
SUITEOPT 2.0.0, FEBRUARY 15, 2022

WILLIAM W. HAGER

UNIVERSITY OF FLORIDA

1. Introduction. SuiteOPT is a software package that currently solves problems
of the form

min f(x) subject to bl ≤ Ax ≤ bu, lo ≤ x ≤ hi. (P)

Here A ∈ R
m×n, bl and bu ∈ R

m, and lo and hi ∈ R
n. There are four different

packages contained in SuiteOPT.

1. PPROJ: Given y ∈ R
n, PPROJ uses the algorithm of [20] along with the Dual

Active Set Algorithm [5, 6, 10, 11, 12, 13, 14, 15], and techniques for updating
and downdating a sparse Cholesky factorization [1, 2, 3, 4, 7], to solve the
projection problem

min ‖y − x‖2 subject to bl ≤ Ax ≤ bu, lo ≤ x ≤ hi.

2. NAPHEAP: Given a ∈ R
n and a diagonal matrix D with nonnegative diagonal,

NAPHEAP uses the Newton/heap-based algorithm of [8] to solve the problem

min

(

1

2

)

xTDx− cTx subject to bl ≤ aTx ≤ bu, lo ≤ x ≤ hi.

3. CG DESCENT: The algorithms of [16, 17, 18] are used to solve an unconstrained
optimization problem by the conjugate gradient method.

4. PASA: The polyhedral active set algorithm uses the framework of [19] to
combine the previous algorithms and solve a general problem of the form
(P).

Since the update and downdate techniques used by PPROJ are contained in the
CHOLMOD package of Timothy A. Davis’ SuiteSparse, the relevant parts of SuiteS-
parse were extracted to form the directory SuiteSparseX, which is included in the
SuiteOPT software. Although there are four different solvers, they can all be ac-
cessed through PASA; that is, the PASA software will analyze the problem structure
and determine which of the solvers, or combination of solvers, should be used to solve
the given problem.

There are three different interfaces to the software:

(a) Since the codes are written in C, they can be invoked inside a C code.
(b) Problems can be formulated and solved using MATLAB.
(c) There is an interface through the CUTEst (Constrained and Unconstrained

Testing Environment with Safe Threads) platform of Gould, Orban, and Toint
[9].

We now explain how to install and use the software. Regardless of the software
interface, an important parameter when setting up a problem is the number infinity.
Floating point infinity is defined in SuiteOPTconfig/SuiteOPTconfig.h based on
ANSI C99 and C90 standards. This definition is consistent with MATLAB’s infinity,
“inf”. If the variable xi has no upper bound, then in C, the user would set “hi [i] =

SuiteOPTinf”, while in MATLAB “hi(i) = inf”. If all the components of x have no
upper bound, then leave hi undefined. Lower bounds are treated in a similar fashion,

1

but with hi replaced by lo and with infinity replaced by minus infinity. As explained
below, the user can override the default definition of infinity in the Userconfig.mk

file,

2. Installation and Use in MATLAB. Startup MATLAB in the directory
SuiteOPT/MATLAB. In the command window, type “make” and follow the instructions.
To use a solver in MATLAB, a structure must be constructed that contains the
problem data and any changes to the default parameter values. If Data denotes an
input data structure associated with a solver, then the command to solve a problem
is simply

x = solver name (Data) ;

where solver name is either pasa, pproj, cg descent, or napheap.
The important elements of the input data structure that the user may wish to

modify are described in a readme.m file in the solver’s MATLAB subdirectory. In
MATLAB, type “help readme” to view the file. By default, when an element of the
problem data structure is not present, the code assumes that the associated constraint
does not exist. In other words, if the constraint x ≤ hi does not exist and data

denotes the input data structure for a solver, then do not specify a value for the data
element data.hi. Often, there is no need to specify dimensional information such as
data.nrow and data.ncol, the number of rows and columns for the matrix A in (P),
since MATLAB usually learns the dimensions when the matrix is created.

