
SUITEOPT 3.0.0 USER GUIDE, JUNE 10, 2023

WILLIAM W. HAGER

UNIVERSITY OF FLORIDA

1. Introduction. SuiteOPT is a software package that currently solves problems
of the form

min f(x) subject to bl ≤ Ax ≤ bu, lo ≤ x ≤ hi. (P)

Here A ∈ R
m×n, bl and bu ∈ R

m, and lo and hi ∈ R
n. There are four different

packages contained in SuiteOPT.

1. PPROJ: Given y ∈ R
n, PPROJ uses the algorithm of [22] along with the Dual

Active Set Algorithm [7, 8, 12, 13, 14, 15, 16, 17], and techniques for updating
and downdating a sparse Cholesky factorization [3, 4, 5, 6, 9], to solve the
projection problem

min ‖y − x‖2 subject to bl ≤ Ax ≤ bu, lo ≤ x ≤ hi.

2. NAPHEAP: Given a ∈ R
n and a diagonal matrix D with nonnegative diagonal,

NAPHEAP uses the Newton/heap-based algorithm of [10] to solve the problem

min

(

1

2

)

xTDx− cTx subject to bl ≤ aTx ≤ bu, lo ≤ x ≤ hi.

3. CG DESCENT: The algorithms of [18, 19, 20] are used to solve an unconstrained
optimization problem by the conjugate gradient method.

4. PASA: The polyhedral active set algorithm uses the framework of [21] to
combine the previous algorithms and solve a general problem of the form
(P).

The update and downdate techniques used by PPROJ are extracted from Timothy
A. Davis’ SuiteSparse and placed in the directory SuiteSparseX of SuiteOPT. The
four different solvers in SuiteOPT can all be accessed through PASA; the PASA software
analyzes its input data structure to determine which of the solvers, or combination of
solvers, should be used to solve the given problem.

SuiteOPT 1.0.0, released on November 5, 2019, contained a gradient-based im-
plementation of PASA, which is documented in the ACMTOMS article [23], found in
the same directory as the UserGuide. Version 3.0.0 of SuiteOPT (June 10, 2023) in-
cludes routines to accelerate the convergence of PASA when the objective Hessian is
available. The Hessian-based routines require an approximate solution of a symmetric
linear system of equations. This is done either by either an iterative method based
on the conjugate gradient method, or by a direct solver. SuiteOPT comes equipped
with an interface to the direct solver MUMPS [1, 2] as well as a copy of the software
itself in the MUMPS subdirectory. Hopefully, an interface to Harwell’s MA57 will be
available soon. Symmetric positive definite linear systems are handled using Davis’
SuiteSparse software. SuiteSparse, MUMPS, and SuiteOPT each have their own li-
censes; for an overview, see the file LICENSE.txt in the top level SuiteOPT directory.

2. General Instructions for Using SuiteOPT. There are three different ways
to run SuiteOPT:

(a) Since the codes are written in C, they can be invoked inside a C code.
(b) Problems can be formulated and solved using MATLAB.
(c) There is an interface through the platform CUTEst (Constrained and Un-

constrained Testing Environment with Safe Threads) of Gould, Orban, and
Toint [11].

1

Regardless of the software interface, an important parameter when setting up
a problem is the number infinity. SuiteOPT employs a definition of floating point
infinity based on ANSI C99 and C90 standards. This definition is consistent with
MATLAB’s infinity, “inf”. If the variable xi has no upper bound, then in C set
“hi[i] = inf”, while in MATLAB set “hi(i) = inf”. If all the components of x
have no upper bound, then leave hi undefined; by default, all the components of
hi are +∞. Lower bounds are treated in a similar fashion. The main user setup
file is Userconfig.mk, found in the directory SuiteOPTconfig. As explain in the
Userconfig.mk comments, the user can override the default definition of infinity by
adding a flag to the parameter OPTFLAGS.

