparse Nonlinear Opti-
mizer) [24] and DNOPT (Dense Nonlinear Optimizer) [27]. Again, a positive definite
quasi-Newton approximation to the true Lagrangian Hessian is employed. However,
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in SNOPT sparse linear algebra is used to solve the resulting quadratic program,
while DNOPT employs dense linear algebra. A different SQP algorithm is developed
by Fletcher and Leyffer in [22, 23], where a trust region approach is applied to the
quadratic programming problem, and the accepted iterates are chosen using a filter
method. The authors of the augmented Lagrangian-based code LANCELOT changed
their focus to efficient quadratic programming (QP) solvers that could be used in the
implementation of SQP methods. The new software formed the package GALAHAD.
Further development of reliable augmented Lagrangian techniques for general nonlin-
ear optimization were continued by Birgin, Mart́ınez, and others in the ALGENCAN
[1] package. After the success of interior point methods for linear programming,
interior point algorithms were also developed for general nonlinear programming in-
cluding Vanderbei and Shanno’s LOQO [50] (a merit line-search interior point method
based on a quadratic program solver also named LOQO), Waltz and Nocedal’s KNI-
TRO [52] (an interior point approach based on sequential quadratic programming and
trust regions [8, 9]), and Biegler and Wächter’s IPOPT [51] which employs an inte-
rior point method with a filter line-search. IPOPT has been adopted as a COIN-OR
project (Computational Infrastructure for Operations Research); performance data
often shows IPOPT with the best performance among the NLP solvers.

3. Overview of PASA. As discussed in the introduction, PASA has two phases:
gradient projection iterations over the entire polyhedron in phase one and projected
(conjugate) gradient iterations in phase two to optimize over faces of the polyhedron.
To choose between the two phases, we compare the violation of the local optimality
conditions for the global problem (1.1) to the violation in the optimality conditions on
the current face of the polyhedron (the local problem). An estimate of the violation
in the optimality conditions for the global problem is given by

E(x) = ‖PΩ(x−∇f(x)) − x‖,

where PΩ denotes the Euclidean norm projection given by

PΩ(x) := argmin
y

{‖x− y‖2 : y ∈ Ω}.(3.1)

Recall [40, P7] that E(x) = 0 if and only if x is a stationary point for the global
problem (1.1). After a change of variables, we obtain

E(x) = ‖y(x)‖ where y(x) = argmin
y

{‖y+∇f(x)‖ : y ∈ Ω− x}.(3.2)

Thus the global error at x is the projection of the negative gradient −∇f(x) onto the
shifted polyhedron Ω− x.

Suppose that Ω is expressed in the form (1.2), and for any feasible point x, let
A(x) denote the active (binding) constraints:

A(x) = {i : (Ax− b)i = 0}.

The active manifold at x is

M(x) = x+N (AB), B = A(x),

where AB is the submatrix of A corresponding to row indices in A(x) and N (AB) is
the null space of AB . The local problem corresponding to the active manifold at x is

min f(z) subject to z ∈M(x).(3.3)
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Fig. 3.1. Global error E(x) versus local error e(x).

By (3.2) with Ω replaced byM(x), x is a stationary point for the local problem (3.3)
if and only if e(x) = 0 where

e(x) = ‖yB(x)‖, yB(x) = argmin
y

{‖y+∇f(x)‖ : ABy = 0}.

Thus the local error bound at x is the projection of the negative gradient −∇f(x)
onto N (AB).

A simple illustration of the local and global errors is given in Figure 3.1. The
set Ω is the upper half-space and the point x lies on the boundary of Ω. Since the
negative gradient at x points into Ω, E(x) is simply the norm of the negative gradient.
The active manifold is the horizontal axis, and e(x) is the projection of the negative
gradient onto the horizontal axis.

In implementing PASA, we choose a parameter θ ∈ (0, 1), and then operate in
either phase one or phase two as indicated in Algorithm 3.2.