For the definitions of the default parameters associated with a solver, see the
default.c file in the Source directory for the solver. For any of the solvers except
pasa, the value of a parameter is changed using a statement of the form

data.parameter = (new value) ;
where data is the input data structure for the solver and parameter is the name of
the parameter whose value is to be changed. On the other hand, since pasa uses all
the solvers, the corresponding statement is

pasadata.solver.parameter = (new value) ;
where solver is either pasa, pproj, napheap, or cg. See the demo files in the subdi-
rectories

SuiteOPT/PASA/MATLAB,
SuiteOPT/PPROJ/MATLAB,
SuiteOPT/CGDESCENT/MATLAB, and
SuiteOPT/NAPHEAP/MATLAB

for examples showing how to set up a problem.

3. The User Configuration File, and Compilation and Use in C. If
SuiteOPT is used in C or CUTEst, then a file

SuiteOPTconfig/Userconfig.mk

must be provided with the following information:

(1) The C compiler denoted CC.
(2) The optimization flags denoted OPTFLAGS.
(3) A specification of the BLAS and LAPACK routines, and possibly the path

to the BLAS.
(4) Possibly a new definition for floating point infinity.

The file Userconfig.mk contains examples showing how to set up the User’s configu-
ration file. Since the BLAS are crucial for the efficiency of the algorithms, a word of
caution if OpenBLAS are used. SuiteSparse Version 5.4 employs OpenMP threading,

2

and the OpenBLAS routine DGEMM, which is used in supernodal Cholesky factoriza-
tions, can be very slow with OpenMP threading. Hence, if the OpenBLAS are used,
it is recommended to not use the supernodal routines; this is achieved by adding to
OPTFLAGS the option “-DNSUPER”. Alternatively, the user can employ a different
version of the BLAS that may work better with OpenMP threading, such as Intel’s
MKL (Math Kernel Library) BLAS. The Userconfig.mk file contains examples show-
ing how to set up this file. Note that “cmake” is needed to compile SuiteSparse, and
the BLAS may also require gfortran and pthread.

Once the Userconfig.mk file is set up, the SuiteOPT C codes can be compiled
from the top level SuiteOPT directory by typing “make”. A specific solver from
SuiteOPT can be compiled from the top level directory by typing “make solver”,
where solver is either pasa, cg, napheap, or pproj. Alternatively, navigate to the
subdirectory for the solver, and type “make”.

The codes in the Demo subdirectories all have the layout shown below. Here,
{solver} should be replaced by either pasa, cg, napheap, or pproj. The “solver name”
is either pasa, pproj, napheap, or cg descent.

/* Create the data structure for the solver */

Data = solver setup () ;

/* where ‘‘solver’’ is pasa, pproj, napheap, or cg */

/* Store problem information in Data structure */

Data.lo = . . . ;

/* Solve the problem */

solver name (Data) ;

/* replace solver name by pasa, pproj, napheap, or cg descent */

/* Extract solution from Data structure */

for (j = 0; j < ncol; j++) printf ("x [%i] = %e\n", j, Data.x [j]) ;

/* Terminate the problem */

{solver} terminate (&Data) ;

4. Installation and Use in CUTEst. To install either pasa or cg descent

in CUTEst, the user must first download and install the CUTEst package. If an
existing version of CUTEst is already installed, be sure to update to a version after
August, 2019, since CUTEst was modified at that date to enable use with SuiteOPT.
Currently, CUTEst can be downloaded from

https://github.com/ralna/CUTEst/wiki

Install the packages archdefs, cutest, and sifdecode, as well as the CUTE library of
test problems. After installing CUTEst, be sure to set the environment variables
that are highlighted during the installation process. The two variables needed by
SuiteOPT are CUTEST, which is the full path to the location of your cutest directory,
and MYARCH, which is a string providing information about your operating system
and computer architecture. After setting up CUTEst, add two new lines to the file
$CUTEST/bin/sys/$MYARCH to provide your BLAS and LAPACK information.
This same information appears in the Userconfig.mk file except that quotation marks
should be inserted around the libraries:

3

BLAS=". . . -lgfortran -lpthread"

LAPACK=". . ."