If the Hessian-based PASA is used, then symmetric solver should be specified
as another flag of OPTFLAGS. Currently, the only option is the MUMPS solver, which
is specified by the flag “-DUSE MUMPS”. MUMPS utilizes the SCOTCH ordering routines
when they are available, in which case their location is also specified in Userconfig.mk.
MATLAB has its own built-in versions of the BLAS and LAPACK, and automatically
employs 64 bit integers. When working in C or CUTEst, Userconfig.mk should specify
the location of the user’s BLAS and LAPACK; to compile SuiteOPT with 64 bit
integers, add the flag “-DDLONG” to OPTFLAGS, and be sure to choose versions of the
BLAS and LAPACK libraries with the “ilp64” routines, rather than “lp64” routines.
Also, when working in C or CUTEst, the user should specify their C and Fortran
compilers as indicated at the top of Userconfig.mk.

3. Installation and Use in MATLAB. To compile the SuiteOPT solvers for
use in MATLAB, startup MATLAB in the directory SuiteOPT/MATLAB. In the com-
mand window, type “make” and follow the instructions. To use a solver in MATLAB,
change your directory to the MATLAB directory that is found inside the solver’s
directory and startup MATLAB. Your MATLAB code for solving a problem should
create a structure that contains the problem data. If data denotes an input data
structure associated with a solver, then the command to solve a problem is simply

x = solver name (data) ;

where solver name is either pasa, pproj, cg descent, or napheap. Note that all the
solvers can be accessed through pasa; if the problem input to pasa is an unconstrained
problem or a knapsack problem or a projection problem, then pasa uses cg descent,
napheap, or pproj respectively to solve the problem.

The important elements of the input data structure that the user may wish to
modify are described in a readme.m file in the solver’s MATLAB subdirectory. In
MATLAB, type “help readme” to view the file. By default, when an element of the
problem data structure is not present, the code assumes that the associated constraint
does not exist. In other words, if the constraint x ≤ hi does not exist and data

denotes the input data structure for a solver, then do not specify a value for data.hi.
Often, there is no need to specify dimensional information such as data.nrow (number
of linear inequality constraints) or data.ncol (the dimension of x) since MATLAB
may deduce this information from the input data. On the other hand, in some weird
cases, it could be necessary to provide the dimension of x. For example, ifA is a sparse
matrix with some trailing columns of zeros, there is a potential for pasa to conclude
erroneously that the dimension of x is equal to the number of nonzero columns in A.
By specifying the dimension of x in data.ncol, this confusion is eliminated.

The definitions of the default parameters for a solver appear in the file ending in
default.c in the Source directory for the solver. For any of the solvers, except pasa,
the value of a parameter is changed using a statement of the following form

data.parameter = (new value) ;
where data is the input data structure for the solver and parameter is the name of
the parameter whose value is to be changed. When using pasa, on the other hand,
the corresponding statement is

2

pasadata.solver.parameter = (new value) ;
where solver is either pasa, pproj, napheap, or cg. See the demo files in the MAT-
LAB subdirectories of each solver for examples showing how to set up a problem.

If the problem objective is not quadratic or linear, then the user needs to provide
functions to evaluate the objective and its gradient. The names of these functions
should be stored in pasadata.value and pasadata.grad. If the user wishes to pro-
vide the objective Hessian at a given x, then the Hessian function should evaluate the
nonzero elements of the Hessian and store them in triples format; that is, if nnz nonze-
ros are on the main diagonal and on one side, then a nnz by 3 matrix is constructed
in which each row contains a row index, a column index, and the corresponding Hes-
sian element, in this order. The name of the Hessian function should be stored in
pasadata.hessian.

If the objective is either quadratic or linear, then the objective is fully specified
by giving the cost vector associated with the linear term along with the square, sym-
metric Hessian matrix. The cost vector should be dense, while the Hessian matrix
should be either a square sparse matrix, created using MATLAB’s sparse function,
or a dense matrix. All the elements of the Hessian, both above and below the di-
agonal, should be provided. If the user wishes to use triples to input the elements
of Hessian on the main diagonal and one side, then he could put the name of the
Hessian function in pasadata.hessian while also specifying that the problem is a
QP by setting pasadata.pasa.QP = 1. Again, see the demo files in the MATLAB
subdirectories of a solver for examples.