Parameters: θ ∈ (0, 1), τ ∈ (0,∞), start guess x0 ∈ R
n

Initialization: x1 = PΩ(x0), k = 1
Phase one: While E(x) > τ, execute phase one

Possibly reduce θ
If e(xk) ≥ θE(xk), goto phase two;

else k← k + 1.
End

Phase two: While E(x) > τ, execute phase two

Possibly reduce θ
If e(xk) < θE(xk), goto phase one;

else k← k + 1.
End

Alg. 3.2. Sketch of Polyhedral Active Set Algorithm (PASA).

As seen in Algorithm 3.2, the branching between the two phases of PASA is
based on a comparison between E and e at the current iterate xk. Regardless of the
adjustments to θ, it is shown in [44] that

lim inf
k→∞

E(xk) = 0,

whenever the algorithm in phase two satisfies the conditions (P1)–(P3) given below in
Section 5. Moreover, under either a nondegeneracy or strong second-order sufficient
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Fig. 4.1. Sketch of the gradient projection algorithm.

optimality with linear independence of the active constraint gradients, the iterates
of PASA are only generated by phase two when k is sufficiently large. To achieve
this stronger property, an adjustment was made in [44] of the form θ ← µθ, µ ∈
(0, 1), whenever the “undecided index set was empty” in phase one. The undecided
indices corresponded to constraints for which the associated multipliers were either
sufficiently positive or the constraint was sufficiently active. Determining whether
the undecided index set was empty required an additional projection which detracted
from the efficiency of PASA. Note that any update to θ in phase one which drives it
to zero guarantees that the iterates are generated by phase two asymptotically under
the condition given above. Since phase one often branches to phase two after a single
iteration, a practical approach for driving θ to zero when too much time is spent in
phase one is to decrease θ whenever more than one iteration is performed in phase
one.

4. Phase One. The version of the gradient projection algorithm that we utilize
is depicted in Figure 4.1. At the current iterate xk, a step of length αk is taken along
the negative gradient −gk = −∇f(xk) to reach a point xk, whose projection onto
the polyhedron Ω is PΩ(xk). A line search is performed along the search direction
dk = PΩ(xk) − xk to obtain the next iterate xk+1. Our choice for the stepsize αk

is based on the BB formula [3] with a cyclic implementation which is explained in
[14]. In a cyclic implementation, the stepsize is kept fixed in some iterations (that is,
αk+1 = αk), while in other iterations, it is given by the BB formula. As shown in
[14], a cyclic implementation can lead to better performance.

Our version of the gradient projection algorithm is similar to the version in SPG
[4] since the line search is along the line segment connecting xk to the projected
point PΩ(xk). There is another version of the gradient projection method in which
xk+1 = PΩ(xk − sk∇f(xk)) where the stepsize sk is chosen to satisfy both a descent
condition and a condition to ensure the sk is not too small; for example, see [5, 6, 7]
and the references therein. For this scheme, the active constraints at a minimizer
can be identified in finite number of iterations under suitable assumptions, however,
more than one projection may be needed to determine an acceptable step. Although
the gradient projection algorithm implemented in PASA may not identify the active
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Parameters: δ and η ∈ (0, 1), αk ∈ (0,∞)

While E(xk) > max {τ, e(xk)/θ}

1. dk = PΩ(xk − αkgk)− xk

2. sk = ηj where j ≥ 0 is smallest integer such that

f(xk + skdk) ≤ f r
k + skδ∇f(xk)dk

3. xk+1 = xk + skdk and k ← k + 1

End

Alg. 4.2. Phase one (gradient projection algorithm).

constraints, we show in [44, Lemma 6.2] that the violation in the active constraints is
on the order of the squared error in the iterate xk.

The line search implemented in PASA, shown in Algorithm 4.2, is of Armijo type
[2]. If f r

k = f(xk), then this is an ordinary Armijo line search restricted to the feasible
set Ω. However, the implemented line search is nonmonotone, such as in [29], but with
a more sophisticated choice of f r

k , based on the procedure given in the appendix of
[40]. Also, to avoid potential breakdown of the line search in a neighborhood of
an optimum, an approximate (but more accurate) line search is used near a local
minimizer; see the approximate Wolfe line search in [38].