Another environment variable that needs to be set is LD LIBRARY PATH. This
variable should include the full path to the ldlibs directory at the top level of
SuiteOPT. The command for setting up the environment variable is something like
the following (the full path name should be in quotes):

setenv LD LIBRARY PATH ’path’

If there are multiple paths in the load library, then each path is separated by a colon.
Once this setup is complete, the installation of pasa and cg descent in CUTEst

is completed by typing “make cute” in the top level directory of SuiteOPT. As the
codes are compiled and installed into CUTEst, the following two files are created:

SuiteOPT/CGDESCENT/CUTEst/runcutest

SuiteOPT/PASA/CUTEst/runcutest.

These files contain aliases for running either pasa or cg descent in CUTEst. If these
aliases are placed in a file such as “.cshrc” or “.bashrc” that is executed at startup,
then the aliases can be used in any window that is opened subsequently. The command
for solving a polyhedral constrained optimization problem PROB.SIF using the PASA
alias is “pasarun PROB”. If the problem is unconstrained, then it could also be solved
using the command “cgrun PROB”; in either case, when the problem is unconstrained,
it is solved using cg descent.

New values for the pasa parameters can be inserted in

SuiteOPT/PASA/CUTEst/pasa main.c

right before execution of the call to pasa. New values for the CG DESCENT param-
eters can be inserted right before the call to “cg descent” in

SuiteOPT/CGDESCENT/CUTEst/cg descent main.c.

When new parameter values are set, the pasa main.c or the cg descent main.c codes
should be recompiled by typing “make” in their respective CUTEst subdirectories.

5. Parameters. The names of the parameters, their definitions, and their de-
fault values can be found in the source directory file whose name ends in default.c.
When the setup code for any solver is executed, it not only creates the input data
structure for the solver, but it also initializes the parameters to their default values.
Thus after running the setup code and before executing the associated solver, any of
the default parameter values can be changed. Examples showing how to set param-
eters in C appear in the Demo directory for any solver. As an illustration, suppose
we wish to change the convergence tolerance for cg descent from its default value
1.e-06 to 1.e-08. If cgdata denotes the output of cg setup, then the statement

cgdata->Parm->grad tol = 1.e-08 ;

resets the convergence tolerance to 1.e-08.
The solver pasa could potentially utilize any of the solvers pproj, cg descent,

or napheap. Some parameters, such as grad tol, are propagated from pasa to the
other solvers. Other parameters, however, are uniquely associated with a solver. For

4

example, if cg descent is used in the subspace optimization by pasa, then the user
may wish to change the value of LBFGS memory from its default value 11, to say 15.
If pasadata denotes the output of the pasa setup code, then the statement

pasadata->Parms->cg->LBFGSmemory = 15 ;

resets the LBFGS memory to 15. The four elements of the Parms structure are pasa,
cg, pproj, and napheap.

Resetting parameters in MATLAB is different and easier when compared to C. In
MATLAB, one builds a structure with the non-default elements of the solver’s data
structure, and parameters are treated like any other element of the data structure. If
pasadata denotes a structure being built in MATLAB to solve a problem using pasa,
then the following statement resets the LBFGS memory to 15:

pasadata.cg.LBFGSmemory = 15 ;

Essentially, the Parms structure in the C example above is omitted in MATLAB. If
cg descent is used to solve an unconstrained optimization problem in MATLAB and
cgdata denotes the data structure being built, then the statement

cgdata.LBFGSmemory = 15 ;

resets the LBFGS memory to 15.

6. Appendix: Elements of Input Data Structures. This appendix provides
a list of the elements in the solver input data structure that the user may wish to spec-
ify. All of the solvers in SuiteOPT use floating point variables of size SuiteOPTfloat,
which is “double” by default. The integer variables are of size SuiteOPTint, which is
“int” by default. For really big problem, “int” would need to be changed to “long”.
The size of SuiteOPTfloat and SuiteOPTint can be changed in the file

SuiteOPT/SuiteOPTconfig/SuiteOPTconfig.h

Throughout this appendix, SuiteOPTfloat and SuiteOPTint are denoted SF and SI

respectively.

5

Structure: PASAdata

The PASAdata structure is input to pasa when solving an optimization problem of
the form:

min
x

f(x) subject to bl ≤ Ax ≤ bu, lo ≤ x ≤ hi.

Special Cases Treated:

1. Unconstrained optimization, the constraints are not present.

2. Bound constrained optimization, the constraint is lo ≤ x ≤ hi.

3. Linear programming, the objective is linear cTx.

4. A quadratic program, the objective is 0.5xTQx+ cTx.

5. A projection, the objective is ‖y− x‖2, and y is a given vector to project on
the polyhedron.

6. A separable quadratic, where the objective is min 0.5xTDx + cTx subject
to lo ≤ x ≤ hi and bl ≤ aTx ≤ bu, where D is a diagonal matrix with
nonnegative diagonal d and a is a column vector.

NOTE: When the setup code for any solver is run, all the fields of the data structure
are set to either NULL or EMPTY. Elements of the data structure that are not needed
to describe a problem do not need to be touched; the NULL or EMPTY default values
indicate that the data element is not present in the problem.

Name Type Description

nrow SI Number of rows in A if it exists.

ncol SI Number of components in x (= number of cols in

A if it exists).

lambda SF * Size nrow. If parameter use lambda is TRUE,

then lambda points to a starting guess for

the multiplier. If lambda is NULL, then PASA

allocates memory for lambda, and returns in

lambda the multiplier associated with the

constraint bl ≤ Ax ≤ bu. Any allocated memory

is freed by pasa terminate.

x SF * Size ncol. Points to a starting guess for

routines that require one (NAPHEAP, PPROJ, and

the LP solver do not require a starting guess

for x). If NULL, then PASA allocates memory

for x, and if a starting guess is needed, then

it is set to zero. The problem solution is

returned in x. Any allocated memory is freed by

pasa terminate.

lo SF * Size ncol. Lower bound in the constraint

lo ≤ x. NULL implies use −∞ for lower bound.

hi SF * Size ncol. Upper bound in the constraint

x ≤ hi. NULL implies use +∞ for upper bound.

bl SF * Size nrow. Lower bound in the constraint

bl ≤ Ax. NULL implies use −∞ for lower bound.

6

bu SF * Size nrow. Upper bound in the constraint Ax ≤
bu. NULL implies use +∞ for upper bound.

y SF * Size ncol. A vector to be projected onto

polyhedron bl ≤ Ax ≤ bu, lo ≤ x ≤ hi.

A by rows SF * Size nrow*ncol. Numerical entries in A (when

constraint matrix input as a dense matrix).

A by cols SF * Size nrow*ncol. Numerical entries in A (when

constraint matrix input as a dense matrix).

Ti SI * Size Tnz. Row indices of nonzero elements of

A (when constraint matrix input in triples

format).

Tj SI * Size Tnz. Column indices of nonzeros in A.

Tx SF * Size Tnz. Numerical values of nonzeros in A.

Tnz SI Number of entries in Ti, Tj, and Tx.

sym int Only used in triples format. TRUE implies

matrix is symmetric and only element on main

diagonal and on one side are given

Ap SI * Size ncol + 1. Column pointers for A (when

constraint matrix input using sparse matrix

format).

Ai SI * Size Ap [ncol]. Row indices in increasing order

in each column for the nonzeros in A.

Ax SF * Size Ap [ncol]. Numerical entries in A

coresponding to the row indices in Ai.

a SF * Size ncol. The coefficient matrix in the case

where nrow = 1 (dense vector).

d SF * Size ncol. Hessian diagonal when the objective

Hessian is a diagonal matrix.

value function value (SF *f, SF *x, SI ncol) should put the

value of the objective at x in *f (not needed

for a QP)

grad function grad (SF *g, SF *x, SI ncol) should put the

gradient of the objective at x in g (not needed

when for a QP)

valgrad function valgrad (SF *f, SF *g, SF *x, SI ncol) put

the value of the objective at x in *f and the

gradient in g (this routine is optional, but it

can speed up the computations when the objective

and its gradient are computed faster together

than than they are computed separately.

c SF * Size ncol. Linear term when objective is

quadratic or linear.

