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Abstract Analternating direction approximateNewton (ADAN)method is developed
for solving inverse problems of the form min{φ(Bu)+ (1/2)‖Au − f ‖22}, where φ is
convex and possibly nonsmooth, and A and B are matrices. Problems of this form arise
in image reconstruction where A is the matrix describing the imaging device, f is the
measured data, φ is a regularization term, and B is a derivative operator. The proposed
algorithm is designed to handle applications where A is a large dense, ill-conditioned
matrix. The algorithm is based on the alternating direction method of multipliers
(ADMM) and an approximation to Newton’s method in which a term in Newton’s

This research was partly supported by National Science Foundation (Nos. 1115568 and 1016204) and by
Office of Naval Research Grants (Nos. N00014-11-1-0068 and N00014-15-1-2048).

B Hong-Chao Zhang
hozhang@math.lsu.edu
https://www.math.lsu.edu/∼hozhang/

William Hager
hager@ufl.edu
http://people.clas.ufl.edu/hager/

Cuong Ngo
ngocuong@ufl.edu
http://people.clas.ufl.edu/ngocuong/

Maryam Yashtini
myashtini3@math.gatech.edu
http://people.math.gatech.edu/∼myashtini3/

1 Department of Mathematics, University of Florida, PO Box 118105, Gainesville,
FL 32611-8105, USA

2 School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta,
GA 30332-0160, USA

3 Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803-4918, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40305-015-0078-y&domain=pdf


140 W. Hager et al.

Hessian is replaced by aBarzilai–Borwein (BB) approximation. It is shown thatADAN
converges to a solution of the inverse problem. Numerical results are provided using
test problems from parallel magnetic resonance imaging. ADAN was faster than a
proximal ADMM scheme that does not employ a BB Hessian approximation, while
it was more stable and much simpler than the related Bregman operator splitting
algorithm with variable stepsize algorithm which also employs a BB-based Hessian
approximation.

Keywords Convex optimization · Total variation regularization · Nonsmooth
optimization · Global convergence · Parallel MRI

Mathematics Subject Classification 90C25 · 65K05 · 68U10 · 65J22

1 Introduction

We consider inverse problems that can be expressed in the form

min
u∈CN

φ(Bu) + 1

2
‖Au − f ‖2, (1.1)

where φ:Cm → (−∞, ∞) is convex, B ∈ C
m×N , A ∈ C

M×N , and f ∈ C
M .

Due to its many applications, especially in the image reconstruction field, a variety
of numerical algorithms have been proposed for solving (1.1) including [3–5,7,9,13–
16,22,24].

We introduce a new variable w to obtain the split formulation of (1.1):

min
u,w

φ(w) + 1

2
‖Au − f ‖2 s.t. w = Bu, u ∈ C

N , w ∈ C
m . (1.2)

The alternating direction method of multipliers (ADMM) [12] is among the most
extensively used techniques for solving (1.2). The augmented Lagrangian associated
with (1.2) is

Lρ(u, w, b) = φ(w) + 1

2
‖Au − f ‖2 + Re 〈b, Bu − w〉 + ρ

2
‖Bu − w‖2,

(1.3)

where ρ > 0 is the penalty parameter, b ∈ C
m is a Lagrange multiplier associated

with the constraint Bu = w, 〈·, ·〉 is the Euclidean inner product, and “Re” stands for
“real part.” In ADMM, each iteration minimizes over u holding w fixed, minimizes
over w holding u fixed, and updates an estimate for the multiplier b. More precisely, if
bk is the current approximation to the multiplier, then ADMM [11,12] applied to the
split formulation (1.2) is given by the iteration

uk+1 = argmin
u

Lρ
(
u, wk, bk

)
,
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An Alternating Direction Approximate Newton Algorithm 141

wk+1 = argmin
w

Lρ
(
uk+1, w, bk

)
,

bk+1 = bk + ρ
(
Buk+1 − wk+1

)
.

After completing the square, this can be written as follows:

uk+1 = argmin
u

Ψ (u), Ψ (u) = 1

2
‖Au − f ‖2 + ρ

2

∥∥∥Bu − wk + ρ−1bk
∥∥∥
2
,

(1.4)

wk+1 = argmin
w

{
φ(w) + ρ

2

∥∥∥Buk+1 − w + ρ−1bk
∥∥∥
2
}

, (1.5)

bk+1 = bk + ρ
(
Buk+1 − wk+1

)
. (1.6)

In parallel magnetic resonance imaging (PMRI), the time-consuming part of the
ADMM iteration is the update (1.4), since A is a large dense, ill-conditioned matrix.

The linearized proximal method of multipliers is one strategy for speeding up
the iteration (1.4) in PMRI. In this approach, a carefully chosen proximal term is
introduced into the updates (see [6,8,21,26]). For any Hermitian matrix Q ∈ C

N×N ,

we define

‖x‖2Q = 〈x, Qx〉.

If Q is a positive definite matrix, then ‖ · ‖Q is a norm. The proximal version of (1.4)
is

uk+1 = argmin
u

{
‖Au − f ‖2 + ρ

∥∥∥Bu − wk + ρ−1bk
∥∥∥
2 +

∥∥∥u − uk
∥∥∥
Q

}
. (1.7)

As suggested in [26, Eq.(5.12)], the choice Q = δ I − A∗Awill cancel the ‖Au‖2 term
in this iteration. This yields a partial linearization of the iteration since the quadratic
term ‖Au‖2 is eliminated, while ‖Bu‖2 is retained. In the context of PMRI, ‖Bu‖2
is more tractable than ‖Au‖2 since B is usually diagonalized by a Fourier transform.
We refer to the algorithm based on the updates (1.5), (1.6), and (1.7) as Bregman
operator splitting (BOS). BOS is convergent when Q is positive definite according to
Theorem4.2 in [26] or Theorem5.6 in [21]. If Q is positive definite, then δ should be
greater than or equal to the largest eigenvalue of A∗A.

In the BOSwith variable stepsize (BOSVS) algorithm, the variable stepsize version
of BOS developed in [9,13], and in the approximate Newton algorithm developed in
this paper, we replace δ by δk , where δk I is a Barzilai–Borwein (BB) [2] approxi-
mation to A∗A. As seen in the numerical experiments of Raydan and Svaiter [19],
the BB approximation often yields surprisingly fast convergence on ill-conditioned
problems. Typically, δk is strictly smaller than the largest eigenvalue of A∗A, and
Q = δk I − A∗A is indefinite. In this setting where the proximal term is indefinite, a
completely new convergence analysis is needed. Moreover, safeguards are needed in
the algorithm itself. In BOSVS, one safe guard is a line search in which the initial BB
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142 W. Hager et al.

approximation to A∗A is adjusted. In the alternating direction approximate Newton
(ADAN) algorithm developed in this paper, we retain the initial BB approximation, but
take a predetermined step along the approximate Newton direction in each iteration.
We prove convergence of the resulting algorithm, and we compare its performance to
that of both BOS and BOSVS using PMRI image reconstruction problems.