5. Phase Two. Next, we discuss the requirements of the active set algorithm
in phase two. According to the theory developed in [44], any algorithm with the
following properties can be used in phase two:

P1. For each k, xk ∈ Ω and f(xk+1) ≤ f(xk).
P2. For each k, A(xk) ⊂ A(xk+1).
P2. If A(xj+1) = A(xj) for j ≥ k, then lim inf

j→∞

e(xj) = 0.

The current gradient-based implementation of PASA combines an active set gradient
projection algorithm with a projected version of the conjugate gradient method. Let
us define the set

Ωk = {x ∈ Ω : (Ax − b)i = 0 for all i ∈ A(xk)}.

By an active set gradient projection algorithm (A-GP), we mean that

xk+1 = xk + skdk, where dk = PΩk
(xk − αkgk)− xk.

This is the gradient project step of Algorithm 4.2 except that Ω is replaced by Ωk.
Since the new iterate xk+1 may have additional active constraints, we have A(xk) ⊂
A(xk+1). As long as phase two does not reach one of the termination conditions in
Algorithm 3.2 and A(xk) is strictly contained in A(xk+1), A-GP continues to operate.
At any iterate xk where A(xk) = A(xk−1), we switch in phase two from A-GP to the
projected conjugate gradient scheme, which is now explained.

Let Ak denote the submatrix of A associated with the active constraint gradients
at xk, and let Pk ∈ R

n×n denote the orthogonal projection onto the null spaceN (Ak).
If xk is the iterate of the A-GP where A(xk) = A(xk−1), then we apply the limited
memory CG DESCENT method [43] to the unconstrained optimization problem

min {f(xk +Pky) : y ∈ R
n},(5.1)
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While e(xk)/θ ≥ E(xk) > τ

1. Perform A-GP until A(xk) = A(xk−1), then branch to step 2.

2. Apply limited memory CG DESCENT to (5.1); branch to

step 1 when reaching xk+1 on the boundary of Ω and k ← k + 1.

End

Alg. 5.1. Phase two (A-GP and CG DESCENT).

starting from y0 = xk. Whenever an iterate yj+1 lies outside of Ω, we let xk+1 be
the last point on the line segment from yj to yj+1 with the property that xk+1 ∈ Ω.
A-GP continues from the new iterate xk+1. Phase two is summarized in Algorithm 5.1

A stability issue arises when applying the conjugate gradient method to the un-
constrained problem (5.1). Theoretically, the projection can be expressed as

Pk = I−AT

k (AkA
T

k )
−1Ak,

where the inverse should be replaced by a pseudoinverse when the rows of Ak are
linearly dependent, and Pk is a positive semidefinite matrix. The routine PPROJ,
used in phase one computes the factorization

AkA
T

k + σI = LDLT,

where σ > 0 is relatively small, L is lower triangular with ones on the diagonal, and
D is diagonal. This leads us to replace Pk in (5.1) by its approximation

P̃k = I−AT

k (AkA
T

k + σI)−1Ak = I−AT

k (LDL)−TAk,

a positive definite matrix.
Since our goal is to optimize the objective over x = xk +Pky, it is convenient to

formulate the algorithm for solving (5.1) in terms of x rather than in terms of y. In
particular, when the iterates are given by the CG DESCENT family parameterized
by η > 1/4, the search directions are (see [43, Sect. 2])

d0 = −P̃2
kg0, dk+1 = −P̃2

kgk+1 + βkdk for k ≥ 0,(5.2)

where gk = ∇f(xk) and

βk =
yT

k P̃
2
kgk+1

dT

kyk

− η
‖P̃kyk‖2

dT

kyk

dT

kgk+1

dT

kyk

, yk = gk+1 − gk.(5.3)

Even though P̃k is an approximation to Pk and P2
k = Pk, the replacement of

P̃2
k by P̃k leads to very poor performance. Moreover, when we compute the search

directions by the formula (5.2), the iterates quickly lose feasibility. The reason is that
the component of the error in dk pointing out of N (Ak) is added into dk+1 in (5.2),
and these errors in the search direction can accumulate. The following iteration is
equivalent to (5.2) and numerically stable since dk+1 is the product of an intermediate

vector Dk+1 with P̃k which removes error components orthogonal to the null space
of Ak:

D0 = −P̃kg0, Dk+1 = −P̃kgk+1 + βkDk, dk+1 = P̃kDk+1 for k ≥ 0.(5.4)
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6. Results. We compare the performance of PASA Version 2.0.0 to the perfor-
mance of IPOPT Version 3.14.5 using the CUTEst platform [28], and polyhedral
constrained optimization problems from CUTEst along with the Maros/Meszaros
quadratic programming test set. IPOPT can operate in a gradient-based mode,
where the Hessian of the Lagrangian in the KKT system is approximated by a limited
memory quasi-Newton method (L-BFGS), and a Hessian-based mode where both the
gradient and Hessian of the objective and the constraints are provided, and a di-
rect solver is used for the linear systems. We installed both of the recommended
linear solvers: MUMPS 5.4.1 and the HSL software, which includes MA57, Version
3.11.0. When IPOPT was run, it always chose the MUMPS linear solver. In compar-
isons between the gradient and Hessian-based IPOPT, the Hessian-based version per-
formed much better. Hence, our comparisons are with Hessian-based IPOPT. Note
that comparisons between the Hessian-based PASA (currently under development)
and the gradient-based PASA also indicate that Hessian-based PASA is superior to
gradient-based PASA.

In selecting the problem set for the numerical experiments, 42 of the QPs from
CUTEst were excluded. The names of these problems begin with the letter A followed
by either 0 or 2 or 5. There were two issues with this subset of the CUTEst test set.
First, in many cases, the starting point is essentially a stationary point, and gradient-
based PASA immediately terminates. Second, these problems have between 15,000
and 20,000 linear constraints, and a small number of dense columns. Due to the
dense columns, the matrix AAT is dense with dimension between 15,000 and 20,000.
To handle these problems efficiently, the dense columns need to be removed and
processed using a Woodbury update [31]. We have not yet had time to incorporate
Woodbury updates in PASA. Moreover, if the Woodbury updates were incorporated
in the code, termination may occur at the starting point, and the problem would be
excluded by the rules given in the next paragraph. Note that the Hessian-based PASA
should handle these problems without difficulty since the KKT system has a sparse
factorization.

After these exclusions, we start with 655 problems which we tried to solve to
the accuracy tolerance 1.e−6. If the objective values computed by each solver agreed
to 4 significant digits, then we accepted the problem. If 4 digit agreement was not
achieved, then we examined the computed solutions. If the solvers were converging to
different solutions, then we removed the problem from the test set; in other words, we
focused on problems where both solvers started from the same initial guess and reached
the same solution. There were 75 problems where the solvers converged to different
solutions. In 38 cases, the solution computed by IPOPT had a better objective value,
and in 37 cases, the solution computed by PASA had a better objective value. Note
that among the 38 cases where IPOPT had a better objective value, it was observed
that in a number of these cases, the starting guess was essentially a stationary point,
and PASA stopped immediately, while the Hessian-based IPOPT did not stop at the
starting point. Both solvers, however, are only guaranteed to converge to a stationary
point.

After pruning the 75 problems where the solvers converged to different solutions,
there were 580 remaining test problems. If the objective values disagreed by more
than 4 significant digits but the solvers were converging to the same solution, we then
adjusted the accuracy tolerance of the less accurate solver so as to achieve comparable
accuracy to that of the more accurate solver. In these cases where one solver was
more accurate than the other, we found that the PASA estimate E(x) for the solution
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Fig. 6.1. Wall time performance profiles for general, unconstrained, and linear programs
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Fig. 6.2. Wall time performance profiles for bound, quadratic, and composite programs

tolerance resulted in a more accurate objective value in most cases. When the accuracy
tolerance of IPOPT was adjusted to match the accuracy of PASA, often just one or
two more iterations were needed. When a solver was unable to achieve the accuracy
tolerance 1.e−6 for a problem, its computing time was set to ∞.

