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be infinite on the boundary of the feasible set.
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2 W. W. Hager et al.

1 Introduction

In this paper we develop an interior point algorithm for the box-constrained optimi-
zation problem

min { f (x) : x ∈ B}, (1.1)

where f is a real-valued, continuously differentiable function defined on the set

B = {x ∈ R
n : l ≤ x ≤ u}. (1.2)

Here l < u and possibly, li = −∞ or ui = ∞. Initially, to simplify the exposition,
we will focus on the special case

min { f (x) : x ≥ 0}. (1.3)

The algorithm starts at a point x1 in the interior of the feasible set, and generates a
sequence xk , k ≥ 2, by the following rule:

xk+1 = xk + skdk (1.4)

where sk ∈ (0, 1] is a positive stepsize and the i th component of dk is given by

dki = −
(

1

λk + g+
i (xk)/xki

)
gi (xk). (1.5)

Here λk is a positive scalar, gi (x) is the i th component of the gradient ∇ f (x), and
t+ = max{0, t} for any scalar t . We compute λk using a cyclic version of the Barzilai–
Borwein (BB) stepsize rule [2] in which the same BB step is reused in several iterations.
We call the algorithm (1.4)–(1.5) with this CBB choice for λk the affine scaling cyclic
Barzilai–Borwein method (AS_CBB).

We now motivate the search direction dk in (1.5). The first-order optimality condi-
tions (KKT conditions) for (1.3) can be expressed in the following way:

X1(x) ◦ g(x) = 0 and x ≥ 0, (1.6)

where

X1
i (x) =

{
1 if gi (x) ≤ 0,

xi otherwise.
(1.7)

Here “◦” denotes the Hadamard (or component-wise) product of two vectors in R
n .

That is, if x, y ∈ R
n , then x◦y ∈ R

n and (x◦y)i = xi yi , where xi is the i th component
of x. For a convex optimization problem, the KKT conditions (1.6) are necessary and
sufficient for optimality. Our algorithm for solving (1.3) is an iterative method to find
a nonnegative solution to the nonlinear equation X1(x) ◦ g(x) = 0.
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An affine-scaling interior-point CBB method for box-constrained optimization 3

In Newton’s method for solving X1(x) ◦ g(x) = 0, the Newton direction dk is the
solution of the linearized equation

H(xk) dk = −X1(xk) ◦ g(xk), (1.8)

where

H(xk) = diag(X1(xk))∇2 f (xk) + diag(g+(xk)). (1.9)

Here diag(x) is an n by n diagonal matrix with i th diagonal element xi and g+ is the
vector whose i-component is g+

i . In situations where ∇2 f (x) is a huge, dense matrix,
it can be time consuming to solve the linear system (1.8). For the approximation
∇2 f (xk) ≈ λkI, obtained by a quasi-Newton method for example, the corresponding
approximation to the Newton search direction reduces to (1.5).

This algorithm emerged in the context of image reconstruction for positron emission
tomography (PET) [7,6,22,24,25] where there is a large data set, and ∇2 f (x) is a huge,
relatively dense matrix. The penalized maximum likelihood reconstruction problem
in PET imaging is equivalent to minimizing the following objective function:

min
x≥0

f (x) :=
m∑

j=1

([Ax] j − b j log [Ax] j ) + P(x), (1.10)

where A is an m by n probability matrix (columns are nonnegative and sum to 1, row
sums are strictly positive), x ∈ R

n represents the unknown image, b ∈ R
m (b ≥ 0) is

the emission data, and P(x) is a convex (smoothing) penalty term. The penalty term
is used to smooth the reconstructed image. Our convention is that log(0) = −∞. Due
to the log term in the cost function for (1.10), the cost function could be infinite when
an algorithm generates an iterate on the boundary of the feasible set. An advantage of
AS_CBB is that the iterates always lie in the interior of the feasible set; consequently,
no modification of the algorithm is needed to prevent an undefined value for the cost
function.

The BB method is a quasi-Newton method in which the Hessian ∇2 f (xk) in New-
ton’s method xk+1 = xk − ∇2 f (xk)

−1g(xk) is replaced by λkI where λk , for k ≥ 2,
is the solution to

min
λ∈R

‖λsk−1 − yk−1‖2.

Here sk−1 = xk − xk−1, yk−1 = gk − gk−1, and gk = g(xk). To achieve global
convergence, we need to bound the denominator in (1.5) away from zero. This leads
to a modified formula

λBB
k := arg min

λ≥λ0
‖λsk−1 − yk−1‖2 = max

{
λ0,

sT
k−1yk−1

sT
k−1sk−1

}
, (1.11)
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4 W. W. Hager et al.

where k ≥ 2 and λ0 > 0 is a fixed parameter. The starting parameter value λBB
1 can

be chosen freely, subject to the constraint λ1 ≥ λ0; for example,

λBB
1 = max {λ0, ‖g1‖∞}.

The BB method is superior to the classic steepest descent method in both
theory and practice [3,4,14,17,19]. For two-dimensional strongly convex quadratics,
R-superlinear convergence was established [2]. The convergence speed increases when
the Hessian becomes ill conditioned, unlike steepest descent [1]. In this paper, we will
employ the cyclic BB method (CBB) in which the same BB step is reused several
iterations. CBB is a special case of a general class of gradient-based algorithms first
presented in [18]. The analysis of [18] yields global convergence for CBB when f
is a strongly convex quadratic. In [11] R-linear convergence of CBB is established
for general convex quadratics, while [13] establishes local R-linear convergence for
general nonlinear objective functions. BB methods are locally convergent, not globally
convergent, for general nonlinear objective functions. Global convergence is achieved
by using a nonmonotone line search [5,13,14,17,26].