The paper is organized as follows. In Sect. 2, we present the new algorithm, the
ADAN method. Section3 establishes the convergence of ADAN. Section4 provides
numerical experiments based on PMRI.

1.1 Notation

For any matrix M, N (M) is the null space of M. The superscript T denotes trans-
pose, while superscript ∗ denotes conjugate transpose with the following exception:
superscript ∗ is attached to an optimal solution of (1.1), or in PMRI, to the reference
image that we try to reconstruct. For x ∈ C

N and y ∈ C
N , 〈x, y〉 = x∗y is the

standard Euclidean inner product, and (x, y) stacks the vectors x and y vertically.
If M1 and M2 are Hermitian matrices, we write M1 
 M2 if M1 − M2 is positive
semidefinite. The norm ‖ · ‖ is the Euclidean norm given by ‖x‖ = √〈x, x〉. We let
Re stand for “real part.” For a matrix X, ‖X‖ is the induced matrix norm, which is
the largest singular value. For a differentiable function F :CN → R, ∇F(x) is the
gradient of F at x, a column vector. More generally, ∂F(x) denotes the subdifferential
set at x.

2 Proposed Algorithm

The ADMM updated for u given in (1.4) can be expressed as follows:

uk+1 = argmin
u

Ψ (u) = uk − (A∗A + ρB∗B)−1∇Ψk, where (2.1)

∇Ψk := A∗ (
Auk − f

)
+ ρB∗ (

Buk − wk + ρ−1bk
)

. (2.2)

Here (·)−1 is the generalized inverse, A∗A+ ρB∗B is the Hessian of the objective Ψ,

and ∇Ψk is the gradient of Ψ at uk . The formula for uk+1 in (2.1) is exactly the same
formula that we would have gotten if we performed a single iteration of Newton’s
method on the equation ∇Ψ (u) = 0 with starting guess uk . Since it is not practical to
invert A∗A + ρB∗B in PMRI, due to the large size and dense structure of the matrix,
we employ the BB approximation [2]

A∗A ≈ δk I,

where

δk = argmin

{∥∥∥A
(
uk − uk−1

)
− δ

(
uk − uk−1

)∥∥∥
2
: δ � δmin

}

= max

{
δmin,

||A(uk − uk−1)||2
||uk − uk−1||2

}
, (2.3)
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An Alternating Direction Approximate Newton Algorithm 143

and δmin > 0 is a positive lower bound for δk . Hence, the Hessian is approximated by
δk I + ρB∗B. Often the matrix B∗B in image reconstruction can be diagonalized by
a Fourier transform. Since a Fourier transform can be inverted in O(N log N ) flops,
the inversion of δk I + B∗B can be accomplished relatively quickly.

After replacing A∗A by δk I in (2.1), the iteration becomes

uk+1 = uk + dk, where dk = −(
δk I + ρB∗B

)−1 ∇Ψk . (2.4)

Note that by substituting Q = δk I − A∗A in (1.7) and solving for the minimizer, we
would get exactly the same formula for the minimizer as that given in (2.4). Hence,
the approximate Newton formula (2.4) is the same as the proximal update (1.7) with
the choice Q = δk I − A∗A. On the other hand, by viewing this update in the context
of an approximate Newton iteration, there is a natural way to encourage convergence
by taking a partial step along the Newton search direction. In particular, we consider
the rule

uk+1 = uk + σkdk,

where σk is the stepsize in the search direction dk . We now explain how to choose σk
to ensure descent.

The inner product between dk and the objective gradient at uk is

〈∇Ψk, dk〉 = −〈∇Ψk,
(
δk I + ρB∗B

)−1 ∇Ψk〉 = −
(
δk ‖dk‖2 + ρ ‖Bdk‖2

)
. (2.5)

It follows that dk is a descent direction. The stepsize σk is chosen to ensure an amount
of descent similar to what is achieved in an Armijo line search [1]. More precisely,
given γ ∈ (0, 1), we choose σk to be the largest stepsize that satisfies the inequality

Ψ (uk+1) − Ψ (uk)

σk
= Ψ (uk + σkdk) − Ψ (uk)

σk
� γ 〈∇Ψk, dk〉. (2.6)

Since Ψ is a quadratic, the Taylor expansion of Ψ (uk+1) around uk is as follows:

Ψ
(
uk+1

)
= Ψ

(
uk

)
+ 〈∇Ψk, u

k+1 − uk〉 + 1

2

∥∥∥uk+1 − uk
∥∥∥
2

H
, (2.7)

where
H = A∗A + ρB∗B. (2.8)

We substitute uk+1 − uk = σkdk and combine with (2.6) to obtain

σk ‖dk‖2H � 2(γ − 1)〈∇Ψk, dk〉. (2.9)

We will take σk as large as possible while satisfying (2.9). If ‖dk‖H �= 0, then simply
divide by ‖dk‖2H to compute the largest σk .Based on the following lemma, ‖dk‖H = 0
if and only if uk minimizes Ψ.
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144 W. Hager et al.

Lemma 2.1 If Adk = 0 = Bdk, then uk minimizes Ψ.

Proof If Adk = 0 = Bdk, then ‖dk‖H = 0. By a Taylor expansion, as in (2.7), we
have

Ψ
(
uk + σdk

)
= Ψ

(
uk

)
+ σ 〈∇Ψk, dk〉 + σ 2

2

∥∥∥dk
∥∥∥
H

= Ψ
(
uk

)
+ σ 〈∇Ψk, dk〉.

Clearly, 〈∇Ψk, dk〉 � 0 by (2.5). If 〈∇Ψk, dk〉 < 0, then Ψ (uk + σdk) approaches
−∞ as σ tends to ∞. This is impossible since Ψ (u) � 0 for all u. Hence, we have

〈∇Ψk, dk〉 = 〈∇Ψk,
(
δk I + ρB∗B

)−1 ∇Ψk〉 = 0.

It follows that ∇Ψk = 0, which implies that uk minimizes the convex function Ψ.

Based on Lemma2.1, if uk is not the minimizer of Ψ, then by (2.9), the largest
stepsize satisfying (2.6) is given by the following expression:

σ̄k = 2(γ − 1)

(
〈∇Ψk, dk〉

‖dk‖2H

)
= 2(1 − γ )

(
δk‖dk‖2 + ρ‖Bdk‖2
‖Adk‖2 + ρ‖Bdk‖2

)
. (2.10)

If γ = 1/2, then s = σ̄k is the exact minimizer of Ψ (uk + sdk) over all s. That is, if
one solves for the exact minimizer of the quadratic in s, one obtains

s = δk‖dk‖2 + ρ‖Bdk‖2
‖Adk‖2 + ρ‖Bdk‖2 ,

which is the same as (2.10) for γ = 1/2. Thus, γ = 1/2 yields the largest decrease
in Φ. However, we need to achieve convergence of the overall algorithm, which also
involves updates of wk and bk in (1.5) and (1.6). In the convergence analysis, we find
that γ > 1/2 is needed to achieve convergence of the overall algorithm. Hence, we
take γ close to 1/2 but not equal to 1/2. Also, the convergence analysis breaks down
when the stepsize is too big. Hence, we introduce an upper bound σmax on the stepsize
and our safeguarded step is given by

σk = min {σmax, σ̄k} . (2.11)

The expression [Ψ (uk+1) − Ψ (uk)]/σk in (2.6) is a monotone increasing function
of σk since it is linear in σk and the coefficient of the linear term is ‖Adk‖2+ρ‖Bdk‖2.
It follows that the safeguarded step given by (2.11) satisfies

Ψ (uk+1) − Ψ (uk)

σk
� −γ

(
δk ‖dk‖2 + ρ ‖Bdk‖2

)
,

while σk = σ̄k satisfies this with equality.
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An Alternating Direction Approximate Newton Algorithm 145

The safeguarded approximate Newton algorithm that we analyze in this paper is
given Algorithm 1. In Step 1, we first check whether uk achieves the minimum of Ψ

in (1.4). If it is not the minimizer, then we compute the BB parameter δk, the search
direction dk, and the safeguarded stepsize σk . Step 2 contains some tests that arise in
the convergence analysis. If the inequalities in Step 2 are both satisfied, then we need
to increase the lower bound for the BB parameter δk . If the inequality in Step 3 is
satisfied, then we need to decrease the upper bound on the stepsize parameter σmax.

We take τ close to 1 so that Steps 2 and 3 have minimal impact on the algorithm.
Step 4 is the update of uk and Step 5 is the update of wk . For total variation (TV)
regularization, Step 5 amounts to soft shrinkage [9,23]. Step 6 is the multiplier update.

ADAN is a modification of the BOSVS algorithm of [9]. The initial value for δk is
computed by the same formula in bothADANandBOSVS, however, BOSVS employs
a line search in which the initial δk is increased until a stopping condition is satisfied.
ADAN, on the other hand, does not change δk; instead, only a partial step is made
along the direction dk, where the stepsize is given by the σ̄k in (2.10). We are able
to prove convergence of either algorithm, but the implementation of ADAN is much
simpler and requires far few parameters. The experiments of Sect. 4 also reveal some
numerical advantages for ADAN when compared to BOSVS.

3 Convergence Analysis

In this section, we establish the convergence of ADAN to a solution of (1.1). We
first give the existence and uniqueness result for (1.1):

Algorithm 1: Alternating Direction Approximate Newton MethodAlgorithm 1: Alternating Direction Approximate Newton Method

Parameter: 0.5 < γ < 1 < τ, ρ > 0, 0 < δmin δ0, σ0 = 0, σmax = 1. Initialize k = 1.

Starting guess: u1, w1 and b1.

Step 1 If ∇Ψk vanishes in (2.2), then set uk+1 = uk, dk = 0, δk = δk−1,

σk = σk−1, and branch to Step 5. Otherwise, set σk = min{σmax, σ̄k},
where σ̄k is defined in (2.10), and

δk = max δmin,
A(uk−uk−1) 2

uk−u −1 2 , dk = −(δkI + ρB∗B)−1∇Ψk.

Step 2 If δkσk−1 > δk−1σk and δk > max{δmin, δk−1}, then δmin := τδmin.

Step 3 If σk < min{σmax, σk−1}, then σmax := τ−1σmax.

Step 4 Update uk+1 = uk + σkdk.

Step 5 wk+1 = argmin
w

φ(w) +
ρ

2
w − Buk+1 − ρ−1bk 2 .

Step 6 bk+1 = bk + ρ(Buk+1 − wk+1).

Step 7 If a stopping criterion is satisfied, terminate the algorithm.

Otherwise k = k + 1 and go to Step 1.
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146 W. Hager et al.

Lemma 3.1 If φ(w) tends to infinity as ‖w‖ tends to infinity, then there exists a
solution of (1.1), or equivalently to (1.2). If in addition φ is strictly convex andN (A)∩
N (B) = {0}, then the solution of (1.1) is unique.

Proof Define S = N (A) ∩ N (B). Any u ∈ C
N can be decomposed as u = s + t

where s is the projection of u onto S. As ‖t‖ tends to ∞, either At or Bt tends to ∞.

Let ui , i = 1, 2, · · · denote a minimizing sequence for the objective functionΦ(u) =
φ(Bu) + (1/2)‖Au − f ‖2, and decompose ui = si + ti where si is the projection of
ui onto S. If the sequence ‖ti‖ is unbounded, then as noted earlier, either Aui = Ati
or Bui = Bti is unbounded. If ‖Bui‖ is unbounded, then Φ(ui ) is unbounded by the
assumption for φ, which contradicts the fact that the ui form a minimizing sequence.
On the other hand, if ‖Bui‖ is bounded and ‖Aui‖ is unbounded, then ‖Aui − f ‖
is unbounded, which implies that Φ(ui ) is unbounded, again a contradiction. Thus,
we conclude that the sequence ‖ti‖ is bounded. Let u∗ denote a limit for a convergent
subsequence of ti . Since Φ(ui ) = Φ(ti ), we deduce that u∗ minimizes Φ.

Now suppose in addition that φ is strictly convex, N (A) ∩ N (B) = {0}, and that
(1.1) has two distinct minimizers u1 and u2. We show that there is a contradiction
unless u1 = u2. If q(u) = (1/2)‖Au − f ‖2 is the quadratic term in (1.1), then for
any θ ∈ R, we have

q ((1 − θ)u1 + θu2) = (1− θ)q (u1) + θq (u2) − θ(1 − θ)

2
‖A (u1 − u2)‖2 . (3.1)

Since φ is strictly convex, we have

φ ((1 − θ)Bu1 + θBu2) � (1 − θ)φ (Bu1) + θφ (Bu2) , (3.2)

for all θ ∈ [0, 1]. Moreover, the inequality is strict if θ ∈ (0, 1) and Bu1 �= Bu2. We
combine (3.1) and (3.2) to obtain

Φ ((1 − θ)u1 + θu2) � (1 − θ)Φ (u1) + θΦ (u2) − θ(1 − θ)

2
‖A (u1 − u2)‖2 ,

for all θ ∈ [0, 1],where the inequality is strict if θ ∈ (0, 1) and Bu1 �= Bu2. Since u1
and u2 are both optimal, we have Φ(u1) = Φ(u2). Hence, u = (1− θ)u1 + θu2 with
θ ∈ (0, 1) yields a strictly smaller value forΦ unless Bu1 = Bu2 and A(u1−u2) = 0.
This implies that (u1 − u2) ∈ N (A) ∩ N (B). Since N (A) ∩ N (B) = {0}, it follows
that u1 = u2, which completes the proof.

Lemma3.1 is a strengthening of Lemma3.1 in [9]. As pointed out in Sect. 4,
Lemma3.1 typically implies the existence of a unique solution to (1.1) in the con-
text of PMRI. Our main convergence result is the following:

Theorem 3.2 If there exists a solution of (1.1), then the sequence (uk, wk, bk) gen-
erated by ADAN approaches a point (u∗, w∗, b∗) where the first-order optimality
conditions (3.10) are satisfied. Moreover, (u∗, w∗) is a solution of (1.2) and u∗ is a
solution of (1.1).
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An Alternating Direction Approximate Newton Algorithm 147

The proof of Theorem3.2 requires several lemmas. In Step 2, δmin can grow and
in Step 3, σmax can decay, if the stated criteria are satisfied. We first show that these
criteria are only satisfied a finite number of times, and hence, δmin and σmax converge
to positive limits. An upper bound for δmin is the following:

Lemma 3.3 Uniformly in k, we have

δmin,k � δk � max{δ̄, τ‖A‖},

where δmin,k is the value of δmin at the start of iteration k, and δ̄ = δmin,1 is the starting
δmin in ADAN.

Proof Since ‖A(uk − uk−1)‖ � ‖A‖‖uk − uk−1‖, it follows from Step 1 that

δmin,k � δk � max
{
δmin,k, ‖A‖} . (3.3)

Hence, if δk > δmin,k, then δk � ‖A‖,which implies that δmin,k � ‖A‖.Consequently,
when the second condition in Step 2 is satisfied, the current δmin,k � ‖A‖, which
implies that the new δmin,k+1 is at most τ‖A‖. If δmin,k is never updated in Step 2,
then δmin,k must equal its starting value δ̄. Hence, in general, we have

δmin,k � max{δ̄, τ‖A‖}. (3.4)

We combine (3.3) and (3.4), and the fact that τ > 1, to complete the proof.

Next, we show that σmax is uniformly bounded from below:

Lemma 3.4 Uniformly in k, we have

1 � σmax,k � σk � 2(1 − γ )

τ
min

{
δ̄

‖A‖2 , 1

}
, (3.5)

where δ̄ = δmin,1 is the starting δmin in ADAN and σmax,k is the value of σmax at the
start of iteration k.

Proof The lower bound σmax,k � σk follows immediately from the formula for σk
in Step 1, while the upper bound σmax,k � 1 holds since σmax,1 = 1 and σmax only
decreases in ADAN. Let us consider any iteration where uk+1 �= uk . By Lemma 2.1,
we cannot have both Adk = 0 and Bdk = 0. If Adk = 0, then

σ̄k = 2(1 − γ )
δk‖δk‖2 + ρ‖Bdk‖2

ρ‖Bdk‖2 � 2(1 − γ ). (3.6)

If Bdk = 0, then we have

σ̄k = 2(1 − γ )δk‖dk‖2
‖Adk‖2 � 2(1 − γ )δ̄

‖A‖2 , (3.7)
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148 W. Hager et al.

since δk � δ̄ and ‖dk‖2/‖Adk‖2 � 1/‖A‖2. If both Adk �= 0 and Bdk �= 0, then we
exploit the inequality

a + b

A + B
� min

{
a

A
,
b

B

}
, where A > 0, B > 0, a � 0, b � 0,

in (2.10) to obtain

σ̄k � 2(1 − γ )min

{
δ̄

‖A‖2 , 1

}
. (3.8)

Note that if either (3.6) or (3.7) holds, then (3.8) holds. If σk < min{σmax,k, σk−1},
then σmax,k > σk = σ̄k .We combine this relation with Step 3 and with (3.8) to deduce
that in each iteration where σk < min{σmax,k, σk−1}, we have

σmax,k+1 = σmax,k/τ > σk/τ = σ̄k/τ � 2(1 − γ )

τ
min

{
δ̄

‖A‖2 , 1

}
. (3.9)

In each iteration, σk is either σmax,k or σ̄k . If σk = σmax,k, then by (3.9) and the fact
that the right side is independent of k, the lower bound (3.5) holds. If σk = σ̄k, then by
(3.8) and the fact that τ > 1, the lower bound (3.5) holds. This completes the proof.

Lemmas3.3 and 3.4 imply that the conditions in Steps 2 and 3 are only satisfied in a
finite number of iterations. In addition, we have the followingmonotonicity properties:

Corollary 3.5 For k sufficiently large, we have σk � σk−1 and δk/σk � δk−1/σk−1.

Proof As noted before the corollary, in a finite number of iterations, δmin,k and σmax,k
reach positive limits which we denote δlim and σlim, respectively. That is, for some
K > 0, δmin,k = δlim and σmax,k = σlim for all k � K . By Step 1, σk−1 � σlim when
k > K . By Step 3, σk � min{σlim, σk−1} = σk−1 when k > K , which proves the
first inequality of the corollary. Now, consider the second inequality. If the conditions
of Step 2 do not hold, then either δk/σk � δk−1/σk−1 or δk � max{δmin, δk−1}. If the
first condition holds, then we are done. If the second condition holds, then the same
analysis used for σk reveals that δk � δk−1. Together, the relations δk � δk−1 and
σk � σk−1 imply that δk/σk � δk−1/σk−1, which completes the proof.

In our convergence analysis of ADAN, we show that the iterates approach a KKT
point for (1.2), that is, a point where the following first-order optimality conditions
are satisfied:

s − b = 0, A∗(Au − f ) + B∗b = 0, Bu − w = 0, s ∈ ∂φ(w). (3.10)

Since φ is convex, the KKT conditions (3.10) are necessary and sufficient for opti-
mality.

Besides the matrix H introduced in (2.8), two other matrices appear throughout the
convergence analysis:

Ck = σ−1
k

(
δk I + ρB∗B

)
,
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and

Mk = Ck + H − 2ρB∗B = δk

σk
I + A∗A + ρ

(
1

σk
− 1

)
B∗B. (3.11)

Both Ck andMk are uniformly positive definite since σk � 1 and δk � δ̄, the positive
starting value for δmin. In fact, we haveMk 
 δ̄ I.Mk is uniformly bounded due to the
upper bound for δk in Lemma3.3 and the lower bound for σk in Lemma3.4.

Let us define the error sequences as follows:

uke = uk − ū, wk
e = wk − w̄, bke = bk − b̄, ske = sk − s̄,

where (ū, w̄, b̄, s̄) satisfies the first-order optimality conditions (3.10). The conver-
gence proof has three main parts:

(1) We show that the quantity

Ek =
∥∥∥uke

∥∥∥
2

Mk
+ ρ

∥∥∥wk
e

∥∥∥
2 + 1

ρ

∥∥∥bke
∥∥∥
2
,

is a monotone decreasing function of k.
(2) We show that

lim
k→∞

∥∥∥uk+1 − uk
∥∥∥ = lim

k→∞

∥∥∥wk+1 − wk
∥∥∥ = lim

k→∞

∥∥∥bk+1 − bk
∥∥∥ = 0.

(3) By part 1, the sequence (uk, wk, bk) is uniformly bounded, which implies that a
convergent subsequence exists. Using part 2, we will show that the limit is a KKT
point. Using part 1 again, we show that the entire sequence approaches the same
limit.

We now present each of these parts.
Part 1 Steps 1 and 4 of ADAN can be written as follows:

Ck

(
uk+1 − uk

)
= −∇Ψk, (3.12)

where

∇Ψk = A∗ (
Auk − f

)
+ ρB∗ (

Buk − wk + ρ−1bk
)

= Huk − ρB∗ (
wk − ρ−1bk

)
− A∗ f.

The first-order optimality condition associated with Step 5 of ADAN is

0 = sk+1 + ρ
(
wk+1 − Buk+1 − ρ−1bk

)
, (3.13)

for some sk+1 ∈ ∂φ(wk+1). Step 6 can be rearranged as

bk+1 − bk = ρ
(
Buk+1 − wk+1

)
. (3.14)
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We combine (3.12)–(3.14)with the first-order optimality conditions (3.10) to obtain

Ck

(
uk+1
e − uke

)
= −Huke + ρB∗ (

wk
e − ρ−1bke

)
,

sk+1
e + ρwk+1

e − ρ
(
Buk+1

e + ρ−1bke
)

= 0,

bk+1
e − bke = ρ

(
Buk+1

e − wk+1
e

)
.

We take the inner products between each of these equations and uk+1
e , wk+1

e , and bke ,
respectively to obtain the following:

〈
uk+1
e , Ck

(
uk+1
e − uke

) 〉
+ 〈uk+1

e , Huke〉 = 〈Buk+1
e , ρwk

e − bke 〉, (3.15)

〈sk+1
e , wk+1

e 〉 + ρ

∥∥∥wk+1
e

∥∥∥
2 = ρ〈Buk+1

e , wk+1
e 〉 + 〈bke , wk+1

e 〉, (3.16)

1

ρ
〈bke , bk+1

e − bke 〉 = 〈bke , Buk+1
e − wk+1

e 〉. (3.17)

For any Hermitian matrix M, the following identity holds:

2Re 〈a, M(a − b)〉 = 〈a, Ma〉 − 〈b, Mb〉 + 〈a − b, M(a − b)〉. (3.18)

We apply this to twice the real part of (3.17) to get

1

ρ

(∥∥∥bk+1
e

∥∥∥
2 −

∥∥∥bke
∥∥∥
2
)

= 1

ρ

∥∥∥bk+1
e − bke

∥∥∥
2 + 2Re 〈bke , Buk+1

e − wk+1
e 〉.

Since bk+1
e − bke = ρ(Buk+1

e − wk+1
e ), this reduces to

1

ρ

(∥∥∥bk+1
e

∥∥∥
2 −

∥∥∥bke
∥∥∥
2
)

= ρ

∥∥∥Buk+1
e − wk+1

e

∥∥∥
2 + 2Re 〈bke , Buk+1

e − wk+1
e 〉.

(3.19)
The identity (3.18) is also equivalent to

2Re 〈a, Mb〉 = 〈a, Ma〉 + 〈b, Mb〉 − 〈a − b, M(a − b)〉. (3.20)

In (3.15), we apply (3.20) to 〈uk+1
e , Huke〉 and (3.18) to 〈uk+1

e , Ck(uk+1
e − uke)〉 to

obtain

∥∥∥uk+1
e

∥∥∥
2

Ck+H
+

∥∥∥uk+1
e − uke

∥∥∥
2

Nk
−

∥∥∥uke
∥∥∥
2

Nk
= 2Re 〈Buk+1

e , ρwk
e − bke 〉, (3.21)

where Nk = Ck −H. We add the right sides of (3.19), (3.21), and twice the right side
of (3.16) to obtain

ρ

[
2Re 〈Buk+1

e , wk
e 〉 +

∥∥∥Buk+1
e

∥∥∥
2 +

∥∥∥wk+1
e

∥∥∥
2
]

. (3.22)
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Using (3.20), we have

2Re 〈Buk+1
e , wk

e 〉 =
∥∥∥Buk+1

e

∥∥∥
2 +

∥∥∥wk
e

∥∥∥
2 −

∥∥∥Buk+1
e − wk

e

∥∥∥
2
.

Hence, the right side expression (3.22) can be expressed as follows:

ρ

[
2

∥∥∥Buk+1
e

∥∥∥
2 +

∥∥∥wk+1
e

∥∥∥
2 +

∥∥∥wk
e

∥∥∥
2 −

∥∥∥Buk+1
e − wk

e

∥∥∥
2
]

. (3.23)

Now add (3.19), (3.21), and twice (3.16) and take into account the right side shown in
(3.23) to get

∥∥uk+1
e

∥∥2
Mk

+ ∥∥uk+1
e − uke

∥∥2
Nk

+ ρ
∥∥wk+1

e

∥∥2 + 1
ρ

∥∥bk+1
e

∥∥2 + 2Re 〈sk+1
e , wk+1

e 〉
= ∥∥uke

∥∥2
Nk

+ ρ
∥∥wk

e

∥∥2 + 1
ρ

∥∥bke
∥∥2 − ρ

∥∥Buk+1
e − wk

e

∥∥2 , (3.24)

where Mk was defined in (3.11).
Since uk+1 = uk + σkdk, it follows that uk+1

e − uke = σkdk . Hence, we have

∥∥∥uk+1
e − uke

∥∥∥
2

Nk
= σ 2

k

∥∥∥dk
∥∥∥
2

Nk
= σ 2

k 〈dk, Ckdk〉 − σ 2
k 〈dk, Hdk〉

= σk

(
δk ‖dk‖2 + ρ ‖Bdk‖2

)
− σk

2
(
‖Adk‖2 + ρ ‖Bdk‖2

)
.

Combine this with (2.9) to obtain

∥∥∥uk+1
e − uke

∥∥∥
2

Nk
� σk(2γ − 1)

(
δk ‖dk‖2 + ρ ‖Bdk‖2

)
� 0, (3.25)

since γ > 1/2. By Lemma3.3 in [9], the monotonicity of the subdifferential of φ

implies that
Re 〈sk+1

e , wk+1
e 〉 = Re 〈sk+1 − s̄, wk+1 − w̄〉 � 0. (3.26)

We drop the nonnegative terms ‖uk+1
e −uke‖2Nk

, ‖Buk+1
e −wk

e‖2, and Re 〈sk+1
e , wk+1

e 〉
in (3.24) to obtain an inequality:

∥∥∥uk+1
e

∥∥∥
2

Mk
+ ρ

∥∥∥wk+1
e

∥∥∥
2 + 1

ρ

∥∥∥bk+1
e

∥∥∥
2

�
∥∥∥uke

∥∥∥
2

Nk
+ ρ

∥∥∥wk
e

∥∥∥
2 + 1

ρ

∥∥∥bke 2
∥∥∥ . (3.27)

Notice that

Mk = Ck + H − 2ρB∗B = Ck + A∗A − ρB∗B 
 Ck − A∗A − ρB∗B = Nk .

It follows from (3.27) that

∥∥∥uk+1
e

∥∥∥
2

Mk
+ ρ

∥∥∥wk+1
e

∥∥∥
2 + 1

ρ

∥∥∥bk+1
e

∥∥∥
2

�
∥∥∥uke

∥∥∥
2

Mk
+ ρ

∥∥∥wk
e

∥∥∥
2 + 1

ρ

∥∥∥bke
∥∥∥
2
. (3.28)
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By Corollary3.5, 1/σk � 1/σk−1 and δk/σk � δk−1/σk−1 for k sufficiently large. This
implies that Mk satisfies Mk 
 Mk+1 for k sufficiently large. Hence, (3.28) implies
that for k sufficiently large,

Ek+1 � Ek, where Ek =
∥∥∥uke

∥∥∥
2

Mk
+ ρ

∥∥∥wk
e

∥∥∥
2 + 1

ρ

∥∥∥bke
∥∥∥
2
. (3.29)

This completes the proof of part 1.
Part 2 by (3.28) the nonnegative quantity Ek approaches a limit E∞ as k tends to

∞. We utilize the inequalities Mk 
 Mk+1 and Mk 
 Nk in (3.24) to obtain

Ek+1 +
∥∥∥uk+1

e − uke

∥∥∥
2

Nk
+ 2Re 〈sk+1

e , wk+1
e 〉 + ρ

∥∥∥Buk+1
e − wk

e

∥∥∥
2

� Ek .

By (3.25) and (3.26), all the terms on the left side of this inequality are nonnegative.
Since Ek approaches a limit, we deduce that

lim
k→∞

∥∥∥uk+1 − uk
∥∥∥
2

Nk
= lim

k→∞

∥∥∥Buk+1 − wk
∥∥∥ = lim

k→∞Re〈ske , wk
e 〉 = 0. (3.30)

We drop the B term in (3.25) and use the relation dk = (uk+1 − uk)/σk to obtain

∥∥∥uk+1
e − uke

∥∥∥
2

Nk
�

(
(2γ − 1)δk

σk

) ∥∥∥uk+1 − uk
∥∥∥
2
. (3.31)

By (3.30), the left side ‖uk+1
e − uke‖2Nk

tends to 0 as k tends to ∞. Since σk � 1, γ >

1/2, and δk � δ̄, it follows from (3.31) that

lim
k→∞

∥∥∥uk+1 − uk
∥∥∥ = 0. (3.32)

By the triangle inequality, we have

∥∥∥wk+1 − wk
∥∥∥ �

∥∥∥wk+1 − Buk+2
∥∥∥ +

∥∥∥B
(
uk+2 − uk+1

)∥∥∥ +
∥∥∥Buk+1 − wk

∥∥∥
=

∥∥∥wk+1
e − Buk+2

e

∥∥∥ +
∥∥∥B

(
uk+2 − uk+1

)∥∥∥ +
∥∥∥Buk+1

e − wk
e

∥∥∥ .

(3.33)

By (3.32), the middle term on the right side of (3.33) tends to 0; and by (3.30), the
first and last terms tend to zero. Hence, we conclude that

lim
k→∞

∥∥∥wk+1 − wk
∥∥∥ = 0. (3.34)

By (3.14), we have

∥∥∥bk+1 − bk
∥∥∥ = ρ

∥∥∥Buk+1 − wk+1
∥∥∥ � ρ

∥∥∥Buk+1 − wk
∥∥∥ + ρ

∥∥∥wk+1 − wk
∥∥∥ .
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By (3.30) and (3.34), both terms on the right side tend to zero, and consequently,

lim
k→∞

∥∥∥bk+1 − bk
∥∥∥ = 0 = lim

k→∞

∥∥∥Buk − wk
∥∥∥ . (3.35)

This completes the proof of part 2.
Part 3 since Mk 
 δ̄ I, it follows that

Ek =
∥∥∥uke

∥∥∥
2

Mk
+ ρ

∥∥∥wk
e

∥∥∥
2 + 1

ρ

∥∥∥bke
∥∥∥
2

� δ̄

∥∥∥uke
∥∥∥
2 + ρ

∥∥∥wk
e

∥∥∥
2 + 1

ρ

∥∥∥bke
∥∥∥
2
.

Since Ek is monotone decreasing and approaching a limit, it follows that the
sequence (uk, wk, bk) is uniformly bounded. Hence, a convergent subsequence
(ukl , wkl , bkl ), l � 1, exists that approaches a limit (u∞, w∞, b∞). By Theo-
rem23.4 in [20], ∂φ(w∞) is bounded. Let sk ∈ ∂φ(wk). By Corollary24.5.1 of [20],
for any λ > 0, there existsμ > 0 with the following property: if ‖w−w∞‖ � μ, then
for each s ∈ ∂φ(w), the distance from s to ∂φ(w∞) is less than or equal to λ. Now
choose L large enough that ‖wkl − w∞‖ � μ for all l � L . Corollary24.5.1 shows
that any sequence of subdifferentials skl ∈ ∂φ(wkl ) is bounded uniformly for l � L .

Hence, there exists a convergent subsequence, also denoted as skl for simplicity, which
converges to a limit s∞. By Theorem 24.4 in [20], we have s∞ ∈ ∂φ(w∞).

The left side of (3.12) tends to zero as k tends to ∞, since δk is bounded from
above by Lemma3.3, σk is bound from below by Lemma3.4, and ‖uk+1 − uk‖ tends
to zero by (3.32). Also, the Buk − wk term in (3.12) tends to 0 by (3.35). Hence, for
the convergent subsequence, (3.12) yields the following relation in the limit:

A∗ (
Au∞ − f

) + B∗b∞ = 0. (3.36)

Similarly, (3.13) and (3.35) in the limit are

s∞ − b∞ = 0 and Bu∞ − w∞ = 0. (3.37)

By (3.36) and (3.37), the limit (u∞, w∞, b∞) satisfies the first-order optimality con-
ditions (3.10) for (1.2).

The proof of the theorem starts with an arbitrary extreme point (ū, w̄, b̄). Let us
now consider the specific extreme point ū = u∞, w̄ = w∞, and b̄ = b∞ that is the
limit of a convergent subsequence (ukl , wkl , bkl ), l � 1. As noted above (3.11), Mk

is uniformly bounded. Since the sequence (ukle , w
kl
e , bkle ) converges to 0, it follows

that Ekl tends to 0. Since Ek+1 � Ek for each k sufficiently large, it follows that
the Ek tends to zero. Since Mk is also uniformly positive definite, we conclude that
(uke, wk

e , b
k
e ) tends to 0,which implies that (uk, wk, bk) converges to (ū, w̄, b̄).Since

φ is convex, (u∞, w∞) is a solution of (1.2) and u∞ is a solution of (1.1).
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4 Application to Parallel MRI

PMRI records the signal response from coils pointed at a target from different
directions. The data corresponds to part of the signal’s Fourier transform (k-space
data). By only recording some components of the Fourier transform, acquisition time
is reduced. By recording multiple data sets in parallel, temporal/spatial resolution is
increased, andmotion-related artifacts are suppressed [17,18,25]. Themissing Fourier
components lead to aliasing artifacts in images, which are removed through the image
reconstruction process [4,10,17,18,25]. One way to reconstruct the image employs
sensitivity encoding which uses knowledge of the coil sensitivities to separate aliased
pixels; this approach can be modeled as the minimization (1.1). The complexity of
solving (1.1) in PMRI is due not only to the nonsmoothness of the regularization term
φ(Bu), but to the ill-conditioning, huge size, and dense structure of A.

4.1 Model

In a K channel coil array, the undersampled k-space data fi acquired from the
ith channel, i = 1, · · · , K , is related to the original full field of view (FOV) image
u∗ ∈ C

N through the ith channel sensitivity si ∈ C
N by

PF (
si � u∗) = fi + ni , i = 1, · · · , K , (4.1)

where

• u∗ = (u∗
1, · · · , u∗

N )T ∈ C
N , u∗

i is the intensity of the ith pixel in the image and N
is the number of pixels in the image;

• F ∈ C
N×N is a 2D discrete Fourier transform;

• P is the undersampling matrix used by all channels, it is the identity matrix with
rows removed corresponding to the components of the Fourier transform that are
discarded;

• the symbol � is the Hadamard (or componentwise) product between two vectors;
• ni is complex-valued white Gaussian noise with zero mean and standard deviation
s for both real and imaginary parts. We used s = 0.7 × 10−3 in our numerical
experiments.

We define

A :=
⎡
⎢⎣

PF S1
...

PF SK

⎤
⎥⎦ and f :=

⎡
⎢⎣

f1
...

fK

⎤
⎥⎦ , (4.2)

where Si ∈ C
N×N is the diagonal matrix defined by Si = diag(si ). This defines

the quadratic term in (1.1). For the regularization term φ, we employ total variation
regularization: φ:C2×N → R and φ(∇u) = α

∑N
j=1 ‖(∇u) j‖ where (∇u) j ∈ C

2 is

the vector of finite differences along the coordinate directions of the image u ∈ C
N

at the jth pixel. The parameter α is the weight associated with the regularization term.
We solve (1.1) to recover u∗ using several different data sets.
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For total variation regularization, Bu = ∇u andN (B) is the set of constant images;
that is,N (B) consists of allmultiples of 1, the vectorwhose entries are all one. InPMRI
all the low frequency components of the Fourier transform are normally retained; in
particular, the component of the Fourier transform associated with the zero frequency
is retained. Since Si1 = si , the component of the Fourier transform F Si1 associated
with the zero frequency is the sum of the components of si . In practice, this sum never
vanishes, which implies that N (A) ∩ N (B) = {0}. Since ‖ · ‖ is strictly convex and
N (A) ∩ N (B) = {0}, it follows from Lemma3.1 that there exists a unique solution
to (1.1) in PMRI.

4.2 Data Sets

The three datasets used in our experiments are based on the following two dimen-
sional PMRI images.

Data 1 the k-space data corresponds to a sagittal brain image shown in Fig. 1(a)
which is fully acquired with an eight-channel head coil. By full acquisition we mean
that each receiver coil obtains the complete k-space data and hence a high resolu-
tion image. The image was acquired on a 3T GE system (GE Healthcare, Waukesha,
Wisconsin). The data acquisition parameters were the following: FOV 220mm2, size
512× 512× 8, repetition time (TR) 3 060ms, echo time (TE) 126ms, slice thickness
5mm, and flip angle 90◦. The phase encoding direction was anterior–posterior. This
data set was downsampled to size 256 × 256 × 8 to make the dimension of this test
set smaller than and different from that of the other test sets.

Data 2 the k-space data is associated with a sagittal brain image shown in Fig. 1(b)
which is fully acquired with an eight-channel head coil. The image was acquired on a
3T Phillips scanner (Phillips, Best, Netherlands). The acquisition parameters were the
following: FOV 205mm2, matrix 500× 512× 8, slice thickness 5mm, TR 3 000ms,
TE 85ms, and flip angle 90◦.

Data 3 the k-space data is associated with an axial brain image shown in Fig. 1(b)
which is fully acquired with an eight-channel head coil. The image was acquired on a
1.5T Siemens Symphony system (Siemens Medical Solutions, Erlangen, Germany).

(a) Sagittal Brain Image (b) Sagittal Brain Image (c) Axial Brain Image

Fig. 1 (a) Data 1; (b) Data 2 and (c) Data 3
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The acquisition parameters were the following: FOV 220mm2,matrix 256×512×8,
slice thickness 5mm, TR 53.5ms, TE 3.4ms, and flip angle 75◦.

For all three data sets, the ground truth or reference image is given by

u∗
j =

(
K∑
i=1

∣∣ui j
∣∣2

)1/2

,

where K is the number of channels and ui j is the jth component of the image as seen
on the ith channel. In the optimization problem (1.1), the matrix A is as given in (4.2),
while the vector f is obtained by solving for fi in (4.1).

4.3 Observed Data

In (4.1) we use a Poisson randommask (or trajectory) Pwith a 25% undersampling
ratio shown in Fig. 2(a) for Data 1 and Data 2. For Data 3, we use a radial mask (or
trajectory) with a 34% undersampling ratio shown in Fig. 2(b). The pixels in the figure
are white if the associated Fourier component is recorded and black otherwise. The
center of each figure corresponds to the lowest frequency Fourier components.

4.4 Algorithms Comparison

This section compares the performance of the ADAN algorithm to BOS [26] and
BOSVS [9] for image reconstruction problems arising in PMRI. For total variation reg-
ularization, the computation of the search direction dk in ADAN can be implemented
using a Fourier transform F . That is, as explained in [9,23], there is a diagonal matrix
D such that D = FB∗BF∗. Hence, we have

(
δk I + ρB∗B

)−1 = F∗ (δk I + ρD)−1 F and

dk = F∗ (δk I + ρD)−1 F∇Ψk .

(a) Poisson Trajectory (b) Radial Trajectory

Fig. 2 (a) Poisson random trajectory with 25% undersampling ratio; (b) radial trajectory with 34% under-
sampling
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The main difference between the BOSVS algorithm and the ADAN algorithm is
the computation of uk+1. In ADAN uk+1 = uk + σkdk, where σk is the stepsize. In
BOSVS uk+1 = uk + dk, where dk is initially computed by the same formula (4.3)
used in ADAN. If a convergence condition in BOSVS is satisfied, then the update
uk+1 = uk + dk is performed. If the convergence condition is not satisfied, then δk is
increased and dk is recomputed. This process of increasing δk and recomputing dk is
repeated until a convergence condition is satisfied. The δk adjustment process is the
following: set δk = η jδ0,k where η > 1 and j � 0 is the smallest integer such that
Qk+1 � −C/k2 where

Qk+1 = ξk Qk + Δk, ξk = min

{(
1 − k−1

)2
, 0.8

}
,

Δk = σ

(
δk

∥∥∥dk
∥∥∥
2 + ρ

∥∥∥Bdk + Buk − wk
∥∥∥
2
)

−
∥∥∥Adk

∥∥∥
2
. (4.3)

Here δ0,k is the same choice for δk used in ADAN. Although BOSVS performed well
in practice, one needs to choosemany parameters in order to achieve this performance.
In particular, choices are needed for η, ξk, σ, andC. And potentially, one may need to
compute several provisional dk before the subiteration terminates. Also, in BOSVS,
the wk update involves a proximal term with an associated proximal parameter β. For
different images, different choices for the parameters may be better than others. In
ADAN, these five parameters have been eliminated as well as the recomputation of
dk . ADAN has the same global convergence as that of BOSVS.