Hdense SF * Size ncol*ncol. Numerical entries in Hessian of

a QP when Hessian input as a dense matrix.

7

HTi SI * Size Hnz. Row indices of nonzero elements in

Hessian of a QP when Hessian input in triples

format. There is one row index entry for each

nonzero in the matrix.

HTj SI * Size Hnz. Column indices of nonzeros in

Hessian. There is one column index entry for

each nonzero in the matrix.

HTx SF * Size Hnz. Numerical values of nonzeros in

Hessian.

Hnz SI Number of entries in HTi, HTj, and HTx.

Hsym int Only used in triples format. TRUE implies only

element on main diagonal and on one side are

given. FALSE implies that all nonzeros in the

Hessian are given.

Hp SI * Size ncol + 1. Column pointers for Hessian

(when Hessian input using sparse matrix format).

Hi SI * Size Hp [ncol]. Row indices in increasing order

in each column for the nonzeros in Hessian.

Hx SF * Size Hp [ncol]. Numerical entries in Hessian

coresponding to the indices in Hi.

hprod function hprod (SF *p, SF *d, SI *F, SI ncol, SI n)

computes p = H(:, F)*d where H is the ncol by

ncol Hessian of a QP, d has n elements, and F

denotes a collection of n indices contained

in 1:ncol (not needed if the nonzero matrix

elements of the Hessian are provided).

cg prod function cg hprod (SF *p, SF *x, SI ncol) computes p =

H*x where H is the ncol by ncol Hessian of a QP

(not needed if the nonzero matrix elements of

the Hessian are provided).

Parms PASAparms * Contains pointers to four parameter structures

corresponding to solver S = pasa, cg, pproj, or

napheap. Parms->S is the parameter structure

associated with solver S.

Stats PASAstats * Contains pointers to four statistics structures

corresponding to solver S = pasa, cg, pproj,

or napheap. Stats->use S is TRUE if solver S

was used during the run and the statistics for

solver S are found in Stats->S.

xWork SF * NULL (default set in pasa setup) implies that

the code should allocate the floating point

work area, otherwise the user provides a pointer

xWork to the floating point work area.

iWork SI * NULL (default set in pasa setup) implies that

the code should allocate the integer work area,

otherwise the user provides a pointer iWork to

the integer work area.

8

The are three ways to input either the constraint matrix A or the Hessian of a
QP:

1. Using a dense packed array containing the matrix entries. When inputting
the constraint matrix in dense format, both the nrow and ncol elements of
the PASAdata structure should be given.

2. Using a set of three arrays Ti, Tj, and Tx (triples), where Ti stores the row
indices of the nonzero elements, Tj stores the corresponding column indices,
and Tx stores the corresponding nonzero matrix entries.

3. Using a set of three arrays Ap, Ai, and Ax, where Ax is an array contain-
ing the nonzero numerical entries ordered by column of the matrix, Ai is an
array containing the row indices of each nonzero in Ax with the row indices
in increasing order for each column of the matrix, and Ap stores the col-
umn pointers (Ap[j] is the location of the first nonzero in Ax associated with
column j).

The following elements of the PASAdata structure are used internally, and should
not be touched by the user.

Name Type Description

cgdata CGdata * Input data for CG DESCENT

ppdata PPdata * Input data for PPROJ.

napdata NAPdata * Input data for NAPHEAP.

x created SF * Size ncol. Pointer to memory created for

x.

lambda created SF * Size nrow. Pointer to memory created for

lambda.

A created int * TRUE if the constraint matrix A is input

either using triples or dense matrix

formats and Ap, Ai, and Ax were malloc’d

by pasa.

H created int * TRUE if the Hessian of a QP is input

either using triples or dense matrix

formats and Hp, Hi, and Hx were malloc’d

by pasa.

LP int * TRUE if the problem is an LP.

9

Structure: PPdata

The PPdata structure is input to pproj when solving an optimization prob-

lem of the form:

min
x

‖y − x‖2 subject to bl ≤ Ax ≤ bu, lo ≤ x ≤ hi,

where ‖ · ‖ is the Euclidean norm.

Name Type Description

nrow SI Number of rows in A if it exists.

ncol SI Number of components in x (= number of cols in

A if it exists).

lambda SF * Size nrow. If parameter start guess = 3,

then lambda stores the starting guess for

the constraint multiplier. If NULL, then

pproj allocates memory for lambda and returns

in lambda the multiplier for the constraint

bl ≤ Ax ≤ bu. Any allocated memory is freed by

pproj terminate.

x SF * Size ncol. Projection of y on the polyhedral

constraint is stored in x. If NULL, then PPROJ

allocates memory for x. Any allocated memory is

freed by pproj terminate.

lo SF * Size ncol. Lower bound in the constraint

lo ≤ x. NULL implies use −∞ for lower bound.

hi SF * Size ncol. Upper bound in the constraint

x ≤ hi. NULL implies use +∞ for upper bound.

bl SF * Size nrow. Lower bound in the constraint

bl ≤ Ax. NULL implies use −∞ for lower bound.

bu SF * Size nrow. Upper bound in the constraint Ax ≤
bu. NULL implies use +∞ for upper bound.

y SF * Size ncol. A vector to be projected onto

polyhedron bl ≤ Ax ≤ bu, lo ≤ x ≤ hi.

A by rows SF * Size nrow*ncol. Numerical entries in A (when

constraint matrix input as a dense matrix).

A by cols SF * Size nrow*ncol. Numerical entries in A (when

constraint matrix input as a dense matrix).

Ti SI * Size Tnz. Row indices of nonzero elements of

A (when constraint matrix input in triples

format).

Tj SI * Size Tnz. Column indices of nonzeros in A.

Tx SF * Size Tnz. Numerical values of nonzeros in A.

Tnz SI Number of entries in Ti, Tj, and Tx.

sym int Only used in triples format. TRUE implies

matrix is symmetric and only element on main

diagonal and on one side are given

10

Ap SI * Size ncol + 1. Column pointers for A (when

constraint matrix input using sparse matrix

format).

Ai SI * Size Ap [ncol]. Row indices in increasing order

in each column for the nonzeros in A.

Ax SF * Size Ap [ncol]. Numerical entries in A

coresponding to the row indices in Ai.

Parm PPparm * Parameter structure for pproj.

Stat PPstat * Statistics structure for pproj.

ni SI Number of strict inequalities where bl[i] <

bu[i] (set to EMPTY in pproj setup and pproj

evaluates ni during execution).

nsing SI Number of column singletons in A

row sing SI * Size nrow + 1. Pointers connected with column

singletons.

singlo SF * Size nsing. Lower bounds associated with column

singletons.

singhi SF * Size nsing. Upper bounds associated with column

singletons.

singc SF * Size nsing. Cost vector associated with column

singletons.

NOTE: The three methods for inputting the constraint matrix A for pproj are
identical to the three methods used by pasa for input of the constraint matrix.

The following elements of the PPdata structure are used internally, and should
not be touched by the user.

Name Type Description

priordata PPcom Data from a prior run of PPROJ. Used when

computing a series of projections where

y changes, but not the polyhedron. The

prior projection can be used to get a

starting guess for the active constraints

in the new projection.

x created SF * Size ncol. Pointer to memory created for

x.

lambda created SF * Size ncol. Pointer to memory created for

lambda.

A created int * TRUE if Ap, Ai, and Ax created by

pasa read problem.

pproj init done int * FALSE initially, TRUE after running

pproj init.

11

Structure: CGdata

The CGdata structure is input to cg descent when solving an unconstrained opti-
mization problem:

min
x

f(x)

Name Type Description

n SI Problem dimension.

x SF * Size n. Points to a starting guess. If NULL,

then CG DESCENT allocates memory for x and

uses zero for the starting guess. The problem

solution is returned in x. Any allocated memory

is freed by cg terminate.

value function value (SF *f, SF *x, SI n) should put the value

of the objective at x in *f (not required for a

QP).

grad function grad (SF *g, SF *x, SI n) should put the

gradient of the objective at x in g (not needed

required for a QP).

valgrad function valgrad (SF *f, SF *g, SF *x, SI n) should put

the value of the objective at x in *f and the

gradient in g (this routine is optional, but it

can speed up the computations when the objective

and its gradient are computed faster together

than than they are computed separately.

c SF * Size n. Linear term when objective is

quadratic.

Hdense SF * Size ncol*ncol. Numerical entries in Hessian of

a QP when Hessian input as a dense matrix.

HTi SI * Size Hnz. Row indices of nonzero elements in

Hessian of a QP when Hessian input in triples

format. There is one row index entry for each

nonzero in the matrix.

HTj SI * Size Hnz. Column indices of nonzeros in

Hessian. There is one column index entry for

each nonzero in the matrix.

HTx SF * Size Hnz. Numerical values of nonzeros in

Hessian.

Hnz SI Number of entries in HTi, HTj, and HTx.

Hsym int Only used for triples; TRUE implies only element

on main diagonal and on one side are given.

FALSE implies that all nonzeros in the Hessian

are given.

Hp SI * Size ncol + 1. Column pointers for Hessian

(when Hessian input using sparse matrix format).

12

Hi SI * Size Hp [ncol]. Row indices in increasing order

for each column of the Hessian corresponding to

the nonzero matrix elements.

Hx SF * Size Hp [ncol]. Numerical entries in Hessian

coresponding to each element of Hi.

hprod hprod (SF *p, SF *x, SI n) computes p = H*x

where H is the n by n Hessian of the objective

(not needed if the nonmatrix elements are

provided).

Parm CGparm * Parameter structure.

Stat CGstat * Statistics structure.

Work SF * NULL (default set in cg setup) implies that the

code should allocate the floating point work

area, otherwise the user provides a pointer Work

to the floating point work area.

The following elements of the CGdata structure are used internally, and should
not be touched by the user.

Name Type Description

x created SF * Size n. Pointer to memory created for x.

H created int * TRUE if the Hessian of a QP is input

either using triples or dense matrix

formats and Hp, Hi, and Hx were malloc’d

by cg descent.

13

Structure: NAPdata

The NAPdata structure is input to napheap when solving an optimization problem
of the form:

min
x

(

1

2

)

dTx2 − cTx subject to bl ≤ aTx ≤ bu, lo ≤ x ≤ hi,

where d ≥ 0 and x2 is the vector whose entries are the squares of the entries in x.

Special Cases Treated by NAPHEAP:

1. d = 0 (the objective is linear).
2. d > 0 (diagonal of Hessian strictly positive).
3. d ≥ 0 (semidefinite Hessian).
4. d = 1 (all the diagonal element are 1).

NOTE: As always, unused elements of the data structure do not need to be defined.

Name Type Description

n SI Problem dimension (number of components in x).

x SF * Size n. If NULL, then NAPHEAP allocates

memory for x, and returns the problem solution

in x. Any allocated memory is freed by

napheap terminate.

lambda SF Size 1. If lambda is finite, then it is treated

as a starting guess for the multiplier. By

default, lambda = ∞ and the starting guess

is generated internally by the code. At

completion, the computed multiplier is stored

in lambda.

c SF * Size n. Vector for the linear term in the

objective (NULL by default, which implies that

c = 0).

d SF * Size n. Vector for the quadratic term in

the objective (NULL by default, which implies

d = 0).

a SF * Size n. Numerical entries in a, the linear

constraint vector.

blo SF Size 1. Lower bound in the linear constraint.

bhi SF Size 1. Upper bound in the linear constraint.

lo SF * Size n. Lower bound in the constraint lo ≤ x.

NULL implies use −∞ for lower bound.

hi SF * Size n. Upper bound in the constraint x ≤ hi.

NULL implies use +∞ for upper bound.

xWork SF * NULL (default set in napheap setup) implies that

the code should allocate the floating point

work area, otherwise the user provides a pointer

xWork to the floating point work area (max size

5n).

14

iWork SI * NULL (default) implies that the code should

allocate the integer work area, otherwise the

user provides a pointer iWork to the integer

work area (max size 4n + 1).

Parm NAPparm * Parameter structure for napheap.

Stat NAPstat * Statistics structure for napheap.

The following elements of the NAPdata structure are used internally, and should
not be touched by the user.

Name Type Description

x created SF * Pointer to memory created for x.

c created SF * Pointer to memory created for c.

xWork created SF * Pointer to the floating point work area

created during a prior run.

iWork created SI * Pointer to the integer work area created

during a prior run.

akakdk SF sum ak*ak/dk, k = 1:n, from a previous

run.

15

REFERENCES

[1] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, Algorithm 887: CHOLMOD,
supernodal sparse Cholesky factorization and update/downdate, ACM Trans. Math. Soft-
ware, 35 (2009), pp. 22:1–14.

[2] T. A. Davis and W. W. Hager, Modifying a sparse Cholesky factorization, SIAM J. Matrix
Anal. Appl., 20 (1999), pp. 606–627.

[3] , Multiple-rank modifications of a sparse Cholesky factorization, SIAM J. Matrix Anal.
Appl., 22 (2001), pp. 997–1013.

[4] , Row modifications of a sparse Cholesky factorization, SIAM J. Matrix Anal. Appl., 26
(2005), pp. 621–639.

[5] , Dual multilevel optimization, Math. Program., 112 (2008), pp. 403–425.
[6] , A sparse proximal implementation of the LP Dual Active Set Algorithm, Math. Pro-

gram., 112 (2008), pp. 275–301.
[7] , Dynamic supernodes in sparse Cholesky update/downdate and triangular solves, ACM

Trans. Math. Software, 35 (2009), pp. 27:1–23.
[8] T. A. Davis, W. W. Hager, and J. T. Hungerford, An efficient hybrid algorithm for the

separable convex quadratic knapsack problem, ACM Trans. Math. Software, 42 (2016),
pp. 22:1–22:25.

[9] N. I. M. Gould, D. Orban, and P. L. Toint, CUTEst: a constrained and unconstrained
testing environment with safe threads for mathematical optimization, Comput. Optim.
Appl., 60 (2015), pp. 545–557.

[10] W. W. Hager, The dual active set algorithm, in Advances in Optimization and Parallel Com-
puting, P. M. Pardalos, ed., North Holland, Amsterdam, 1992, pp. 137–142.

[11] , Analysis and implementation of a dual algorithm for constrained optimization, J. Op-
tim. Theory Appl., 79 (1993), pp. 427–462.

[12] , The LP dual active set algorithm, in High Performance Algorithms and Software in
Nonlinear Optimization, R. D. Leone, A. Murli, P. M. Pardalos, and G. Toraldo, eds.,
Dordrecht, 1998, Kluwer, pp. 243–254.

[13] , The dual active set algorithm and its application to linear programming, Comput.
Optim. Appl., 21 (2002), pp. 263–275.

[14] , The dual active set algorithm and the iterative solution of linear programs, in Novel
Approaches to Hard Discrete Optimization, P. M. Pardalos and H. Wolkowicz, eds., vol. 37,
Fields Institute Communications, 2003, pp. 95–107.

[15] W. W. Hager and D. W. Hearn, Application of the dual active set algorithm to quadratic
network optimization, Comput. Optim. Appl., 1 (1993), pp. 349–373.

[16] W. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and
an efficient line search, SIAM J. Optim., 16 (2005), pp. 170–192.

[17] , Algorithm 851: CG DESCENT, a conjugate gradient method with guaranteed descent,
ACM Trans. Math. Software, 32 (2006), pp. 113–137.

[18] , The limited memory conjugate gradient method, SIAM J. Optim., 23 (2013), pp. 2150–
2168.

[19] , An active set algorithm for nonlinear optimization with polyhedral constraints, Sci.
China Math., 59 (2016), pp. 1525–1542.

[20] , Projection onto a polyhedron that exploits sparsity, SIAM J. Optim., 29 (2016),
pp. 1773–1798.

16