Recently, BB-type methods have been applied to constrained optimization. In [12,
20,28] the authors use gradient projection and active set techniques to extend BB-type
methods to box constrained optimization. Our scheme (1.4)–(1.5) is an extension of
the CBB method to constrained optimization which is closer in spirit to the affine
scaling methods where the iterates are always in the interior of the feasible region.
Affine-scaling was first proposed in [15] for linear and quadratic programming. It has
been extensively developed by Coleman and Li [8–10] and others (see [16,21,23],
for example). Most of these methods are Newton or trust-region type methods which
require either the evaluation of Hessian or the solution of a linear system of equations
in each iteration. The terminology “affine-scaling” which is used to describe these
methods in [21] and [23], is also employed in our paper. In [21,23] the authors write
the first-order optimality condition as a nonlinear equation which is a product between
a nonlinear scaling matrix and the gradient of the objective function. Different choices
for the nonlinear scaling matrix lead to different algorithms. Our AS_CBB method
corresponds to a diagonal nonlinear scaling matrix with X1(x), defined in (1.7), on
the diagonal.

Recently, Zhang [29] proposed a general framework for monotone affine-scaling
interior-point gradient methods for box constrained optimization, however, an efficient
implementation of his methods are an open problem. When the dimension is very large,
which often occurs in medical imaging research, evaluating the Hessian and solving
the large system of equations which arise in affine scaling methods is time consuming,
unless the problem has special structure. The CBB affine scaling method which we
introduce does not require the solution of a linear system. Hence, the iterations can be
performed relatively quickly.

The paper is organized as follows. In Sect. 2 we introduce the cyclic BB method and
our nonmonotone line search. Since the BB method does not monotonically reduce
the value of the cost function, a nonmonotone line search is needed to ensure that the
line search is not truncated when the algorithm is converging [13,14,26]. In Sect. 3
various continuity properties for the AS_CBB method are established. In Sect. 4 we
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An affine-scaling interior-point CBB method for box-constrained optimization 5

show that when λk is uniformly bounded away from 0 and ∞, then either the affine
scaling algorithm (1.4)–(1.5) terminates at a KKT point in a finite number of iterations,
or the KKT conditions (1.6) are satisfied in an asymptotic sense. As a special case,
this yields global convergence for the BB choice of λk given in (1.11).

In Sects. 5–7, we establish local R-linear convergence of AS_CBB, at a nondegene-
rate local minimizer x∗ which satisfies the second-order sufficient optimality condition.
Nondegeneracy means that gi (x∗) > 0 whenever x∗

i = 0. The second-order sufficient
optimality condition is that there exist α > 0 such that

dT∇2 f (x∗)d ≥ α‖d‖2 (1.12)

for all d ∈ R
n with di = 0 when x∗

i = 0. A suitable choice for λ0 in (1.11) is any
positive scalar strictly smaller than α. In Sect. 5 we review our R-linear convergence
results for the CBB method, and we show that the iterate components corresponding
to active constraints converge to zero at a Q-quadratic rate. In Sect. 6 we develop
comparison results between the convergence of the CBB iterates and the conver-
gence of the AS_CBB iterates. R-linear convergence for AS_CBB is established in
Sect. 7.

Two types of numerical experiments are presented in Sect. 9. In the first experiments,
we observe that the convergence speed is relatively insensitive to problem conditioning.
In the second experiment, we compare the performance of AS_CBB to that of a
conjugate gradient-based active set algorithm. We observe that the AS_CBB scheme
is initially faster than the conjugate gradient algorithm, however, as the iterations
converge, the conjugate gradient algorithm is asymptotically faster.

Notation Let R
n+ denote the positive orthant defined by

R
n+ = {x ∈ R

n : x ≥ 0}.

For any scalar t , t+ = max{0, t}, while for any vector v ∈ R
n , v+ is the vector whose

i th component is v+
i . The gradient of f (x), arranged as a column vector, is g(x).

The Hadamard (or component-wise) product x ◦ y of two vectors x, y ∈ �n is the
vector in R

n defined by (x ◦ y)i = xi yi . diag(x) is an n by n diagonal matrix with i th
diagonal element xi , and ‖ · ‖ is the Euclidean norm. The subscript k often represents
the iteration number in an algorithm, and gk stands for g(xk). We let xki denote the
i th component of the iterate xk .

In the local convergence analysis, x∗ denotes a given nondegenerate local minimizer
of f for which the second-order sufficient optimality conditions (1.12) hold. The ball
with center x and radius ρ is denoted Bρ(x). The active set A is defined by

A = {i ∈ [1, n] : x∗
i = 0}.

The nondegeneracy assumption implies that gi (x∗) > 0 when i ∈ A. The number
of elements in A is denoted |A| and the complement of A is Ac. If i ∈ Ac, then
x∗

i > 0.
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6 W. W. Hager et al.