4. Installation and Use in C. Once the Userconfig.mk file is set up, all the
SuiteOPT C codes can be compiled at once from the top level SuiteOPT directory
by typing “make”. Once SuiteSparse and MUMPS have been compiled from the top
level SuiteOPT directory, then after any changes in a directory associated with a
solver, it can be recompiled from the top level directory by typing “make solver”,
where solver is either pasa, cg, napheap, or pproj. Alternatively, navigate to the
subdirectory for the solver, and type “make”.

The codes in the Demo subdirectories of a solvers all have the layout shown below:

/* Create pointer to the data structure for a solver */

SOLVERdata *data = solver setup () ;

/* where ‘‘solver’’ is pasa, pproj, napheap, or cg */

/* Store problem information in Data structure */

data->lo = . . . ; . . .

/* Solve the problem */

solver name (data) ;

/* where solver name is pasa, pproj, napheap, or cg descent */

/* Extract solution from data structure */

for (j = 0; j < ncol; j++) printf ("x [%i] = %e\n", j, data->x [j])

;

/* Terminate the problem */

solver terminate (&data) ;

See the Demo subdirectory of a solver for examples showing how to set up a problem.
Similar to the strategy for using SuiteOPT in MATLAB, if the problem objective

is neither quadratic nor linear, then the user needs to provide functions to evalu-
ate the objective and its gradient; the names of these functions should be inputs to

3

pasadata->value and pasadata->grad respectively. On the other hand, the C setup
provides greater flexibility for input of the Hessian when compared to MATLAB. The
Hessian function should build a SOPT matrix structure, denoted here as H, containing
the nonzero matrix elements. The structure accepts accepts either a sparse matrix,
a dense matrix, or a matrix in triples format. When using the sparse or dense for-
mats, the entire matrix must be provided, including matrix elements both below and
above the diagonal. When using the triples format, three arrays H->rows, H->cols,
and H->vals are constructed with the row and column indices of the nonzero ma-
trix elements and their associated vals (numerical values). The rows and columns
can be specified either with Fortran indexing, where the first row and column are 1
(H->fortran = TRUE by default), or with C indexing (H->fortran = FALSE), where
the first row and column are 0. If H->sym = TRUE (default for the Hessian), then the
matrix is symmetric and only elements on the diagonal and one side are given, while
if H->sym = FALSE, then the entire matrix is should be given. Again, see the Demo

subdirectory of a solver for examples.
If the objective is either quadratic or linear, then the objective is fully specified by

giving the cost vector associated with the linear term along with the square, symmetric
Hessian matrix. The linear cost vector data->c is an array of scalars, while the
Hessian matrix data->H, an SOPT matrix, should be either a sparse matrix, a dense
matrix, or a matrix in triples format.

5. Installation and Use in CUTEst. Both pasa or cg descent can be in-
stalled in CUTEst, provided the user has downloaded and installed CUTEst on his
computer. If an existing version of CUTEst is already installed, be sure to update to
a version after August, 2019, since CUTEst was modified at that date to enable use
with SuiteOPT. Currently, CUTEst can be downloaded from:

https://github.com/ralna/CUTEst/wiki

Install the packages archdefs, cutest, and sifdecode, as well as the CUTE library of
test problems. After installing CUTEst, be sure to set the environment variables
that are highlighted during the installation process. The two variables needed by
SuiteOPT are CUTEST, which is the full path to the location of your cutest directory,
and MYARCH, which is a string providing information about your operating system
and computer architecture. After setting up CUTEst, add two new lines to the
file $CUTEST/bin/sys/$MYARCH to provide your BLAS and LAPACK information.
This same information appears in the Userconfig.mk file except that quotation marks
should be inserted around the libraries:

BLAS=". . ."

LAPACK=". . ."

Another environment variable that needs to be set is LD LIBRARY PATH. This vari-
able should include the full path to the ldlibs directory at the top level of SuiteOPT.
The command for setting up the environment variable is something like the following
(the full path name should be in quotes):

setenv LD LIBRARY PATH 'full path'

If there are multiple paths in the load library, then each path is separated by a colon.
Once this setup is complete, the installation of pasa and cg descent in CUTEst

is completed by typing “make cute” in the top level directory of SuiteOPT. As the
codes are compiled and installed into CUTEst, the following two files are created:

SuiteOPT/CGDESCENT/CUTEst/runcutest

SuiteOPT/PASA/CUTEst/runcutest.

4

These files contain aliases for running either pasa or cg descent in CUTEst. If these
aliases are placed in a file such as “.cshrc” or “.bashrc” that is executed at startup,
then the aliases can be used in any window that is opened subsequently. The command
for solving a polyhedral constrained optimization problem PROB.SIF using the PASA
alias from the runcutest file is “pasarun PROB”. If the problem is unconstrained,
then it could also be solved using the command “cgrun PROB”; in either case, when
the problem is unconstrained, it is solved using cg descent.

New values for the pasa parameters can be inserted in

SuiteOPT/PASA/CUTEst/pasa main.c

right before the call to pasa. Similarly, new values for the CG DESCENT parameters
can be inserted right before the call to “cg descent” in

SuiteOPT/CGDESCENT/CUTEst/cg descent main.c.

After adding new parameter values in pasa main.c or cg descent main.c, the CUTE
installation should be recompiled by typing “make” in the CUTEst subdirectories
where the parameters were changed.

6. Parameters. The names of the parameters, their definitions, and their de-
fault values can be found in the solver source directory file whose name ends in
default.c. When the setup code for any solver is executed, it not only creates the
input data structure for the solver, but it also initializes the parameters to their de-
fault values. Thus after running the setup code and before executing the associated
solver, any of the default parameter values can be changed. Examples showing how
to set parameters in C appear in the Demo directory for any solver. As an illustra-
tion, suppose we wish to change the convergence tolerance for cg descent from its
default value 1.e-06 to 1.e-08. If cgdata denotes the output of cg setup, then the
statement

cgdata->Parm->grad tol = 1.e-08 ;

resets the convergence tolerance to 1.e-08.

The solver pasa could potentially utilize any of the solvers pproj, cg descent,
or napheap. Some parameters, such as grad tol, are propagated from pasa to the
other solvers. Other parameters, however, are uniquely associated with a solver. For
example, when cg descent is invoked from pasa, then the user could change the value
of cg descent LBFGS memory from its default value 11 to 15 using the statement

pasadata->Parms->cg->LBFGSmemory = 15 ;

The four elements of the Parms structure are pasa, cg, pproj, and napheap.

Resetting parameters in MATLAB is different and easier when compared to C. In
MATLAB, one builds a structure with the non-default elements of the solver’s data
structure, and parameters are treated like any other element of the data structure. If
pasadata denotes a data structure being built in MATLAB to solve a problem using
pasa, then the following statement resets the LBFGS memory to 15:

pasadata.cg.LBFGSmemory = 15 ;

Note that the Parms structure in the C example above is omitted in MATLAB. If
cg descent is used to solve an unconstrained optimization problem in MATLAB and
cgdata denotes the data structure being built, then the statement

cgdata.LBFGSmemory = 15 ;

resets the LBFGS memory to 15.

5

7. The Input Data Structures. The input data structures for the solvers are
defined and documented in the Include directories for each solver, in the file solver.h.
Search for “data struct” in the “.h” file. Note that the structure SOPT matrix is de-
fined in the file SuiteOPTconfig/sopt.h. All of the solvers in SuiteOPT use floating
point variables of size SuiteOPTfloat, which is “double” by default. The integer
variables are of size SuiteOPTint, which is “int” by default. For really big matri-
ces, “int” would need to be changed to “long”. This is a done by adding the flag
“-DDLONG” to OPTFLAGS in the Userconfig.mk file. This flag will make all the integers
throughout SuiteOPT long integers, including integers in MUMPS, SuiteSparse, and
SSM.

REFERENCES

[1] P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary, Performance and scalabil-
ity of the block low-rank multifrontal factorization on multicore architectures, 45 (2019),
pp. 2:1–2:26.

[2] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent, A fully asynchronous multi-
frontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23 (2001),
pp. 15–41.

[3] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, Algorithm 887: CHOLMOD,
supernodal sparse Cholesky factorization and update/downdate, ACM Trans. Math. Soft-
ware, 35 (2009), pp. 22:1–14.

[4] T. A. Davis and W. W. Hager, Modifying a sparse Cholesky factorization, SIAM J. Matrix
Anal. Appl., 20 (1999), pp. 606–627.

[5] , Multiple-rank modifications of a sparse Cholesky factorization, SIAM J. Matrix Anal.
Appl., 22 (2001), pp. 997–1013.

[6] , Row modifications of a sparse Cholesky factorization, SIAM J. Matrix Anal. Appl., 26
(2005), pp. 621–639.

[7] , Dual multilevel optimization, Math. Program., 112 (2008), pp. 403–425.
[8] , A sparse proximal implementation of the LP Dual Active Set Algorithm, Math. Pro-

gram., 112 (2008), pp. 275–301.
[9] , Dynamic supernodes in sparse Cholesky update/downdate and triangular solves, ACM

Trans. Math. Software, 35 (2009), pp. 27:1–23.
[10] T. A. Davis, W. W. Hager, and J. T. Hungerford, An efficient hybrid algorithm for the

separable convex quadratic knapsack problem, ACM Trans. Math. Software, 42 (2016),
pp. 22:1–22:25.

[11] N. I. M. Gould, D. Orban, and P. L. Toint, CUTEst: a constrained and unconstrained
testing environment with safe threads for mathematical optimization, Comput. Optim.
Appl., 60 (2015), pp. 545–557.

[12] W. W. Hager, The dual active set algorithm, in Advances in Optimization and Parallel Com-
puting, P. M. Pardalos, ed., North Holland, Amsterdam, 1992, pp. 137–142.

[13] , Analysis and implementation of a dual algorithm for constrained optimization, J. Op-
tim. Theory Appl., 79 (1993), pp. 427–462.

[14] , The LP dual active set algorithm, in High Performance Algorithms and Software in
Nonlinear Optimization, R. D. Leone, A. Murli, P. M. Pardalos, and G. Toraldo, eds.,
Dordrecht, 1998, Kluwer, pp. 243–254.

[15] , The dual active set algorithm and its application to linear programming, Comput.
Optim. Appl., 21 (2002), pp. 263–275.

[16] , The dual active set algorithm and the iterative solution of linear programs, in Novel
Approaches to Hard Discrete Optimization, P. M. Pardalos and H. Wolkowicz, eds., vol. 37,
Fields Institute Communications, 2003, pp. 95–107.

[17] W. W. Hager and D. W. Hearn, Application of the dual active set algorithm to quadratic
network optimization, Comput. Optim. Appl., 1 (1993), pp. 349–373.

[18] W. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and
an efficient line search, SIAM J. Optim., 16 (2005), pp. 170–192.

[19] , Algorithm 851: CG DESCENT, a conjugate gradient method with guaranteed descent,
ACM Trans. Math. Software, 32 (2006), pp. 113–137.

[20] , The limited memory conjugate gradient method, SIAM J. Optim., 23 (2013), pp. 2150–
2168.

[21] , An active set algorithm for nonlinear optimization with polyhedral constraints, Sci.
China Math., 59 (2016), pp. 1525–1542.

[22] , Projection onto a polyhedron that exploits sparsity, SIAM J. Optim., 29 (2016),
pp. 1773–1798.

[23] , A gradient-based implementation of the polyhedral active set algorithm, ACM Trans.
Math. Software, (2023), p. https://doi.org/10.1145/3583559.

6