The performance of the gradient-based PASA and Hessian-based IPOPT are com-
pared using wall time. Note that Hessian-based algorithms such as either IPOPT or
the Hessian-based PASA, typically require fewer iterations and evaluations (function,
gradient, and Hessian) when compared to the gradient-based PASA. The trade-offs
between convergence rate of an algorithm and evaluation time are not studied in this
paper, instead we focus on wall time. The run data is available at:

https://people.clas.ufl.edu/hager/files/IPOPTresults.txt
https://people.clas.ufl.edu/hager/files/PASAresults.txt

Both solvers exploit multiple processors when matrices are factored and linear
systems are solved. The software was run on a Lenovo ThinkPad with 8 Intel i7-
865U CPUs operating at 1.90GHz (4 cpu cores) with 8,192 KB cache and 16 GB
memory. The operating system was Ubuntu Linux with Intel’s MKL (Math Kernel
Library) BLAS. PASA used the timer gettimeofday with microsecond accuracy, while
IPOPT appears to use the timer ftime with millisecond accuracy (embedded inside
the function IpCoinGetTimeOfDay).

Figures 6.1–6.2 plot the wall time performance profiles for the two codes. The
vertical axis gives the fraction P of problems for which any given method is within a
factor τ (horizontal axis) of the best time. The top curve is the method that solved the
most problems in a time that was within a factor τ of the best time. The percentage
of the test problems for which a method is fastest is given on the left axis of the
plot. The right side of the plot gives the percentage of the test problems that were
successfully solved by each of the methods. In essence, the right side is a measure of
an algorithm’s robustness.

In preparing the plots, the problems in the test set were partitioned into 5 groups:
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linear and quadratic programs denote polyhedral constrained problem for which the
objective is linear or quadratic respectively. General problems have nonquadratic
nonlinear objectives with additional linear and possibly bound constraints. Bound
constrained problems have nonquadratic nonlinear objectives and only bound con-
straints. Unconstrained problems have nonquadratic nonlinear objectives without
constraints. The composite problems are the union of all 5 groups. Based on the
plots, gradient-based PASA performed relatively well on this collection of test prob-
lems where function and gradient evaluations are relatively cheap; the cost of the
linear algebra in IPOPT for solving the linear systems of equations outweighed the
savings associated with a lower number of evaluations.

When a problem is unconstrained, E(x) = e(x) and since θ < 1, PASA imme-
diately branches to phase two, where it remains until the convergence tolerance is
satisfied. Hence, the performance on unconstrained problems essentially reflects the
performance of limited memory CG DESCENT [43]. For bound constrained problems,
PASA’s local and global error estimators e(x) and E(x) reduce to the same estima-
tors that were used in the algorithm [40] for bound constrained problems. Hence, the
performance on bound constrained problem essentially reflects the performance of the
active set algorithm [40]. Linear programs are solved in PASA by a series of gradient
projection steps, where the stepsize choice is crucial. The performance corresponds
to the first-order algorithm in [19]. Details will be provided in a separate paper.

7. Conclusion. A gradient-based implementation of the Polyhedral Active Set
Algorithm (PASA) was presented. The algorithm was composed of two phases, the
gradient projection algorithm was used in phase one, while phase two optimized the
objective over faces of the polyhedron. Branching between phases was determined by
the relationship between local and a global error estimators e and E respectively. At
a feasible point x for the polyhedron, we branch from phase one to phase two when
e(x) ≥ θE(x), where θ ∈ (0, 1) is a given parameter; we branch from phase two to
phase one when e(x) < θE(x). With suitable adjustments to θ, the iterates perform
phase two asymptotically. It was found that PASA had significantly better wall time
performance when compared to IPOPT using a collection of 580 test problems taken
from both CUTEst and the Maros/Meszaros quadratic programming test set. Even
though Hessian-based IPOPT used significantly fewer evaluations of the objective and
gradient when compared to gradient-based PASA, the time for the linear algebra in
IPOPT outweighed the savings derived from the fewer evaluations in the test set.

8. Acknowledgements. The assistance of Nicholas Gould and Dominique Or-
ban in configuring CUTEst to enable its operation with PASA was greatly appreci-
ated.
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[7] J. V. Burke, J. J. Moré, and G. Toraldo, Convergence properties of trust region methods

for linear and convex constraints, Math. Prog., 47 (1990), pp. 305–336.
[8] R. Byrd, J. Nocedal, and R. A. Waltz, Knitro: An integrated package for nonlinear opti-

mization, in Large-Scale Nonlinear Optimization, G. di Pillo and M. Roma, eds., Springer-
Verlag, 2006, pp. 35–59.

[9] R. H. Byrd, M. E. Hribar, and J. Nocedal, An interior point method for large scale non-
linear programming, SIAM J. Optim., 9 (1999), pp. 877–900.

[10] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, Algorithm 887: CHOLMOD,
supernodal sparse Cholesky factorization and update/downdate, ACM Trans. Math. Soft-
ware, 35 (2009), pp. 22:1–14.

[11] A. R. Conn, N. I. M. Gould, and P. L. Toint, Global convergence of a class of trust region
algorithms for optimization with simple bounds, SIAM J. Numer. Anal., 25 (1988), pp. 433–
460.

[12] , An introduction to the structure of large scale nonlinear optimization problems and
the LANCELOT project, in Computing Methods in Applied Sciences and Engineering,
R. Glowinski and A. Lichnewsky, eds., Philadelphia, 1990, SIAM, pp. 42–54.

[13] , LANCELOT: a Fortran Package for Large-scale Nonlinear Optimization (Release A),
Springer, 1992.

[14] Y. H. Dai, W. W. Hager, K. Schittkowski, and H. Zhang, The cyclic Barzilai-Borwein
method for unconstrained optimization, IMA J. Numer. Anal., 26 (2006), pp. 604–627.

[15] T. A. Davis and W. W. Hager, Modifying a sparse Cholesky factorization, SIAM J. Matrix
Anal. Appl., 20 (1999), pp. 606–627.

[16] , Multiple-rank modifications of a sparse Cholesky factorization, SIAM J. Matrix Anal.
Appl., 22 (2001), pp. 997–1013.

[17] , Row modifications of a sparse Cholesky factorization, SIAM J. Matrix Anal. Appl., 26
(2005), pp. 621–639.

[18] , Dual multilevel optimization, Math. Program., 112 (2008), pp. 403–425.
[19] , A sparse proximal implementation of the LP Dual Active Set Algorithm, Math. Pro-

gram., 112 (2008), pp. 275–301.
[20] , Dynamic supernodes in sparse Cholesky update/downdate and triangular solves, ACM

Trans. Math. Software, 35 (2009), pp. 27:1–23.
[21] T. A. Davis, W. W. Hager, and J. T. Hungerford, An efficient hybrid algorithm for the

separable convex quadratic knapsack problem, ACM Trans. Math. Software, 42 (2016),
pp. 22:1–22:25.

[22] R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Math.
Program., 91 (2002), pp. 239–270.

[23] R. Fletcher, S. Leyffer, and P. L. Toint, On the global convergence of a filter-SQP algo-
rithm, SIAM J. Optim., 13 (2002), pp. 44–59.

[24] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algorithm for large-scale
constrained optimization, SIAM Review, 47 (2005), pp. 99–131.

[25] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, User’s Guide for LSSOL
(Version 1.0), Tech. Rep. Report No. 86-1, Stanford University, Department of Operations
Research, Stanford, CA, 1986.

[26] , User’s Guide for NPSOL (Version 4.0): A Fortran Package for Nonlinear Program-
ming, Tech. Rep. Report No. 86-2, Stanford University, Department of Operations Re-
search, Stanford, CA, 1986.

[27] P. E. Gill, M. A. Saunders, and E. Wong, An SQP method for medium-scale nonlinear
programming, Tech. Rep. CCoM 16-2, Center for Computational Mathematics, Department
of Mathematics, University of California, La Jolla, California, 2016.

[28] N. I. M. Gould, D. Orban, and P. L. Toint, CUTEst: a constrained and unconstrained
testing environment with safe threads for mathematical optimization, Comput. Optim.
Appl., 60 (2015), pp. 545–557.

[29] L. Grippo, F. Lampariello, and S. Lucidi, A nonmonotone line search technique for New-
ton’s method, SIAM J. Numer. Anal., 23 (1986), pp. 707–716.

[30] W. W. Hager, Dual techniques for constrained optimization, J. Optim. Theory Appl., 55
(1987), pp. 37–71.

[31] , Updating the inverse of a matrix, SIAM Review, 31 (1989), pp. 221–239.
[32] , The dual active set algorithm, in Advances in Optimization and Parallel Computing,

P. M. Pardalos, ed., North Holland, Amsterdam, 1992, pp. 137–142.
[33] , Analysis and implementation of a dual algorithm for constrained optimization, J. Op-

tim. Theory Appl., 79 (1993), pp. 427–462.



12 J. D. DIFFENDERFER, W. W. HAGER, AND H. ZHANG

[34] , The LP dual active set algorithm, in High Performance Algorithms and Software in
Nonlinear Optimization, R. D. Leone, A. Murli, P. M. Pardalos, and G. Toraldo, eds.,
Dordrecht, 1998, Kluwer, pp. 243–254.

[35] , The dual active set algorithm and its application to linear programming, Comput.
Optim. Appl., 21 (2002), pp. 263–275.

[36] , The dual active set algorithm and the iterative solution of linear programs, in Novel
Approaches to Hard Discrete Optimization, P. M. Pardalos and H. Wolkowicz, eds., vol. 37,
Fields Institute Communications, 2003, pp. 95–107.

[37] W. W. Hager and D. W. Hearn, Application of the dual active set algorithm to quadratic
network optimization, Comput. Optim. Appl., 1 (1993), pp. 349–373.

[38] W. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and
an efficient line search, SIAM J. Optim., 16 (2005), pp. 170–192.

[39] , Algorithm 851: CG DESCENT, a conjugate gradient method with guaranteed descent,
ACM Trans. Math. Software, 32 (2006), pp. 113–137.

[40] , A new active set algorithm for box constrained optimization, SIAM J. Optim., 17 (2006),
pp. 526–557.

[41] , Recent advances in bound constrained optimization, in System Modeling and Optimiza-
tion, Proceedings of the 22nd IFIP TC7 Conference, Turin, Italy, July 18–22, 2005, Turin,
Italy, F. Ceragioli, A. Dontchev, H. Furuta, K. Marti, and L. Pandolfi, eds., Springer, 2006,
pp. 67–82.

[42] , A survey of nonlinear conjugate gradient methods, Pacific J. Optim., 2 (2006), pp. 35–
58.

[43] , The limited memory conjugate gradient method, SIAM J. Optim., 23 (2013), pp. 2150–
2168.

[44] , An active set algorithm for nonlinear optimization with polyhedral constraints, Sci.
China Math., 59 (2016), pp. 1525–1542.

[45] , Projection onto a polyhedron that exploits sparsity, SIAM J. Optim., 29 (2016),
pp. 1773–1798.

[46] B. A. Murtagh and M. A. Saunders, Large-scale linearly constrained optimization, Math.
Prog., 14 (1978), pp. 41–72.

[47] , A projected Lagrangian algorithm and its implementation for sparse nonlinear con-
straints, Math. Prog. Study, 16 (1982), pp. 84–117.

[48] , MINOS 5.0: User’s Guide, Tech. Rep. Report No. 83-20R, Stanford University, De-
partment of Operations Research, Stanford, CA, 1987.

[49] S. M. Robinson, A quadratically-convergent algorithm for general nonlinear programming
problems, Math. Prog., 3 (1972), pp. 145–156.

[50] R. J. Vanderbei and D. F. Shanno, An interior-point algorithm for nonconvex nonlinear
programming, Comput. Optim. Appl., 13 (1999), pp. 231–252.
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