4.5 Parameter Settings

Table1 shows some of the parameter values used in BOS, BOSVS, and ADAN.
“NA” means that a parameter is not applicable to an algorithm. The ADAN parameter
τ should be larger than 1, while the parameter γ should be larger than 0.5. We choose
their values slightly above these lower bounds to guarantee convergence, while not
interfering with the performance of the algorithm. On the other hand, the convergence
of the BOSVS algorithm is sensitive to the choice of τ. As τ approaches one, the
convergence is often faster on average, but highly oscillatory. The choice τ = 1.1 is
a compromise between speed and stability. The parameter δmin must be positive to
ensure that the linear system for the search direction dk is invertible. δmin = 0.001 is
large enough to ensure invertibility.

The parameters α and ρ are common to all the algorithms, ADAN, BOS, and
BOSVS. α is the weight associated with the regularization term, while ρ is the penalty
in the augmentedLagrangian (1.3). The parameterα influences the quality of the recon-

Table 1 Parameter values for
BOS, BOSVS, and ADAN
algorithms

Algorithms τ γ η σ C ξk β

BOS NA NA NA NA NA NA 0
ADAN 1.01 0.5001 NA NA NA NA NA
BOSVS 1.1 NA 3 0.99 100 (4.3) 0
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structed image. As α decreases, more weight is given to the fidelity term ‖Au− f ‖2 in
the objective function, and as α increases, more weight is given to the regularization
term φ. We adjust α to achieve the smallest error ‖u − u∗‖ in the reconstructed image
u. Table2 shows how the relative image error ‖u − u∗‖/(√N‖u∗‖) depends on α for
the three data sets. Based on these results, we took α = 10−5.

To obtain a good estimate for the optimal objective in (1.1), we ran ADAN for
100 000 iterations. The optimal objective values for the three data sets were

Φ∗ = 0.266 5 (Data 1),

Φ∗ = 1.052 5 (Data 2),

Φ∗ = 1.047 2 (Data 3).

The penalty parameter ρ has a significant impact on convergence speed. To deter-
mine a good choice for this parameter, we timed how long it took ADAN to reduce the
objective error to within 1% of the optimal objective value. The algorithms are coded
in MATLAB, version 2011b, and run on a MacbookPro version 10.9.4 with a 2.5 GHz
Intel i5 processor. Table3 shows the number of seconds for each of the three data sets
and for ρ between 10−2 and 10−7. Based on these results, we took ρ = 10−4.

4.6 Experimental Results

This section compares the performance of the existing algorithms BOS andBOSVS
with the proposed algorithm ADAN. The initial guess for u1, b1, and w1 was zero
for all algorithms. Figure3 shows the objective value and error as a function of CPU
time. Observe that both BOSVS and ADAN converge much more quickly than BOS.

Table 2 Relative image error versus α for the three data sets

Data sets α

10−7 10−6 10−5 10−4 10−3

1 0.000 278 01 0.000 243 00 0.000 193 17 0.000 255 92 0.000 299 85
2 0.000 085 14 0.000 083 30 0.000 075 15 0.000 076 29 0.000 076 45
3 0.000 071 53 0.000 069 76 0.000 056 43 0.000 052 20 0.000 052 25

Table 3 CPU time in seconds to achieve 1% error versus ρ

Data sets ρ

10−7 10−6 10−5 10−4 10−3 10−2

1 7.968 7.622 8.381 6.531 6.945 13.632
2 50.834 32.876 37.359 38.805 40.659 62.200
3 6.033 6.037 6.065 6.080 6.092 6.565
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Hence, there seems to be a significant benefit from using a value for δk smaller than
the largest eigenvalue of A∗A. Although BOSVS and ADAN are competitive, ADAN
is slightly faster and much more stable than BOSVS. The BOSVS objective value can
increase or decrease by a factor of 10 in a few iterations.

Table4 compares the objective value and the numbers of matrix multiplication used
by BOS, BOSVS, and ADAN during 100s CPU time. BOS is able to perform more
matrix multiplications during the 100s, since the algorithm structure is somewhat
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Fig. 3 Comparison of objective values and objective error versus CPU time/s for Data 1, Data 2 and
Data 3
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simpler than either BOSVS or ADAN. On the other hand, the objective error is much
larger for BOS after 100s, when compared to either BOSVS or ADAN (see Fig. 3).

Figure4 displays the progression of images reconstructed by ADAN verses CPU
time. In the error plots, the pixels with the zero absolute error are black, and the pixels
with the largest error are white. The reconstructed images for other data sets are of
similar quality.

5 Conclusion

The ADAN algorithm was proposed and its global convergence was established
for inverse problems of the form (1.1). The algorithm was based on the ADMM
[12] and an approximation to Newton’s method in which a term in the Hessian is
replaced by a BB approximation [2], and a partial step is taken along the approximate
Newton search direction. When the algorithm was applied to PMRI reconstruction
problems, where A in the fidelity term is a large dense, and ill-conditioned matrix,
ADANwas more efficient than an algorithm [6,21,26] based on the proximal ADMM
and a fixed positive definite proximal term. In ADAN, the corresponding proximal

Table 4 Objective value (Obj) and the number of matrix multiplications (MM) between A or A′ and a
vector during 100s CPU time

Algorithms Data sets

1 2 3

Obj MM Obj MM Obj MM

BOS 0.267 113 2 031 1.089 897 441 1.047 307 383
BOSVS 0.266 780 1 873 1.055 905 382 1.047 307 352
ADAN 0.266 713 2 014 1.054 646 410 1.047 293 366

(a) 1 s (b) 5 s (c) 10 s (d) 15 s (e) 20 s

(f) 1 s (g) 5 s (h) 10 s (i) 15 s (j) 20 s

Fig. 4 Data 1: top row shows the image reconstruction by ADAN algorithm versus CPU time, while the
bottom row shows the absolute error for each reconstructed image

123



An Alternating Direction Approximate Newton Algorithm 161

term is indefinite; nonetheless, convergence was established and was observed to be
relatively fast in the numerical experiments of Sect. 4.

We also compared ADAN to BOSVS [9], a variable stepsize version of BOS which
also employs a BBHessian approximation. ADAN andBOSVSwere competitive with
each otherwith regards to speed. However, the algorithms differed significantly in their
stability. ADAN tended to converge nearly monotonically, while BOSVS exhibited
highly oscillatory convergence; the objective value in BOSVS could increase by more
than an order of magnitude within several iterations before dropping a similar amount
several iterations later. ADAN is much easier to implement than BOSVS, since the
BOSVS line search is replaced by a fixed stepsize in the approximate Newton search
direction, and many parameters have been eliminated. In particular, no estimates for
Lipschitz constants are required.
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