2 Cyclic BB method and the line search

Recently in [13], we have shown that better performance in the BB method is achieved
when the same BB stepsize is reused for several iterations. We call this strategy the
cyclic BB method (CBB). If m ≥ 1 is the cycle length and � ≥ 0 is the cycle number,
then the cyclic choice for λk is

λm�+i = λBB
m�+1 for i = 1, . . . , m. (2.1)

Of course, when the cycle length is 1, then λk = λBB
k for each k. If gi (xk) ≤ 0, then

by (1.5), we have

dki = − 1

λk
gi (xk).

If the iterates converge to a local minimizer x∗ and x∗
i > 0, then by the first-order

optimality conditions, gi (x∗) = 0; hence, the denominator in (1.5) approaches λk as k
increases, and the iterates are closely approximated by the CBB iterates for which we
recently establish [13] local R-linear convergence. Due to a scaling operation [second
term in the denominator of (1.5)], the iterates always remain in the interior of the
feasible set as will be proved in Lemma 3.4.

We now present a line search which ensures the global convergence of AS_CBB.
Typically, the BB method does not monotonically reduce the value of the cost function,
even in a neighborhood of a local minimizer where the iterates converge. Hence, in
order to retain the original features of BB-type methods, a nonmonotone line search
should be employed [13,14,26]. We will use the same type of nonmonotone line search
developed in [20] for our CBB-gradient project method. The line search, shown in
Fig. 1, makes use of the following local maximum function:

f max
k = max{ f (xk−i ) : 0 ≤ i ≤ min(k − 1, M − 1)}, (2.2)

Fig. 1 A nonmonotone line search
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An affine-scaling interior-point CBB method for box-constrained optimization 7

where M > 0 is a fixed integer, the memory. In the line search of Fig. 1, δ ∈ (0, 1)

and η ∈ (0, 1) are the Armijo line search parameters. The condition f r
k ≥ f (xk)

ensures that the Armijo line search of Step 4 can be satisfied, and the requirement that
“ f r

k ≤ f max
k infinitely often” in Step 2 is needed in our global convergence proof. This

requirement is easily fulfilled; for example, f r
k = f max

k every L iterations. Another
strategy, closer in spirit to the one used in the numerical experiments, is to choose a
decrease parameter � > 0 and an integer L > 0 and set f r

k = f max
k if

f (xk−L) − f (xk) ≤ �.

As we will show in Lemma 3.4, the fact that sk ≤ 1 implies that xk+1 > 0 when xk

does not satisfy the KKT conditions.

3 Continuity properties

We begin with the following observation:

Proposition 3.1 If f is continuously differentiable and X1(·) is defined by (1.7), then
the map

X1(·) ◦ g(·) : R
n+ → R

n

is continuous.

Proof If either gi (x) < 0 or gi (x) > 0, then both gi and X1
i are continuous at x,

and hence, the product gi (·)X1
i (·) is continuous at x. Suppose that gi (x) = 0. By the

definition of X1, we have

|gi (y)X1
i (y)| ≤ max{1, yi }|gi (y)|

for any y ≥ 0 and i ∈ [1, n]. Since gi (·) is continuous and gi (x) = 0, it follows
that gi (y)X1

i (y) approaches zeros as y approaches x. Hence, g ◦ X1 is continuous
everywhere. 
�

The AS_CBB search directions have the following property:

Proposition 3.2 Suppose f is twice continuously differentiable on the domain x ≥ 0
and the parameter λk in (1.5) satisfies

0 < λ0 := inf
k≥1

λk ≤ sup
k≥1

λk := λmax < ∞. (3.1)

If {xk}∞k=1 is a bounded sequence with xk > 0 and g(xk) �= 0 for each k, then

lim
k→∞ dk = 0 if and only if lim

k→∞ X1(xk) ◦ g(xk) = 0, (3.2)

where dk and X1(·) are defined in (1.5) and (1.7), respectively.
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8 W. W. Hager et al.

Remark When xk > 0, the condition g(xk) �= 0 implies that dk �= 0 and xk is not
a KKT point. In other words, the algorithm (1.4)–(1.5) does not stop at iteration k.
Suppose λk is given by the BB formula (1.11). Applying the fundamental theorem of
calculus to the difference yk = gk − gk−1, we obtain

sT
k−1yk−1

sT
k−1sk−1

=
sT

k−1

(∫ 1

0
∇2 f (xk−1 + t sk−1)dt

)
sk−1

sT
k−1sk−1

≤ λ, (3.3)

where λ is the largest eigenvalue of ∇2 f over any bounded, convex set containing the
sequence xk , k ≥ 1. The denominator sT

k−1sk−1 in (3.3) cannot vanish since g(xk) �= 0
for each k. Hence, when λk is given by (1.11), we have

λ0 ≤ λBB
k ≤ max {λ0, λ}

for each k > 1. It follows that the cyclic choice (2.1) for λk satisfies the same inequality:

λ0 ≤ λk ≤ max {λ0, λ}. (3.4)

This shows that when λk is given by either (1.11) or the cyclic choice (2.1), the bounds
(3.1) are satisfied automatically.

Proof To prove Proposition 3.2, we show that for any i ∈ [1, n],

lim
k→∞ dki = 0 if and only if lim

k→∞ X1
i (xk)gi (xk) = 0, (3.5)

in which case the proposition follows immediately. By (1.5), we have

xki gi (xk) = −dki (λk xki + g+
i (xk)). (3.6)

Since the xk are bounded, f is continuously differentiable, and (3.1) holds, the factor
λk X1

i (xk) + g+
i (xk) is bounded. Hence, if dki tends to zero, then X1

i (xk)gi (xk) tends
to zero.

Conversely, suppose that X1
i (xk) gi (xk) tends to zero. In this case, we can write

{1, 2, . . .} = K1 ∪ K2,

where either K1 or K2 may be empty,

(a) lim
k∈K1

gi (xk) = 0 and (b) lim
k∈K2

X1
i (xk) = 0.

If K1 has an infinite number of elements, then (1.5) and (3.4) imply that dki tends
to 0 for k ∈ K1 approaching ∞. If K2 has an infinite number of elements, then for
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An affine-scaling interior-point CBB method for box-constrained optimization 9

k ∈ K2 with k sufficiently large, we have X1
i (xk) = xki and g+

i (xk) = gi (xk) > 0.
Consequently, (1.5) can be rewritten

dki = − xki

1 + λk xki/gi (xk)
, k ∈ K2.

By (b) both X1
i (xk) = xki and dki tend to as k ∈ K2 tends to ∞. Hence, the entire

sequence {dki : k ≥ 1} approaches 0, which completes the proof of (3.5). 
�
We now show that at a KKT point x∗, dk approaches 0 as xk approaches x∗.

Lemma 3.3 If f is continuously differentiable and x∗ is a KKT point for (1.3), then
for any ε > 0, there exists a δ > 0 such that for all xk > 0 and λk ≥ λ0 > 0, we have
‖dk‖ ≤ ε whenever ‖x∗ − xk‖ ≤ δ.

Proof Since x∗ is a KKT point for (1.3), we have g(x∗) ◦ X1(x∗) = 0. Hence, either

(a) gi (x∗) = 0 or (b) gi (x∗) > 0 and X1
i (x∗) = x∗

i = 0

for each i . From the definition of dk , it follows that for any xk > 0, we have |dki | ≤
|gi (xk)|/λ0. If (a) holds, then |dki | tends to 0 as xk approaches x∗. If (b) holds, then
for xk in a neighborhood of x∗, we have g+

i (xk) = gi (xk) > 0 and X1
i (xk) = xki .

Hence, |dki | ≤ X1
i (xk) = xki . Again, |dki | tends to 0 as xk approaches x∗. 
�

We now show that the search directions dk satisfy a sufficient descent property and
if xk > 0, then xk + dk > 0.

Lemma 3.4 Suppose f is twice continuously differentiable on the domain x ≥ 0.
If xk > 0, g(xk) �= 0, and λk ≥ λ0 > 0, then dk defined in (1.5) satisfies

dT
k g(xk) ≤ −λk‖dk‖2 < 0 and xk + dk > 0. (3.7)

Proof Since xk > 0, it follows that X1(xk) > 0. By (1.5), we have

dT
k g(xk) = −

n∑
i=1

gi (xk)
2

λk + g+
i (xk)/xki

= −
n∑

i=1

(λk + g+
i (xk)/xki )d

2
ki

≤ − min
1≤i≤n

(λk + g+
i (xk)/xki ) ‖dk‖2

≤ −λk‖dk‖2,

which gives the first inequality in (3.7). Since g(xk) �= 0, dk �= 0. Since λk ≥ λ0 > 0,
it follows that −λk‖dk‖2 < 0, which gives the first strict inequality in (3.7). Finally,
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10 W. W. Hager et al.

since λk > 0, we have

dki = − gi (xk)

λk + g+
i (xk)/xki

=

⎧⎪⎨
⎪⎩

−gi (xk)

λk
≥ 0 if gi (xk) ≤ 0,

− gi (xk)

λk + gi (xk)/xki
> −xki otherwise.

Hence, xk + dk > 0, which gives the last inequality in (3.7). 
�

4 Global convergence

The continuity properties developed in the previous section are now used to prove the
global convergence of AS_CBB.

Theorem 4.1 Suppose f is twice continuously differentiable and the following level
set L is bounded:

L = {x ≥ 0 : f (x) ≤ f (x1)}. (4.1)

The affine scaling algorithm (1.4)–(1.5) with the nonmonotone line search of Fig. 1
and with λk satisfying (3.1) either terminates in a finite number of iterations at a KKT
point, or

lim inf
k→∞ ‖dk‖ = 0 = lim inf

k→∞ ‖g(xk) ◦ X1(xk)‖. (4.2)

Proof By Lemma 3.4, the search direction dk in Step 1 of the line search is a descent
direction. Since f r

k ≥ f (xk) and δ < 1, the Armijo line search condition (Fig. 1)
is fulfilled for j sufficiently large. We now show that xk ∈ L for each k. Since
f max
1 = f r

0 = f (x1), Step 2 of line search implies that f r
1 ≤ f (x1). Proceeding by

induction, suppose that for some k ≥ 1, we have

f r
j ≤ f (x1) and f max

j ≤ f (x1) (4.3)

for all j ∈ [1, k]. Since dk is a direction of descent, it follows from Steps 3 and 4 of
the line search and the induction hypothesis that

f (xk+1) ≤ f r
k ≤ f (x1). (4.4)

Hence, f max
k+1 ≤ f (x1) and f r

k+1 ≤ max{ f max
k+1 , f r

k } ≤ f (x1). This completes the
induction. Thus (4.3) holds for all j . Consequently, fR ≤ f (x1) in Steps 3 and 4
of the line search. Since dk is a descent search direction, Steps 3 and 4 imply that
f (xk) ≤ f (x1). Hence, xk ∈ L for each k.
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An affine-scaling interior-point CBB method for box-constrained optimization 11

By Lemma 3.4, each of the iterates xk is strictly positive. By (1.5), |dki | ≤ |gi

(xk)|/λ0. Since L is bounded and xk ∈ L for each k, we have

dmax = max
k≥1

‖dk‖ < ∞.

If L̄ is the collection of x ≥ 0 whose distance to L is at most dmax, then ∇ f is Lipschitz
continuous on L̄. As shown in [27, Lemma 2.1], we have

sk ≥ min

{
1,

(
2η(1 − δ)

L

) |g(xk)
Tdk |

‖dk‖2

}
(4.5)

for all k, where L is the Lipschitz constant for ∇ f on L̄. Combining (3.4), (3.7), and
(4.5) gives

sk ≥ min

{
1,

(
2η(1 − δ)λ0)

L

)}
:= c. (4.6)

Steps 3 and 4 of the line search and (3.4) yield

f (xk+1) ≤ f r
k + δcgT

k dk ≤ f r
k − δcλk‖dk‖2 ≤ f r

k − δcλ0‖dk‖2. (4.7)

To prove that lim inf
k→∞ ‖dk‖ = 0, we suppose that to the contrary, there exists a

constant γ > 0 such that ‖dk‖ ≥ γ for all k sufficiently large. By (4.7), we have

f (xk+1) ≤ f r
k − τ, where τ = δcλ0γ

2, (4.8)

for all k. Let ki , i = 0, 1, . . ., denote an increasing sequence of integers with the
property that f r

j ≤ f max
j for j = ki and f r

j ≤ f r
j−1 when ki < j < ki+1. Such a

sequence exists by the requirement on f r
k given in Step 2 of the line search. Hence,

we have

f r
j ≤ f r

ki
≤ f max

ki
, when ki ≤ j < ki+1. (4.9)

By (4.8) it follows that

f (x j ) ≤ f r
j−1 − τ ≤ f max

ki
− τ when ki < j ≤ ki+1.

Consequently, f max
ki+1

≤ f max
ki

. Since f r
j ≤ f max

j for j = ki+1, it follows that

f r
ki+1

≤ f max
ki+1

≤ f max
ki

. (4.10)

Hence, if a = ki1 and b = ki2 where i1 > i2 and a − b > M [M is the memory in
(2.2)], then by (4.9)–(4.10), we have

f max
a = max

0≤ j<M
f (xa− j ) ≤ max

1≤ j≤M
f r
a− j − τ ≤ f max

b − τ.
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12 W. W. Hager et al.

Since the sequence ki , i = 0, 1, . . ., is infinite by Step 2, a subsequence of f max
ki

tends
to −∞. On the other hand, since L is bounded, f is bounded from below. Hence, there
is a contradiction, and lim inf

k→∞ ‖dk‖ = 0. Proposition 3.2 completes the proof. 
�

When f is strongly convex, there is a unique minimizer for (1.3), and we can
strengthen the statement of Theorem 4.1.

Theorem 4.2 Suppose f is twice continuously differentiable and strongly convex,
and there is a positive integer L with the property that for each k, there exists j ∈
[k, k + L) such that f r

j ≤ f max
j . Then the affine scaling algorithm (1.4)–(1.5) with

the nonmonotone line search of Fig. 1 and with λk satisfying (3.1) converges to the
global minimizer x∗ of (1.3).

Proof Since f is strongly convex, the level set L in (4.1) is bounded. Hence, the
assumptions of Theorem 4.1 are satisfied. At the start of the proof of Theorem 4.1, we
showed that f (xk) ≤ f (x1) for each k. Since L is bounded, the xk lie in a bounded
set. If the iterates do not reach x∗ in a finite number of steps, then by (4.2) and
by the compactness of L, there exists an infinite sequence l1 < l2 < · · · such that
d(xl j ) approaches 0 and {xl j } approaches a limit x̄ as j tends to ∞. By Propositions 3.1
and 3.2, g(x̄)◦X1(x̄) = 0 and x̄ ≥ 0. Consequently, x̄ satisfies the first-order optimality
conditions for (1.3). Since f is strongly convex, x̄ = x∗.

The goal in the remainder of the proof is to show that the sequence of iterates xk ,
k ≥ 1, converges to x∗. Given an integer N ≥ 0, we first establish the following
continuity property:

(P) For any ε > 0, there exists a δ > 0 such that ‖x j −x∗‖ ≤ ε for all j ∈ [k, k + N ]
whenever ‖xk − x∗‖ ≤ δ.

The proof is by induction on N . Clearly, the result is true when N = 0. Assume that
this holds for some N > 0. By Lemma 3.3, we know that for δ1 sufficiently small,
‖d j‖ ≤ ε/2 when ‖x j − x∗‖ ≤ δ1. Since the step size s j ∈ (0, 1], we have

‖x j+1 − x j‖ = s j‖d j‖ ≤ ‖d j‖ ≤ ε/2 (4.11)

when ‖x j − x∗‖ ≤ δ1. Choose δ small enough that

‖x j − x∗‖ ≤ min{δ1, ε/2} for all j ∈ [k, k + N ] (4.12)

whenever ‖xk − x∗‖ ≤ δ. The triangle inequality, (4.11), and (4.12) yield

‖x j+1 − x∗‖ ≤ ‖x j+1 − x j‖ + ‖x j − x∗‖ ≤ ε (4.13)

for j = k + N when ‖xk − x∗‖ ≤ δ. Combining (4.12) and (4.13), the induction step
is complete.

Since f is continuous, for any � > 0, there exists an ε > 0 with the property that

| f (x) − f (x∗)| ≤ � whenever ‖x − x∗‖ ≤ ε.
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Take N = M + L where L appears in the statement of the theorem and M is the
memory in (2.2), and choose δ in accordance with (P). Choose j large enough that
‖xl j − x∗‖ ≤ δ. Hence, we have

f (xk) ≤ f (x∗) + � for all k ∈ [l j , l j + M + L].

By the definition of f max
k ,

f max
k ≤ f (x∗) + � for all k ∈ [l j + M, l j + M + L]. (4.14)

As at the end of the proof of Theorem 4.1, beneath (4.8), let ki , i = 0, 1, . . ., denote
an increasing sequence of integers with the property that f r

j ≤ f max
j for j = ki and

f r
j ≤ f r

j−1 when ki < j < ki+1. By (4.10) we have

f max
ki+1

≤ f max
ki

(4.15)

for each i . The assumption that for each k, there exists j ∈ [k, k + L) such that
f r

j ≤ f max
j implies that

ki+1 − ki ≤ L . (4.16)

By (4.16) there exists some ki ∈ [l j + M, l j + M + L] for each l j . By (4.14),

f max
ki

≤ f (x∗) + �. (4.17)

Since � was arbitrary, it follows from (4.15) and (4.17) that

lim
i→∞ f max

ki
= f (x∗); (4.18)

the convergence is monotone by (4.15). By the choice of ki and by the inequality
f (xk) ≤ f r

k in Step 2, we have

f (xk) ≤ f r
k ≤ f max

ki
for all k ≥ ki . (4.19)

Combining (4.18) and (4.19),

lim
k→∞ f (xk) = f (x∗). (4.20)

Since x∗ is the stationary point,

g(x∗)T(x − x∗) ≥ 0, for all x ≥ 0. (4.21)

Since f is strongly convex, there exists γ > 0 such that

f (xk) ≥ f (x∗) + gT(x∗)(xk − x∗) + γ ‖xk − x∗‖2.
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14 W. W. Hager et al.

Combining this with (4.21) gives

f (xk) ≥ f (x∗) + γ ‖xk − x∗‖2,

Referring to (4.20), we conclude that limk→∞ xk = x∗. 
�

5 Overview of the linear convergence analysis

In [13] we prove that CBB is locally R-linearly convergent for unconstrained optimiza-
tion at a strict local minimizer. We will prove local R-linear convergence for AS_CBB
by comparing the AS_CBB iterates to CBB iterates obtained by fixing xi = 0 for
i ∈ A, the set of active indices at a local minimizer x∗. Our analysis applies to the
unit step version of (1.4); that is, we assume the iterates are given by

xk+1 = xk + dk, dki = −
(

1

λk + g+
i (xk)/xki

)
gi (xk). (5.1)

Throughout the analysis, the letter c is used to denote a generic constant which is
independent of k.

To begin, we first observe that the components of the AS_CBB iterates correspon-
ding to active constraints at x∗ decay to zero Q-quadratically. Given any x ∈ R

n , let x̂
denote the vector obtained by replacing with 0 the components associated with active
indicates. That is,

x̂i =
{

xi if i ∈ Ac,

0 if i ∈ A.

Thus x − x̂ is the vector with components

xi − x̂i =
{

0 if i ∈ Ac,

xi if i ∈ A.

Proposition 5.1 Suppose that for some ρ > 0, f is twice continuously differentiable
on the domain

Bρ(x∗) ∩ {x ∈ R
n : x ≥ 0}. (5.2)

If xk , k ≥ 1, is a sequence generated by the AS_CBB algorithm (5.1), and � ≥ λ0 is a
fixed scalar, then there exist positive constants ρ1 and c1 with the following property:
If xk ∈ Bρ1(x

∗) and xk > 0, then

‖dk‖ ≤ c1‖xk − x∗‖;

123
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moreover, if gi (x∗) > 0 when x∗
i = 0 (that is, x∗ is a nongenerate local minimizer)

and λk ≤ �, then

‖xk+1 − x̂k+1‖ ≤ c1‖xk − x̂k‖2.

Proof Choose ρ1 > 0 small enough that ρ1 ≤ ρ and gi (x) > 0 for all x ∈ Bρ1(x
∗)

and i ∈ A. For i ∈ A and xk ∈ Bρ1(x
∗), it follows from (1.5) that 0 ≤ dki ≤ xki , and

∑
i∈A

d2
ki ≤

∑
i∈A

x2
ki ≤ ‖xk − x∗‖2. (5.3)

If i ∈ Ac, then

|dki | ≤ |gi (xk)|/λ0 = |gi (xk) − gi (x∗)|/λ0 ≤ µ‖xk − x∗‖/λ0,

where µ is a Lipschitz constant for g on the set (5.2). Hence,

‖dk‖2 ≤ (1 + µ2|Ac|/λ2
0)‖xk − x∗‖2,

which establishes the first half of the proposition.
Choose ε > 0 such that gi (x) > ε for all x ∈ Bρ1(x

∗) and i ∈ A. For the active
components, it follows from (1.5) that

‖xk+1 − x̂k+1‖2 =
∑
i∈A

x2
(k+1)i =

∑
i∈A

(
xki − xki

1 + λk xki/gki

)2

≤
∑
i∈A

(
λk x2

ki

gki

)2

≤ (�/ε)2
∑
i∈A

x4
ki

≤ (�/ε)2

(∑
i∈A

x2
ki

)2

= (�/ε)2‖xk − x̂k‖4.

This establishes the second half of the proposition. 
�
Proposition 5.1 establishes Q-quadratic convergence of active components of the

AS_CBB iterates. To analyze the convergence of the components corresponding to the
inactive indices, we compare CBB iterates to AS_CBB iterates. The CBB algorithm
is the same as the AS_CBB algorithm except that the second term in the denominator
of (1.5) is deleted. In other words, the CBB step is given by

dk = −
(

1

λk

)
gk .

In [13] we establish the following local convergence result for the CBB iterates:
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16 W. W. Hager et al.

Lemma 5.2 If F : R
n → R is twice continuously differentiable in a neighborhood

of a local minimizer x∗, and the Hessian ∇2 F(x∗) is positive definite, then there exist
positive constants δ and β, and a positive constant γ < 1 with the property that for
all starting points x0, x1 ∈ Bδ(x∗), x0 �= x1 and λ1 given by (1.11), the CBB iterates
satisfy

‖xk − x∗‖ ≤ βγ k‖x1 − x∗‖. (5.4)

For any fixed k ≥ 1, we will compare an AS_CBB iterate xk+ j to a CBB iterate
zk, j starting from x̂k . We introduce the following notation: ν(k) = 1+m�(k −1)/m�,
where �r� denotes the largest integer j such that j ≤ r . With this notation, the CBB
parameter defined in (2.1) can expressed λk = λBB

ν(k).
The comparison iterate is defined by

zk,0 = x̂k

zk, j+1 = zk, j − αk, j ĝ(zk, j ) (5.5)

αk, j =
⎧⎨
⎩

1/λk if ν(k + j) = ν(k),
1

λ̂k+ j
otherwise. (5.6)

The stepsize parameter λ̂k+ j is defined like λk in the AS_CBB iteration except that x
is replaced by z. More precisely, we define

λ̂BB
k+ j = vT

j−1w j−1

vT
j−1v j−1

, v j−1 = zk, j − zk, j−1, w j−1 = g(zk, j ) − g(zk, j−1),

and λ̂k+ j = λ̂BB
ν(k+ j).

Notice that the comparison iterate is based on a single starting point x̂k since αk,0
is obtained from the AS_CBB iterate. The comparison CBB iteration starts out as a
modified CBB iteration where the stepsize takes the top value in (5.6) until ν(k + j) >

ν(k), at which point the bottom value in (5.6) is used. By the definition of ν, we have
j ≤ m when the switch to the bottom expression takes place.

As an application of our local convergence result for the CBB iteration, we now
prove the following:

Proposition 5.3 Suppose that for some ρ > 0, f is twice continuously differentiable
on the domain

Bρ(x∗) ∩ {x ∈ R
n : x ≥ 0}, (5.7)

and the second-order sufficient optimality condition (1.12) is satisfied. Then there exist
δ > 0 and an integer N > 0 such that for all starting points xk ∈ Bδ(x∗), the CBB
iterates generated by (5.5)–(5.6) satisfy

zk, j ∈ Bρ(x∗) and zk, j ≥ 0 for j ≥ 0 and (5.8)
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‖zk, j − x∗‖ ≤ 1

2
‖zk,0 − x∗‖ for j ≥ N . (5.9)

Proof Let µ be a Lipschitz constant for g on the set (5.7). Let δ1 > 0 be the minimum of
ρ and the parameter δ of Lemma 5.2 associated with the function of n − |A| variables
obtained by setting the active components of x to zero in f (x); in other words, F
corresponds to the function f (x̂). Choose δ1 smaller if necessary to ensure that

x̂ ≥ 0 whenever x ∈ Bδ1(x
∗). (5.10)

Let δ > 0 be any scalar small enough that

β(1 + µλ−1
0 )mδ < δ1 ≤ ρ, (5.11)

where m is the cycle length of the CBB algorithm and β ≥ 1 is the constant in (5.4).
Since ĝ(x∗) = 0, if follows from (5.5) and (5.6) that

‖zk, j+1 − x∗‖ ≤
(

1 + µ

λ0

)
‖zk, j − x∗‖

if ν(k + j) = ν(k) and zk, j ∈ Bρ(x∗). Hence, if zk,0 ∈ Bδ(x∗), then by (5.11),
both zk, j+1 and zk, j ∈ Bδ1(x

∗) when ν(k + j) = ν(k) since j < m in this case.
Consequently, if J is the smallest integer for which ν(k + J ) > ν(k), then J ≤ m;
and if zk,0 ∈ Bδ(x∗), then zk,J−1 and zk,J ∈ Bδ2(x

∗), where δ2 = (1 + µλ−1
0 )mδ.

By (5.11) and (1.12), we can apply Lemma 5.2 to the CBB iterates that start from
zk,J and zk,J−1 (note that the components of zk, j associated with the active indices A
always vanish since the components of both zk,0 and ĝ associated with active indices
vanish). By (5.10), (5.11), and Lemma 5.2, it follows that for N sufficiently large and
for j ≥ N , (5.8)–(5.9) hold. 
�

As a corollary of Proposition 5.3, the comparison iterates are well-defined in the
sense that they remain inside a sphere where f is differentiable whenever they start
from a point xk ∈ Bδ(x∗).

6 Comparison between CBB and AS_CBB iterates

Our proof of local R-linear convergence for the AS_CBB algorithm is based on the
local R-linear convergence of the CBB algorithm, as indicated in Lemma 5.2 and
Proposition 5.3, and the Q-quadratic convergence of the components of the iterates
associated with active constraints as given in Proposition 5.1. In our next lemma, we
estimate the distance between the CBB iterate zk, j and the AS_CBB iterate xk+ j .

Lemma 6.1 Suppose that for some ρ > 0, f is twice continuously differentiable on
the domain

Bρ(x∗) ∩ {x ∈ R
n : x ≥ 0}, (6.1)
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18 W. W. Hager et al.

where x∗ is a nondegenerate local minimizer satisfying the second-order sufficient
optimality condition (1.12). Let r be small enough that r ≤ min{ρ1, ρ/2} where ρ1 is
the parameter of Proposition 5.1, and

dT∇2 f (x)d ≥ (α/2)‖d‖2 (6.2)

for all x ∈ B2r (x∗) and d ∈ R
n with di = 0 when i ∈ A. Assume that 0 < λ0 ≤ α/4

and let � ≥ λ0 be a fixed scalar. If xk+ j , j ≥ 0, is a sequence generated by the
AS_CBB algorithm (5.1), then for any fixed positive integer N, there exist positive
constants δ and c2 with the following property: For any xk ∈ Bδ(x∗) satisfying

max{|xki | : i ∈ A} ≤ ‖x̂k − x∗‖3/2 and λk ≤ �, (6.3)

and for any � ∈ [0, N ], if

‖zk, j − x∗‖ ≥ 1

2
‖zk,0 − x∗‖ for all j ∈ [0, max{0, � − 1}], (6.4)

then we have

xk+ j ∈ Br (x∗) and ‖xk+ j − zk, j‖ ≤ c2‖xk − x∗‖3/2 (6.5)

for all j ∈ [0, �].
Proof To facilitate the proof, we show, in addition to (6.5), that

‖sk+ j‖ ≤ c2‖xk − x∗‖ and (6.6)

max {|α(k+ j)i − αk, j | : i ∈ Ac} ≤ c2‖xk − x∗‖1/2 (6.7)

for all j ∈ [0, �], where αk, j is defined in (5.6) and αk is the coefficient of the gradient
in (1.5):

αki = − 1

λk + g+
i (xk)/xki

(6.8)

The proof of (6.5)–(6.7) is by induction on �. We begin with � = 0, in which
case j = 0. Choose δ < r . Hence, the left side of (6.5) holds trivially. By the initial
condition zk,0 = x̂k and (6.3), we have

‖xk − zk,0‖2 = ‖xk − x̂k‖2 =
∑
i∈A

x2
ki

≤ (|A|)‖x̂k − x∗‖3 ≤ (|A|)‖xk − x∗‖3, (6.9)

which gives the right side of (6.5), c2 = |A|1/2. Since δ < r ≤ ρ1, it follows from
Proposition 5.1 that for xk ∈ Bδ(x∗),

‖sk‖ = ‖dk‖ ≤ c1‖xk − x∗‖, (6.10)
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which implies that (6.6) holds, when c2 is increased if necessary. Take δ smaller if
necessary and choose ε so that

min{xi : i ∈ Ac, x ∈ Bδ(x∗)} ≥ ε > 0.

Equations (5.6) and (6.8) imply that for any i ∈ Ac and xk ∈ Bδ(x∗),

|αki − α̂k,0| =
⎧⎨
⎩

0 if gki ≤ 0,∣∣∣∣ 1

λk + gki/xki
− 1

λk

∣∣∣∣ otherwise.
(6.11)

If gki > 0, then we have

|αki − α̂k,0| =
∣∣∣∣ 1

λk + gki/xki
− 1

λk

∣∣∣∣ ≤ |gki |
ε(λk)2 ≤ |gki |

ελ2
0

. (6.12)

Since

|gki | ≤ ‖ĝ(xk) − ĝ(x∗)‖ ≤ ‖g(xk) − g(x∗)‖ ≤ µ‖xk − x∗‖, (6.13)

where µ is a Lipschitz constant for g on the set (6.1), (6.7) follows from (6.11)–(6.13)
when δ is sufficiently small .

Now, proceeding by induction, suppose that for some L ∈ [1, N ), (6.5)–(6.7) hold
for all � ∈ [0, L] when the conditions (6.3)–(6.4) are satisfied. We wish to show that
for a suitable choice of δ and c2, we can replace L by L + 1. Hence, let us suppose
that (6.4) holds for all j ∈ [0, L]. By the induction hypothesis and (6.6),

‖xk+L+1 − x∗‖ ