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Abstract. We analyze a decomposition algorithm for minimizing a quadratic objective function,
separable in x1 and x2, subject to the constraint that x1 and x2 are orthogonal vectors on the unit
sphere. Our algorithm consists of a local step where we minimize the objective function in either
variable separately, while enforcing the constraints, followed by a global step where we minimize
over a subspace generated by solutions to the local subproblems. We establish a local convergence
result when the global minimizers are nondegenerate. Our analysis employs necessary and sufficient
conditions and continuity properties for a global optimum of a quadratic objective function sub-
ject to a sphere constraint and a linear constraint. The analysis is connected with a new domain
decomposition algorithm for electronic structure calculations.
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1. Introduction. In [1] and [3] we developed a multilevel domain decompo-
sition algorithm for the electronic structure calculations which has been extremely
effective in computing electronic structure for large, linear polymer chains. Both
the computational cost and memory requirement scale linearly with the number of
atoms. Although this algorithm has been very effective in practice, a theory establish-
ing convergence has not yet been developed. The algorithm in [1, 3] was motivated
by a related decomposition algorithm for a quadratic programming problem with
an orthogonality constraint. In this paper, we develop a convergence theory for the
decomposition algorithm.

LetH1 andH2 be symmetric n by nmatrices. We consider the following quadratic
optimization problem:

min F (x1,x2) := xT
1H1x1 + xT

2H2x2(1.1)

subject to xT
1x1 = 1 = xT

2x2, xT
1x2 = 0.

In other words, we find orthogonal unit vectors x1 and x2 which minimize the sepa-
rable quadratic objective function. Our algorithm for (1.1) consists of a “local step”
where we minimize F over each variable separately, while enforcing the constraints,
followed by a “global step” where we optimize over a subspace generated by the it-
erates of the local step. There are two modes of the local step, a “forward” and a
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“reverse” mode. In consecutive iterations, we employ the forward mode followed by
the reverse mode. If xk = (xk1,xk2) is the iterate at step k, then the forward and the
reverse modes of the local step are the following:

forward

{
yk1 ∈ arg min {F (z,xk2) : ‖z‖ = 1, zTxk2 = 0},
yk2 ∈ arg min {F (yk1, z) : ‖z‖ = 1, zTyk1 = 0},

reverse

{
yk2 ∈ arg min {F (xk1, z) : ‖z‖ = 1, zTxk1 = 0},
yk1 ∈ arg min {F (z,yk2) : ‖z‖ = 1, zTyk2 = 0}.

(1.2)

Here and throughout the paper, ‖ · ‖ denotes the Euclidean norm.
The problem which must be solved in electronic structure calculations is more

general than (1.1), and the multilevel algorithm developed in [1, 3] is more complex
than (1.2). For example, in electronic structure calculations, H1 and H2 could be
of different dimensions, and the orthogonality condition xT

1x2 = 0 in (1.1) would be
replaced by the more general condition xT

1Px2 = 0, where P is rectangular. Nonethe-
less, the algorithm studied in this paper was the basis for the more general algorithm
developed in [1, 3], and our analysis is an initial step towards justifying and under-
standing the convergence properties of the more general algorithm.

One can think of either the forward or reverse modes as a block Gauss–Seidel
iteration [5, p. 323]. In the forward mode, we first hold the second block of variables
xk2 fixed, and we optimize over the first block of variables to obtain yk1; in the second
step, we hold the first block of variables fixed at yk1, and we optimize over the second
block to obtain yk2.

In general, the local steps converge to a limit which may not be a stationary point
of (1.1). To achieve convergence to a stationary point for (1.1), each local step, either
forward or reverse, is followed by a “global step” where we minimize F over the sub-
space spanned by the following four vectors, while enforcing the constraints of (1.1):

[
yk1

0

]
,

[
yk2

0

]
,

[
0
yk1

]
,

[
0
yk2

]
.(1.3)

After imposing the two normalization conditions xT
1x1 = 1 and xT

2x2 = 1 and the
orthogonality condition xT

1x2 = 0 on the subspace, we are left with a one-dimensional
curve of feasible points in the subspace spanned by the four vectors (1.3). This curve
can be expressed in the following way:

zk(s) =
1√

1 + s2
(yk + sd),(1.4)

where

d = ±
[

yk2

−yk1

]
and yk =

[
yk1

yk2

]
.

The vector zk(s) lies in the space spanned by the four vectors in (1.3) for each choice
of s; the orthogonality condition holds since

(1 + s2)zTk1zk2 = (yk1 ± syk2)
T(yk2 ∓ syk1)

T = ±s∓ s = 0;

and the factor 1/
√
1 + s2 ensures that the two components of zk are unit vectors.
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Let Fk(s) = F (zk(s)) be the objective function evaluated along the search direc-
tion. For convenience, the sign in the definition of d in the global step is chosen so
that F ′

k(0) ≤ 0. At iteration k in the global step, we set

xk+1 = z(sk),(1.5)

where sk is the stepsize.
The motivation for optimizing over the subspace spanned by the four vectors (1.3)

is the following: First, the subspace should include the original vectors (yk1,0) and
(0,yk2) to ensure that the objective function value decreases. In order to further
broaden the search space, we should consider vectors orthogonal to the original vec-
tors. Since the vectors (yk2,0) and (0,yk1) are orthogonal to the original vectors,
they are suitable for inclusion in the subspace. Finally, as we will see in section 4,
the optimality condition associated with the global step and with these four vectors
provides a link between the subproblems which is exploited to obtain convergence.

Notice that when H1 and H2 are 2 by 2 matrices, the four vectors in (1.3) span
R

4. Hence, in the 2 by 2 case, the global step yields a global optimum for (1.1). More
generally, we find that the local steps steer the iterates into a subspace associated
with the eigenvectors of H1 and H2 corresponding to the smallest eigenvalues, while
the global step finds the best point within this low dimensional subspace.

Ideally, the stepsize sk is the global minimum of Fk(s) over all s. However, the
convergence analysis for this “optimal step” is not easy since ‖yk−xk+1‖ could be on
the order of 1 for all k. For example, if H1 = H2, then Fk(s) is constant, independent
of s; consequently, any choice of s is optimal, and there is no control over the iteration
change. To ensure global convergence of the algorithm, we restrict the stepsize to an
interval [0,−ρF ′

k(0)], where ρ is a fixed positive scalar. In other words, we take

sk ∈ arg min {Fk(s) : s ∈ [0,−ρF ′
k(0)]}.(1.6)

Notice that sk = 0 when F ′
k(0) = 0, and the global step is skipped. In practice,

we observe convergence when sk is a global minimizer of Fk. The constraint on the
stepsize is needed to rigorously prove convergence of the iteration. For reference, the
complete algorithm is recapped in Figure 1.1.

As we show later in (4.3), F ′
k(0) tends to zero. Hence, the constraint s ∈

[0,−ρF ′
k(0)] on the stepsize in the line search (1.6) implies that the iteration dif-

ference xk+1 − yk tends to zero. Another approach for controlling the stepsize is to
employ a trust region scheme [4, p. 129] where we minimize F in the subpace (1.3)
and a ball of radius ρk centered at yk. If ρk tends to zero, then the change xk+1 −yk

again tends to zero. The update (1.6) amounts to a trust region step with a special
choice for the trust region radius.

Since F is a pure quadratic, the objective function satisfies

F (x1,x2) = F (−x1,x2) = F (x1,−x2) = F (−x1,−x2).

Hence, if ykj is a minimum in a subproblem at iteration k, then so is −ykj . In
order to carry out the analysis, it is convenient to choose the signs so that following
inequalities hold.{

xT
k2H1yk1 ≥ 0 and yT

k1H2yk2 ≥ 0 (forward mode),

xT
k1H2yk2 ≥ 0 and yT

k2H1yk1 ≥ 0 (reverse mode).
(1.7)
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for k = 0, 1, 2, . . .
If k is even, perform a forward step:

yk1 ∈ arg min {F (z,xk2) : ‖z‖ = 1, zTxk2 = 0},
yk2 ∈ arg min {F (yk1, z) : ‖z‖ = 1, zTyk1 = 0},

Else perform a reverse step:
yk2 ∈ arg min {F (xk1, z) : ‖z‖ = 1, zTxk1 = 0},
yk1 ∈ arg min {F (z,yk2) : ‖z‖ = 1, zTyk2 = 0}.

Global step: Set xk+1 = z(sk), where

zk(s) =
1√

1+s2
(yk + sd), d = ±

[
yk2

−yk1

]
,

and
sk ∈ arg min {Fk(s) : s ∈ [0,−ρF ′

k(0)]}, Fk(s) = F (zk(s)).
The sign of d is chosen so that F ′

k(0) ≤ 0.
end

Fig. 1.1. The decomposition algorithm.

With this sign convention, the multipliers associated with the orthogonality con-
straints in the local step are always nonnegative as shown in section 4.

Our analysis establishes local, and in some cases global, convergence of the de-
composition algorithm of Figure 1.1 to a stationary point. In Corollary 2.3 we show
that if y = (y1,y2) is a local minimizer for (1.1), then there exist scalars λ1, λ2, and
μ satisfying the first-order condition[

H1 0
0 H2

] [
y1

y2

]
=

[
λ1I μI
μI λ2I

] [
y1

y2

]
,(1.8)

where λ1 and λ2 lie between the smallest and second smallest eigenvalues of H1 and
H2, respectively. The condition (1.8) together with the requirement that y1 and y2

are feasible in (1.1) form the KKT (Karush–Kuhn–Tucker) conditions.
Solutions of the subproblems (1.2) satisfy the following conditions: There exist

scalars λk1, μk1, λk2, and μk2 such that

forward

[
H1 0
0 H2

] [
yk1

yk2

]
=

[
λk1yk1 + μk1xk2

μk2yk1 + λk2yk2

]
,

reverse

[
H1 0
0 H2

] [
yk1

yk2

]
=

[
λk1yk1 + μk1yk2

μk2xk1 + λk2yk2

]
.

(1.9)

A fundamental difference between the first-order optimality conditions for the original
optimization problem (1.1) and the subproblems (1.2) is that μk1 may not equal μk2 in
the subproblems. Hence, a key objective in the analysis is to show that the multipliers
in the subproblems approach a common limit. As will be seen in the analysis that
follows, we are able to bound the difference μk1 − μk2 in terms of F ′

k(0), which tends
to zero. Hence, as F ′

k(0) tends to zero, the iteration change xk+1 − yk tends to zero,
according to (1.6), and the multiplier difference μk1 − μk2 tends to zero.

The local step in the decomposition algorithm requires the solution of a quadratic
program of the following form:

min xTHx subject to ‖x‖ = 1, aTx = 0,(1.10)
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where a ∈ R
n with ‖a‖ = 1, and H is symmetric. In the decomposition algorithm, H

is Hi, and a is either xki or yki, i = 1 or 2. Since H is symmetric, we can perform
an orthogonal change of variables to diagonalize H. Hence, without loss of generality,
we can assume that H is diagonal with the ordered eigenvalues

ε1 ≤ ε2 ≤ · · · ≤ εn.(1.11)

The analysis of the decomposition algorithm is based on an analysis of how the
multiplier for the constraint aTx = 0 in (1.10) depends on a. If H is a multiple
of the identity, then this multiplier vanishes, and the dependence of the multiplier
on a is trivial. Except in this special case, the dependence of the multiplier on a
is nontrivial. For almost every choice of a, the multiplier is unique and depends
continuously on a. Suppose that H is not a multiple of the identity, and let εs denote
the smallest eigenvalue of H which is strictly larger than ε1. The degenerate choices
of a where uniqueness and continuity are lost correspond to those a �= 0 which satisfy
the equations

∑
εi=ε1

a2i
εs − ε1

=
∑
εi>εs

a2i
εi − εs

, ai = 0 when εi = εs.(1.12)

We say that a is degenerate for H if (1.12) holds, and conversely, a is nondegenerate
if (1.12) is violated or H is a multiple of the identity. The degenerate choices of a
compose a set of measure 0. We say that (y1,y2) is nondegenerate for (1.1) if y1 is
nondegenerate for H2 and y2 is nondegenerate for H1. If H1 and H2 commute, then
the solution to (1.1), given in section 3, is nondegenerate.

Our main result is the following theorem.
Theorem 1.1. If the global minimizers of (1.1) are all nondegenerate, then for

any starting guess sufficiently close to the solution set, there exists a subsequence of
the iterates of the decomposition algorithm of Figure 1.1 that approaches a stationary
point for (1.1).
The proof of Theorem 1.1 will be given in section 4.

Remark 1. In the special case where H1 = H2 and ε3 − ε2 ≥ ε2 − ε1, it is shown
in [2] that the decomposition algorithm is globally convergent for any starting point.
On the other hand, we observe in section 5 that when ε3 − ε2 < ε2 − ε1, then for
specially chosen starting points, the algorithm could converge to a stationary point
which is not a global minimum.

In our local convergence result Theorem 1.1, the requirement for the starting
point ensures that the iterates avoid degenerate points for either H1 or H2. Let Cd

denote the minimum value for the objective function of (1.1) subject to the additional
constraint that either x1 is degenerate for H2, or x2 is degenerate for H1. Since the
global minimizers of (1.1) are nondegenerate, Cd is strictly larger than the minimum
value for the objective function. If the objective function at the starting point is
strictly less than Cd, then the iterates are bounded away from degenerate points for
either H1 or H2.

The paper is organized as follows. In section 2 we develop necessary and sufficient
optimality conditions for a quadratic optimization problem with both a sphere and an
affine constraint, and we develop necessary optimality conditions for (1.1). In section 3
we apply the optimality theory to obtain an optimal solution for the local subproblem,
and we show that the multipliers in the subproblems possess a continuity property.
The optimality theory also yields the solution to the original problem (1.1) when H1
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and H2 commute. In section 4 we prove our local convergence result Theorem 1.1. In
section 5 we investigate the global convergence of the decomposition algorithm using
a series of numerical examples.

2. Optimality conditions. Each step of the domain decomposition algorithm
requires the solution of a sphere-constrained, quadratic programming problem with a
linear constraint. This leads us to consider a problem with the structure

min f(x) :=
1

2
xTHx− hTx subject to xTx = 1, Ax = b,(2.1)

where A is m by n, h ∈ R
n, and b ∈ R

m. The local steps of our decomposition
algorithm correspond to the case h = 0,m = 1, and b = 0. Our analysis in this section,
however, applies to the more general quadratic cost function and linear constraints
appearing in (2.1).

The following result gives necessary and sufficient conditions for a point to be a
global minimum. Without the linear constraint, this result is known (see [7]). We give
a slightly different analysis which also takes into account linear constraints. Recall
that at a local minimizer where a constraint qualification holds, the Hessian of the
Lagrangian is typically positive semidefinite over the tangent space associated with
the constraints, In (2.1) there is both the linear constraint Ax = b and the sphere
constraint xTx = 1. If y is a global minimizer for (2.1) and λ is the Lagrangemultiplier
for the sphere constraint, then the second-order necessary optimality condition is that
the first-order condition (1.8) holds, and

dT(H− λI)d ≥ 0 whenever Ad = 0 and yTd = 0.

In (2.3), we claim that the condition yTd = 0 can be dropped, and the Hessian of the
Lagrangian is positive semidefinite over a larger space, the null space of A.

Proposition 2.1. Suppose that y is feasible in (2.1). A necessary and sufficient
condition for y to be a global minimizer is that there exist λ ∈ R and μ ∈ R

m such
that

Hy = h+ yλ+ATμ(2.2)

and

dT(H− λI)d ≥ 0 whenever Ad = 0.(2.3)

Proof. Let L : R× R
m × R

n → R be the Lagrangian defined by

L(λ,μ,x) = f(x) +
λ

2
(1− xTx) + μT(b−Ax).

First, suppose that there exist λ ∈ R and μ ∈ R
m such that (2.2) and (2.3) hold. For

any feasible x for (2.1), a Taylor expansion of L around y yields

f(x) = L(λ,μ,x)

= L(λ,μ,y) +∇xL(λ,μ,y)(x − y) +
1

2
(x − y)T(H− λI)(x − y)

= f(y) +
1

2
(x− y)T(H− λI)(x − y).(2.4)

The first-derivative term in (2.4) vanishes due to (2.2). Since x is feasible, A(x−y) =
0. Hence, (2.3) and (2.4) imply that f(x) ≥ f(y), which shows that y is a global
minimizer for (2.1).
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Conversely, suppose that y is a global minimizer for (2.1). Condition (2.2) is
the usual first-order optimality condition at y. This condition holds if the following
“constraint qualification” is satisfied (e.g., see [6]): For each vector d in the tangent
space T at y, there exists a feasible curve approaching y along the direction d where

T = {d ∈ R
n : yTd = 0, Ad = 0}.

Given d ∈ T , such a feasible curve is given by the formula

x(t) = x0 +

(
y + td− x0

‖y + td− x0‖

)
‖x0 − y‖,(2.5)

where t is a scalar and x0 is the point satisfying the linear equation Ax = b, which is
closest to the origin. Since the expression in parentheses in (2.5) lies in the null space
of A and since Ax0 = b, it follows that Ax(t) = b for each choice of t. Since x0 is
orthogonal to the null space of A, it follows from the Pythagorean theorem that x(t)
is a unit vector for each choice of t. Differentiating x(t), we obtain

x′(0) = d− (y − x0)

(
(y − x0)

Td

‖y− x0‖2

)
.

Since d ∈ T , yTd = 0. Since x0 is orthogonal to the null space of A and Ad = 0, we
have xT

0d = 0. Hence, x′(0) = d, and there exists a feasible curve approaching y in
the direction d. This verifies the constraint qualification for (2.1); consequently, the
first-order condition (2.2) is satisfied for some λ ∈ R and μ ∈ R

m.
By (2.4), the first-order optimality condition (2.2), and the global optimality of

y, we have

(x− y)T(H− λI)(x − y) = 2(f(x)− f(y)) ≥ 0(2.6)

whenever x is feasible in (2.1). Suppose that Ad = 0. If, in addition, dTy = 0, then
d ∈ T . Earlier we observed that when d ∈ T , x(t) is feasible in (2.1) for all choices of t.
Since x(t) is feasible, we can substitute x = x(t) in (2.6). Since x(t)−y = td+O(t2),
it follows from (2.6), after dividing by t2 and letting t approach 0+, that (2.3) holds.
If dTy �= 0, then d �∈ T and ‖y + td‖ < 1 for a suitable choice of t near 0. Increase
the magnitude of t until ‖y + td‖ = 1. Substituting x = y + td in (2.6) gives
(2.3).

We now obtain bounds on the location of the multiplier λ associated with (2.1).
Proposition 2.2. If the eigenvalues of H are arranged in increasing order as in

(1.11) and if A has rank k ≥ 1, then λ ≤ εk+1 when (2.3) holds. Moreover, if h = 0
and b = 0 and y is a global minimizer in (2.1), then λ ≥ ε1.

Proof. If W is the k+1 dimensional space spanned by the eigenvectors associated
with the k + 1 smallest eigenvalues of H, then we have

εk+1 = max{vTHv : v ∈ W , ||v|| = 1}.(2.7)

Since A has rank k ≥ 1, the dimension of the null space of A is n−k, and there exists
a unit vector v which lies both in the null space of A and in W . Since Av = 0, the
second-order condition (2.3) and (2.7) yield

εk+1 ≥ vTHv ≥ λ.
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If h = 0 and b = 0, then the first-order condition (2.2) implies that

λ = yTHy ≥ min{vTHv : ‖v‖ = 1} = ε1.

Next, we focus on the original two-variable problem (1.1).
Corollary 2.3. If (y1,y2) is a local minimizer for (1.1), then there exist λ1,

λ2, and μ such that (1.8) holds. If y is a global minimizer for (1.1), then for i = 1, 2,
we have λi ∈ [εi1, εi2], where εij is the j-smallest eigenvalue of Hi,

εi1 ≤ εi2 ≤ · · · ≤ εin.(2.8)

Proof. The gradients of the constraints for (1.1) at y are multiples of the three
vectors [

y1

0

]
,

[
0
y2

]
,

[
y2

y1

]
.

Since these vectors are orthogonal, they are linearly independent. Since the “linear
independence constraint qualification” is satisfied, the first-order optimality condition
(1.8) holds for suitable choices of λ1, λ2, and μ. If y is a global minimizer of (1.1),
then yi is a global minimizer of the problem

min xTHix subject to xTx = 1, zTx = 0,

where z = y2 when i = 1, and where z = y1 when i = 1. We apply Proposition 2.2
with k = 1 to obtain λi ∈ [εi1, εi2], i = 1, 2.

3. The local step and continuity. In each step of the domain decomposition
algorithm, we must solve a quadratic programming problem of the form (1.10). After
an orthogonal change of variables, we can assume, without loss of generality, that H
is diagonal with the ordered eigenvalues (1.11) on the diagonal and ‖a‖ = 1. Using
Propositions 2.1 and 2.2, we now determine the optimal solutions to (1.10). In the
special case h = 0 and A = aT, the first-order optimality conditions (2.2) reduce to

Hy = yλ+ aμ.(3.1)

Case 1. ε1 = ε2. By Proposition 2.2, the multiplier λ of Proposition 2.1 is λ = ε1 =
ε2. Define the set

Ei = {j : εj = εi}.

If μ �= 0, then by (3.1) we must have ai = 0 for all i ∈ E1. If i �∈ E1, then

yi =
μai

εi − ε1
and aTy = μ

∑
i�∈E1

a2i
εi − ε1

�= 0,(3.2)

which violates the orthogonality condition aTy = 0. Hence, μ = 0, and all y
satisfying the following conditions are solutions to (1.10).

yi = 0 if i �∈ E1, aTy = 0, ‖y‖ = 1.(3.3)

Observe that there is an infinite set of solutions y while the multipliers λ and
μ are unique.
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Case 2. ε1 < ε2, and a1 = 0. If λ > ε1, then the second-order condition (2.3) is
violated by the vector d1 = 1 and di = 0 for i > 1. Hence, λ = ε1. As in Case
1, the orthogonality condition aTy = 0 is violated unless μ = 0. The solution
is again given by (3.3), and the multipliers are λ = λ1 and μ = 0.

Case 3. ε1 < ε2, and a1 �= 0. We first show that λ > ε1. Suppose, to the contrary,
that λ = ε1. The first component of (3.1) implies that μ = 0. Hence, (3.1)
reduces to Hy = ε1y. Since H is diagonal and εi > ε1 for i > 1, we conclude
that yi = 0 for i > 1. Hence, y1 = ±1 since y is a unit vector. However, a
vector of this form violates the orthogonality condition aTy = 0 when a1 �= 0.
This gives a contradiction, so we have λ > ε1.
(a) ai �= 0 for some i ∈ E2. We show that λ < ε2. Suppose, to the

contrary, that λ = ε2. Since a1 �= 0 and ai �= 0 for some i ∈ E2, the
second-order condition (2.3) is violated by taking d to be completely
zero except for components 1 and i. Since ε1 < λ < ε2, (3.1) can be
solved for y as follows:

y = μ(H− λI)−1a.(3.4)

If μ = 0, then y = 0, which violates the constraint yTy = 1. We combine
the expression (3.4) with the orthogonality condition aTy = 0 and the
fact that μ �= 0 to obtain the equation

g(λ) :=

n∑
i=1

a2i
εi − λ

= 0.(3.5)

Observe that g is strictly monotone increasing on the interval (ε1, ε2),
and g(ε+1 ) = −∞ since a1 �= 0, while g(ε−2 ) = +∞ since a2 �= 0. There
exists a unique zero λ of g in (ε1, ε2). The solution to (1.10) is

yi =
μai

εi − λ
, where μ2 =

(
n∑

i=1

a2i
(εi − λ)2

)−1

= g′(λ)−1.(3.6)

The equation for μ2 is obtained from the requirement that yTy = 1.
Notice that both the solution y and the multiplier μ are unique to within
sign.

(b) ai = 0 for all i ∈ E2, and g(ε2) < 0. We show that λ = ε2 and μ = 0.
By (3.1), we have

yi =
μai

εi − λ
when i �∈ E2.

If μ �= 0, then the orthogonality condition aTy = 0 reduces to (3.5),
which has no solution on (ε1, ε2) since g is monotone on this interval,
g(ε+1 ) = −∞, and g(ε2) < 0. Hence, μ = 0. If λ < ε2, then (3.4) implies
that y = 0, which violates the constraint yTy = 1. Hence, λ = ε2, and
μ = 0. The solution consists of all vectors y satisfying

yi = 0 if i �∈ E2, ‖y‖ = 1.(3.7)

Notice that λ and μ are again unique.
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(c) ai = 0 for all i ∈ E2, and g(ε2) > 0. First, suppose that μ �= 0.
Since g(ε+1 ) = −∞ while g(ε2) > 0, g in (3.5) has a unique zero on
(ε1, ε2). Hence, one solution to (3.1) is given by (3.6). We now consider
the possibility that μ = 0 at a global minimum. We will show that
this leads to a contradiction. Consequently, there is a unique (to within
sign) global minimizer for (1.10) given by (3.6). If μ = 0, then by (3.1),
(εi − λ)yi = 0 for all i, which implies that yi = 0 for i �∈ E2 since
ε1 < λ ≤ ε2. Since ‖y‖ = 1, it follows that λ = ε2 (or else y = 0,
violating the condition ‖y‖ = 1). We now show that the second-order
condition (2.3) is violated for the choice

di =
ai

εi − γ
,

where γ is the unique zero of g on the interval (ε1, ε2). This choice for
d satisfies the condition aTd = 0 since g(γ) = 0. Since γ < ε2, we have

dT(H− λI)d = dT(H− ε2I)d =

n∑
i=1

d2i (εi − ε2)

=
∑
i�∈E2

a2i (εi − ε2)

(εi − γ)2
<
∑
i�∈E2

a2i (εi − γ)

(εi − γ)2
= g(γ) = 0.

This violates the second-order condition (2.3).
(d) ai = 0 for all i ∈ E2, and g(ε2) = 0. This is the degenerate case

introduced in section 1. We first observe that λ = ε2. Suppose, to the
contrary, that λ < ε2. By (3.1), y is given by (3.4). If μ �= 0, then
the orthogonality condition gives (3.5), which has no solution on (ε1, ε2)
since g is monotone and g(ε2) = 0. Consequently, μ = 0 and (3.4)
implies that y = 0, violating the constraint yTy = 1. Thus λ = ε2.
By (3.1),

yi =
μai

εi − ε2
for i �∈ E2.(3.8)

For i ∈ E2, the first-order condition (2.2) provides no information con-
cerning yi since both sides of the equation vanish identically as follows:

(εi − ε2)yi = μai = 0.

The general solution is the following. First, choose any value for yi,
i ∈ E2 such that ∑

i∈E2

y2i ≤ 1.

Then choose μ in (3.8) such that ‖y‖ = 1. In other words, we choose μ
so that

μ2 =
1−

∑
i∈E2

y2i
g′(ε2)

.

Notice that λ is unique in the degenerate case, while both μ and y are
not unique.
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Lemma 3.1. For the optimization problem (1.10) and a global minimizer y, the
multiplier λ associated with the constraint yTy = 1 is a Lipschitz continuous function
of a on the unit sphere. With appropriate sign, the corresponding multiplier μ associ-
ated with the orthogonality constraint aTy = 0 is continuous at any nondegenerate a.

Proof. In Case 1, Lipschitz continuity is trivially satisfied, so we focus on the
situation where ε1 < ε2. Since the intersection of the hyperplanes a1 = 0 or a2 = 0
with the unit sphere are sets of measure zero on the surface of the sphere, Lipschitz
continuity over the complement implies Lipschitz continuity over the entire sphere
(by continuity). Hence, we restrict our attention to ε1 < ε2, a1 �= 0, and a2 �= 0. In
this case, λ is the unique solution to (3.5) on the interval (ε1, ε2). Differentiating (3.5)
gives

∂λ

∂ai
=

2ai
(λ− εi)g′(λ)

.(3.9)

If for some i we have ∑
j∈Ei

a2j ≥ 1/2,(3.10)

then

|εi − λ|g′(λ) =
(

1

|εi − λ|

)⎛⎝∑
j∈Ei

a2j

⎞
⎠+ |εi − λ|

∑
j �∈Ei

a2j
(εj − λ)2

(3.11)

≥
(

1

|εi − λ|

)∑
j∈Ei

a2j ≥ 1

2|εi − λ| ≥
1

2(εn − ε1)
.

It follows from (3.9) that when (3.10) holds,∣∣∣∣ ∂λ∂ai
∣∣∣∣ ≤ 4(εn − ε1).

If ai = 0, then ∂λ/∂ai = 0 by (3.9). Now, suppose that ai �= 0 and (3.10) is violated.
By (3.9) and (3.11), we have∣∣∣∣ ∂λ∂ai

∣∣∣∣ = 2|ai|

1

|εi − λ|

⎛
⎝∑

j∈Ei

a2j

⎞
⎠+ |εi − λ|

⎛
⎝∑

j �∈Ei

a2j
(εj − λ)2

⎞
⎠

≤ 2(
|ai|

|εi − λ|

)
+

|εi − λ|
|ai|

⎛
⎝∑

j �∈Ei

a2j
(εn − ε1)2

⎞
⎠

≤ 2(
|ai|

|εi − λ|

)
+

(
|εi − λ|
|ai|

)(
1

2(εn − ε1)2

) .(3.12)

The last inequality is due to the assumption that (3.10) is violated, which implies
that ∑

j �∈Ei

a2j ≥ 1/2.
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The denominator contains both |ai|/|εi − λ| and its reciprocal |εi − λ|/|ai|. Suppose
that

|ai|
|εi − λ| ≥ 1.(3.13)

By (3.12), the partial derivative ∂λ/∂ai is bounded by 2 in magnitude since both
terms in the denominator of (3.12) are positive and one of the terms is greater than
or equal to 1. Conversely, if (3.13) is violated, then we drop the first term in the
denominator of (3.12) to obtain ∣∣∣∣ ∂λ∂ai

∣∣∣∣ ≤ 4(εn − ε1)
2.

At this point, we have shown that there exists a constant β with the property
that if a lies on the unit sphere with a1 �= 0 and a2 �= 0, then∣∣∣∣ ∂λ∂ai

∣∣∣∣ ≤ β

for each i. Observe that the solution λ to (3.5) does not change if a is multiplied by
a nonzero scalar. Hence, for any nonzero a (not necessarily on the unit sphere) with
a1 �= 0 and a2 �= 0, we have ∣∣∣∣ ∂λ∂ai

∣∣∣∣ ≤ β/‖a‖.

Consequently, there exist constants r1 < 1 < r2 with the property that∣∣∣∣ ∂λ∂ai
∣∣∣∣ ≤ 2β

whenever r1 ≤ ‖a‖ ≤ r2, a1 �= 0, and a2 �= 0. Given any two points on the unit sphere,
we can connect them by a piecewise linear path which lies within the sphere of radius
r2 centered at the origin and outside the concentric sphere of radius r1 < 1 < r2.
Due to the bound on the partial derivatives of λ, the change in λ across each line
segment is bounded by 2β times the length of the line segment. Since the number of
line segments is bounded, independent of the location of the points, we deduce that
λ is a Lipschitz continuous function of a on the unit sphere.

Now consider the multiplier μ. If ε1 = ε2, then μ = 0 (Case 1) and there is nothing
to prove. Next, we focus on Case 3a where μ is given by (3.6). For λ ∈ (ε1, ε2), g

′ is
bounded away from zero. For example,

g′(λ) =
n∑

i=1

a2i
(εi − λ)2

≥ 1

(εn − ε1)2
.

Let λ(a) denote the unique multiplier associated with any given a. Since λ is a
Lipschitz continuous function of a, it follows that μ is continuous at any point a
where λ(a) �= εi for all i. Since λ ∈ [ε1, ε2], the only potential points of discontinuity
are those points b for which λ(b) = εi, i = 1, or i ∈ E2. If b1 �= 0 or bi �= 0 for any
i ∈ E2, then μ(a) approaches 0 as a approaches b due to the pole in the denominator
of g′. Hence, μ is continuous at b.
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If b1 = 0 and λ(b) = ε1, then we use (3.5) to solve for a21/(ε1 − λ).

a21
λ− ε1

=
∑
i>1

a2i
εi − λ

(3.14)

By assumption, λ(a) approaches ε1 as a approaches b. Since the right side of (3.14)
is continuous when λ is near ε1, the limit of the left side as a approaches b is

∑
i>1

b2i
εi − ε1

> 0

since b1 = 0 and ‖b‖ = 1. Consequently, by (3.6), μ tends to zero as a approaches b,
the same limit given in Case 2.

Finally, suppose that bi = 0 for all i ∈ E2 and λ(b) = ε2. Again, by (3.5), we have(
1

λ− ε2

)∑
i∈E2

a2i =
∑
i�∈E2

a2i
εi − λ

.(3.15)

According to the statement of the lemma, we only need to prove continuity at non-
degenerate b, in which case the right side does not vanish at λ = ε2. Hence, as a
approaches b, the right side approaches the limit

∑
i�∈E2

b2i
εi − ε2

�= 0.

Consequently, by (3.6), μ tends to zero as a approaches b, the same limit given in
case 3(b). Note that Case 3(c) is not a point of discontinuity of μ since λ < ε2. This
completes the proof.

Now let us consider the original problem (1.1). If H1 and H2 commute, then
they are simultaneously diagonalizable by the same eigenvector matrix [8, p. 249]. In
this case, we can perform an orthogonal change of variables to reduce H1 and H2 to
diagonal matrices. The solution is as follows:

Corollary 3.2. Suppose Hi, i = 1 and 2, are diagonal with diagonal element
εij, 1 ≤ j ≤ n, arranged in increasing order. The minimum cost in (1.1) is

ε11 + ε22 or ε12 + ε21,

whichever is smaller. In the first case, an associated solution to (1.1) is

y11 = 1, y22 = 1, and yij = 0 otherwise.

In the latter case, an associated solution to (1.1) is

y12 = 1, y21 = 1, and yij = 0 otherwise.

Proof. First, let us consider the case where the diagonal elements ofHi are strictly
separated as follows:

εi1 < εi2 < · · · < εin

for i = 1, 2. By the first-order optimality conditions (1.8) and by the diagonal struc-
ture of the Hi, we have

(ε1j − λ1)y1j = μy2j and (ε2j − λ2)y2j = μy1j .
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We combine these equations to obtain[
(ε1j − λ1)(ε2j − λ2)− μ2

]
y1j = 0 =

[
(ε1j − λ1)(ε2j − λ2)− μ2

]
y2j .(3.16)

By Corollary 2.3, the multipliers λ1 and λ2 satisfy λi ∈ [εi1, εi2]. Hence, the
coefficients of y1j and y2j in (3.16) are strictly increasing functions of j ∈ [2, n]. It
follows that these coefficients can vanish for at most one j ∈ [2, n] and possibly for
j = 1. When the coefficients of y1j and y2j do not vanish in (3.16), we must have
y1j = y2j = 0. In summary, at the global optimum, all the components of yij vanish
except possibly y11, y21, y1j, and y2j for some j ∈ [2, n]. We focus on the case j = 2
since j > 2 leads to a larger cost.

Define x2
1j = vj and x2

2j = wj for j = 1, 2. The optimization problem (1.1) with
Hi diagonal and xij = 0 for j > 2 reduces to

min v1ε11 + v2ε12 + w1ε21 + w2ε22
subject to v1 + v2 = 1 = w1 + w2,

v1w1 = v2w2, v1, v2, w1, w2 ≥ 0.

The equation v1w1 = v2w2 is the orthogonality condition x11x21 = −x12x22 squared.
We substitute v1 = 1− v2 and w1 = 1− w2 to reduce the optimization problem to

min ε11 + ε21 + v2(ε12 − ε11) + w2(ε22 − ε21)(3.17)

subject to v2 + w2 = 1, v2 ≥ 0, w2 ≥ 0.

We substitute v2 = 1−w2 in the objective function to further reduce the optimization
problem to

min ε21 + ε12 + w2(ε11 + ε22 − ε21 − ε12)

subject to 0 ≤ w2 ≤ 1.

Since the cost function is linear in w2, the minimum is achieved at either w2 = 0
(w1 = 1, v1 = 0, v2 = 1) with objective function value ε21 + ε12 or w2 = 1 (w1 = 0,
v1 = 1, v2 = 0) with objective function value ε11 + ε22.

When the diagonal elements are not strictly separated, the solution given in the
statement of the corollary remains valid. This can be proved as follows: First, perturb
the diagonal elements to make them strictly separated. By the previous analysis, we
know that the solution given in the statement of the corollary is valid. Next, let the
perturbation tend to zero. The limit of these perturbed solutions is a solution of the
original unperturbed problem.

Remark 2. Assuming the eigenvalues are all distinct, then the degenerate choices
for a in (1.10) correspond to those vectors a for which

a21
ε2 − ε1

=

n∑
i=3

a2i
εi − ε2

, a2 = 0,
∑
i�=2

a2i = 1.(3.18)

The solution to (1.1) given by Corollary 3.2 has the property that the nonzeros lie in
the first two components of the vectors, while a degenerate a must have nonzero in
components greater than or equal to 3. In fact, it follows from (3.18) that

n∑
i=3

a2i ≥ ε3 − ε2
ε3 − ε1

.
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Remark 3. Let us consider the special case H1 = H2 = H. Since H1 and H2

commute, we can apply Corollary 3.2. Let εj denote the jth smallest eigenvalue of
H. As shown in (3.17), the optimization problem (1.1) reduces to

min 2ε1 + (v2 + w2)(ε2 − ε1)

subject to v2 + w2 = 1, v2 ≥ 0, w2 ≥ 0.

Since v2 + w2 = 1, the objective function value is ε1 + ε2, independent of the choice
of v2 and w2 satisfying the constraints. Hence, when H1 = H2, there are an infinite
number of solutions to (1.1). y1 is any unit vector in the span of the eigenvectors
associated with ε1 and ε2, and y2 is any orthogonal unit vector in the same eigenspace.
Note that if H is 2 by 2, then all feasible points are optimal, and F (x1,x2) is the
trace of H whenever x1 and x2 are feasible in (1.1).

4. Convergence of the decomposition algorithm. The proof of Theorem 1.1
is organized into four steps. In Step 1, we analyze the global step and show that the
iteration difference ‖xk+1−yk‖ tends to 0. In Step 2, we show that the multipliers μkj

in the local step are almost monotone decreasing since the violation in monotonicity
decays to zero as the iteration number k tends to infinity. Steps 3 and 4 focus on the
limit of the multipliers μkj as k tends to infinity. Step 3 considers the limit 0, while
Step 4 considers a positive limit.

Step 1. Analysis of the global step. Suppose that iteration k corresponds to the
forward mode. Let yk denote the result of the local step, and let xk+1 be the result
of the global step based on the starting point yk. Since xk1 is feasible in the first
subproblem of the forward mode (1.2), we have

F (yk1,xk2) ≤ F (xk1,xk2).

Since xk2 is feasible in the second subproblem, we have

F (yk1,yk2) ≤ F (yk1,xk2).

Combining these relations gives

F (yk) ≤ F (xk).(4.1)

A similar analysis for the reverse mode also gives F (yk) ≤ F (xk).
The components of zk(s) lie on the unit sphere for all choices of s. Consequently,

F ′′
k (s) is bounded by a finite constant M , uniformly in k and s. Define the constants

δ = min{ρ, 1/M} and s̄k = −δF ′
k(0).

Since s̄k lies on the interval [0,−ρF ′
k(0)] appearing in (1.6), we have

F (xk+1) = Fk(sk) ≤ Fk(s̄k).(4.2)

Expanding in a Taylor series around s = 0, there exists ξk ∈ [0, s̄k] such that

Fk(s̄k) = Fk(0) + F ′
k(0)s̄k +

1
2 s̄

2
kF

′′
k (ξk)

≤ Fk(0) + F ′
k(0)s̄k +

1
2 s̄

2
kM

= Fk(0) + δF ′
k(0)

2(12δM − 1) ≤ Fk(0)− δ
2F

′
k(0)

2

= F (yk)− δ
2F

′
k(0)

2 ≤ F (xk)− δ
2F

′
k(0)

2,
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where the last inequality is (4.1). Combining this with (4.2) gives

F (xk+1) ≤ F (xk)−
(
δ

2

)
F ′
k(0)

2.

Summing this inequality over k yields

F (xk) ≤ F (x0)−
(
δ

2

) k−1∑
i=0

F ′
i (0)

2.

Since the feasible points for (1.1) lie on the unit sphere, the objective function value
is bounded from below. Hence, we have

lim
k→∞

F ′
k(0) = 0.(4.3)

By the definition of zk and the fact that sk ∈ [0,−ρF ′
k(0)], where F ′

k(0) approaches
0, we also conclude that

‖xk+1 − yk‖ ≤ c|F ′
k(0)|(4.4)

where c is a constant which is independent of k.
Step 2. The change in the multiplier μ. By the orthogonality between yk1 and

xk2 (forward), between yk1 and yk2 (forward and reverse), and between xk1 and yk2

(reverse), the first-order optimality conditions (1.9) for the subproblems (1.2) yield

forward

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λk1 = yT
k1H1yk1,

μk1 = xT
k2H1yk1,

λk2 = yT
k2H2yk2,

μk2 = yT
k1H2yk2.

reverse

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λk1 = yT
k1H1yk1,

μk1 = yT
k2H1yk1,

λk2 = yT
k2H2yk2,

μk2 = xT
k1H2yk2.

(4.5)

By our sign convention (1.7), the multipliers μkj are nonnegative.
By the definition of Fk(s), we have

F ′
k(0) = ±2(yT

k1H1yk2 − yT
k2H2yk1).(4.6)

We multiply the first equation in (1.9) by yT
k2 to obtain yT

k1H1yk2 = μk1y
T
k2xk2. We

multiply the second equation by yT
k1 to obtain yT

k1H2yk2 = μk2. Hence, in the forward
mode, it follows from (4.6) that

μk2 = yT
k1H2yk2

= yT
k1H1yk2 ∓ F ′

k(0)/2

= μk1y
T
k2xk2 ∓ F ′

k(0)/2,(4.7)

which implies that

μk2 ≤ |μk1y
T
k2xk2|+ |F ′

k(0)|/2 ≤ μk1 + |F ′
k(0)|/2(4.8)

since yk2 and xk2 are unit vectors. In a similar fashion, for the reverse mode at
iteration k + 1, we have

μk+1,1 ≤ μk+1,2 + |F ′
k+1(0)|/2.(4.9)
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If iteration k corresponds to the forward mode, then the multiplier μk1 corre-
sponds to a = xk2 and H = H1 in (1.10). The multiplier μk−1,1 corresponds to
a = yk−1,2 and H = H1 in (1.10). By (4.4) ‖xk2 − yk−1,2‖ ≤ c|F ′

k−1(0)|. We apply
Lemma 3.1 and (4.3). For any (small) η > 0, we have

|μk1 − μk−1,1| ≤ η(4.10)

when k is sufficiently large, which implies that

μk1 ≤ μk−1,1 + η.(4.11)

The analogous result for the reverse mode is

μk+1,2 ≤ μk2 + η(4.12)

for k sufficiently large.
Combining (4.8)–(4.12), it follows that when k is large enough that |F ′

j(0)| ≤ η
for all j ≥ k, we have

μk−1,1 � μk1 � μk2 � μk+1,2 � μk+1,1,(4.13)

where the notation μk1 � μk2 means that μk2 ≤ μk1+η. Hence, in each iteration, the
μ multiplier either decreases or makes an increase which is bounded by η. By (4.5),
the multipliers are bounded by the largest absolute eigenvalues of H1 and H2.

Step 3. The case lim inf μk1 = 0. When lim inf μk1 = 0, there exists a subsequence
of the iterates with the property that μk1 tends to zero. By (4.13) and the fact that η
can be taken arbitrarily small, we conclude that the corresponding subsequence of the
multipliers μk2 also approaches zero. Since yk lies in a compact set, we can extract
subsequences converging to a limit that we denote by y. By (4.5), the corresponding
subsequence of multipliers λk1 and λk2 also approach limits denoted λ1 and λ2. By
(1.9), we have [

H1 0
0 H2

] [
y1

y2

]
=

[
λ1y1

λ2y2

]
.

Since y1 and y2 are orthogonal unit vectors, we conclude that y is a stationary point
for (1.1) corresponding to the multiplier μ = 0.

Step 4. The case μ = lim inf μk1 > 0. We extract a subsequence, denoted νj1, of
the multiplier sequence μk1 which converges to μ.

lim
j→∞

νj1 = μ.

Given any η > 0, choose K large enough that (4.13) holds for all k ≥ K. Also, choose
K larger, if necessary, so that

|μ− νj1| ≤ η for all j ≥ K.(4.14)

Hence, for any j ≥ K, we have

μ− η ≤ νj1 ≤ μ+ η.(4.15)

By (4.13), (4.15), and the fact that the νj1 form a subsequence of the μk1, it follows
that

νj2 ≤ νj1 + η ≤ μ+ 2η.
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Let k denote an index in the original sequence with the property that μk2 = νj2. By
(4.13), we have

νj2 = μk2 ≥ μk+1,2 − η ≥ μk+1,1 − 2η.

By (4.10) and (4.14), it follows that

μk+1,1 ≥ μk1 − η = νj1 − η ≥ μ− 2η.

Combining these inequalities gives

μ− 4η ≤ νj2 ≤ μ+ 2η and μ− η ≤ νj1 ≤ μ+ η.

Since η is arbitrary, it follows that νj1 and νj2 approach the same limit μ.
Again, by extracting subsequences, there exist limits y1, y2, λ1, and λ2 such that

[
H1 0
0 H2

] [
y1

y2

]
=

[
λ1y1 + μx2

μy1 + λ2y2

]
.(4.16)

By (4.7), we have

μ = μyT
2 x2,

where μ > 0. Since y2 and x2 are unit vectors, we deduce that x2 = y2. When x2 is
replaced by y2 in (4.16), we see that y is a stationary point.

Remark 4. In the special caseH1 = H2 = H, both the analysis and the algorithm
simplify. As noted earlier, F ′

k(0) = 0 in this case, so the global step is skipped. More-
over, the monotonicity property (4.13) holds without the reverse iteration. Hence, the
decomposition algorithm can simply employ forward steps, for which the associated
first-order optimality condition is

[
H 0
0 H

] [
yk1

yk2

]
=

[
λk1yk1 + μk1yk−1,2

μk2yk1 + λk2yk2

]
.(4.17)

Multiplying the first equation by yT
k2 gives

μk1y
T
k2yk−1,2 = yT

k2Hyk1

= yT
k1(μk2yk1 + λk2yk2) = μk2.

Since yk2 and yk−1,2 are unit vectors, this shows that μk2 ≤ μk1. Multiplying the
first equation in (4.17) by yk−1,2 gives

μk1 = yT
k−1,2Hyk1

= yT
k1(μk−1,2yk−1,1 + λk−1,2yk−1,2)

= μk−1,2y
T
k1yk−1,1.

Since yk1 and yk−1,1 are unit vectors, we deduce that μk1 ≤ μk−1,2. Hence, (4.13)
holds with � replaced by ≥.
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Fig. 5.1. Convergence of the multipliers, random 100 by 100 diagonal matrices H1 and H2, ρ = 1.

5. Numerical experiments. A series of numerical experiments was performed
to investigate the convergence rate of the decomposition algorithm and to explore
the connections between the theoretical analysis and the practical convergence. The
experiments we describe were performed using Scilab (www.scilab.org). The solution
of each local step (1.10) was obtained by computing an eigenvector associated with the
smallest nonzero eigenvalue of the matrix PHP, where P = I− aaT is the projection
into the subspace perpendicular to a. The global step was implemented using the
Scilab routine “optim” with default parameter values.

Recall that in our theoretical analysis, the stepsize was restricted to an interval
[0,−ρF ′

k(0)], for some fixed ρ > 0, to ensure that the iterates approach each other in
the limit. However, in all our numerical experiments, we found that there was no need
to restrict the stepsize to obtain convergence. Hence, it appears that the restriction
on the stepsize in (1.6) is an artifact of the analysis presented in this paper.

In (4.13) we show that the multipliers associated with the local steps in the
decomposition algorithm are almost monotonically decreasing. In Remark 4, we show
that the decay is monotone when H1 = H2. Numerically, we found that when H1 �=
H2, the convergence of the multipliers may not be monotone. An illustration is given
in Figure 5.1 where we randomly generate two 100 by 100 diagonal matrices H1 and
H2 with entries between −1 and +1, and we plot the multipliers as a function of the
iteration number. Due to the initial growth in the multipliers during the first 300
iterations, the convergence is not monotone, and the inequalities � in (4.13) cannot
be replaced by ≥ in general.

In our experiments, the convergence speed when H1 = H2 was closely related
to the distribution of the smallest three eigenvalues of the matrix, independent of
the matrix dimension. To illustrate the typical convergence, we consider the 3 by 3
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diagonal matrix

H1 = H2 =

⎡
⎣ 1 0 0

0 2 0
0 0 2 + α

⎤
⎦ ,(5.1)

where α > 0 is a parameter which we vary to explore the convergence. The starting
guess is

xT
02 =

1√
3
[1 1 1]T.(5.2)

Since H1 = H2, the reverse step can be skipped, and the decomposition algorithm
operates in “forward mode” without a global step. The components of the iterates
are always nonzero, and the iterates given by (3.6) can be expressed in the form

xk1i =
μk1xk−1,2i

εi − λk1
, xk2i =

μk2xk,1i

εi − λk2
.(5.3)

The iterates converge to a pair (x1,x2) of the form

xT
1 = [a b 0]T and xT

2 = [−b a 0]T

with a2 + b2 = 1, which is a valid solution to (1.1) according to Corollary 3.2 and
Remark 3.

Since the third component of the solution vanishes, we will study how quickly the
third component approaches zero. By (5.3), the ratio between the second and third
components can be expressed as

xk13

xk12
=

xk−1,23

xk−1,22

(
ε2 − λ1k

ε3 − λ1k

)
=

xk−1,13

xk−1,12

(
ε2 − λ2,k−1

ε3 − λ2,k−1

)(
ε2 − λ1k

ε3 − λ1k

)
.

Since ε2 > ε3 for the matrix (5.1), the rational function (ε2 − λ)/(ε3 − λ), λ ∈ [1, 2],
attains its maximum value 1/(1 + α) at λ = 1. Hence, by induction, we have

xk13

xk12
≤
(

1

1 + α

)2k

.(5.4)

Thus as α approaches 0, the bound on the rate at which the third component ap-
proaches 0, relative to the second component, grows, and the convergence could be
much slower. And as α becomes large, the bound decreases and the convergence rate
increases. In summary, the convergence speed seems to depend on the ratio of the
gap between ε2 and ε3 relative to the gap between ε1 and ε2. As the ratio approaches
0, the convergence could be slower, as seen in (5.4).

In Figure 5.2 we show the convergence of xk13 as a function of the iteration
number k for various choices of α. Notice that as α approaches 0, the optimization
problem (1.1) becomes more poorly conditioned since the points

xT
1 = [1 0 0] and xT

2 = [0 0 1]

are feasible with objective function value 3 + α ≈ 3 when α ≈ 0. Thus there are
feasible points which are separated from the optimal solution but with nearly the
same cost as the optimal solution. In the extreme case where α = 0, the algorithm
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Fig. 5.2. Convergence of xk13 for matrices (5.1) and starting point (5.2).

finds the global minimum of the objective function at the first iteration. The two
vectors x1 and x2 have their three components different from zero.

We now give an example where the decomposition algorithm does not converge
to the global minimum when the starting guess is sufficiently poor. In Remark 1, we
point out that the decomposition algorithm is convergent for any starting guess when
H1 = H2 and ε3 − ε2 ≥ ε2− ε1. Suppose that ε3− ε2 < ε2− ε1, and the starting guess
is

xT
02 =

1√
2
[1 0 1 0 0 . . . ]T.

According to Case 3(c) of section 3,

xT
11 =

1√
2
[−1 0 1 0 0 . . . ]T and x12 = x02.

Hence, the algorithm converges after one iteration to the stationary point

xT
1 =

1√
2
[−1 0 1 0 0 . . . ]T and x2 =

1√
2
[1 0 1 0 0 . . . ]T.

This starting guess, however, is exceptional. If the second component of x02 is changed
to any nonzero value α, then the iterates quickly converge to the global minimum.
For example, if α = 10−14 and

H1 = H2 = diag [−0.9,−0.5,−0.4,−0.3,−0.2,−0.1, 0.0,+0.1,+0.2,+0.3],

then the error is reduced to 10−10 within 44 iterations.
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For the case H1 �= H2, the decomposition algorithm may converge to a stationary
point which is not the global minimum when the starting guess is degenerate and the
degenerate iterates are chosen in a very special way. As an example, suppose that H1

and H2 are diagonal matrices, with diagonal elements arranged in increasing order,
and that all the components of the starting point x02 are nonzero except for component
2 which is zero. The nonzero components of x02 are chosen to make it degenerate for
H1. The initial iterate y11 is described by Case 3(d) of section 3. There are an infinite
number of solutions to the local subproblem. We choose the solution for which the
second component is zero (the remaining components are nonzero). Take ε11 close
enough to ε12 to ensure that y111 is near 1 in magnitude. In this case, g(ε22) < 0 in
the second local step. By Case 3(b) of section 3, all the components of the iterate y12

are zero except for the second component which is 1. Since F ′
1(0) = 0, the global step

has no effect; we have x21 = y11 and x22 = y12. Thereafter, xk1 is the first column of
the identity, and xk2 is the second column of the identity. If H1 and H2 are chosen
so that

ε11 + ε22 > ε21 + ε12,

then the iteration has reached a stationary point which is not the global minimum.
In contrast, with any perturbation in the second component of x02, we obtain con-
vergence to the global minimum.

If the eigenvectors corresponding to the smallest eigenvalues of H1 and H2 are
orthogonal, then these orthogonal eigenvectors are the solution of (1.1). By randomly
choosing the remaining orthogonal eigenvectors of H1 and H2, we obtain noncom-
muting matrices for which the solution of (1.1) is known. As a specific example, we
took Hi = QiDiQ

T
i , where Di is a diagonal matrix with diagonal elements chosen

randomly on [−1, 1] and Qi, i = 1 or 2, is an orthogonal matrix of the form

Q1 =
[
e1 U1

]
and Q2 =

[
e2 U2

]
.

Here ei denotes the ith column of the identity matrix, and Ui is an n by n − 1
matrix with randomly chosen entries such that Qi is orthogonal, i = 1 or 2. For
all starting points, we observed convergence to the global minimum. Convergence to
local, nonglobal minima also has been observed in the case where the matrices H1

and H2 do not commute but have the same eigenvector associated with the smallest
eigenvalue.

6. Conclusions. A decomposition algorithm is developed for a quadratic pro-
gramming problem with sphere and orthogonality constraints. The algorithm consists
of local steps, both forward and reverse, and a global step where we minimize over a
subspace. Without the global step, any limit (y1,y2) of the local step satisfies[

H1 0
0 H2

] [
y1

y2

]
=

[
λ1I μ1I
μ2I λ2I

] [
y1

y2

]
.

This differs from the first-order optimality conditions (1.8) associated with the original
optimization problem (1.1) because μ1 may not equal μ2. If the local step is followed
by the global step, then according to the analysis of section 4, F ′

k(0) tends to zero (see
(4.3)), which implies that (see (4.6)) yT

1H1y2 = yT
2H2y1. Since μ1 = yT

1H1y2 and
μ2 = yT

2H2y1, the global step ensures that μ1 = μ2. Consequently, the first-order
optimality condition for (1.1) is satisfied.
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The complexity of the analysis is connected with the proof of convergence. To
show that the iterate xk2 converges to the same limit as yk2, we studied the properties
of multipliers for the subproblem (1.10). We showed that the multiplier λ for the
sphere constraint lies between ε1 and ε2, the two smallest eigenvalues of H; moreover,
λ depends Lipschitz continuously on a. In contrast, the multiplier μ associated with
the orthogonality constraint is continuous at nondegenerate choices for a.

A less technical explanation for the performance of the decomposition algorithm
is that the local steps steer the iterates into a low dimensional subspace associated
with the eigenvectors of the smallest eigenvalues of H1 or H2, while the global step
finds the best point in this subspace.
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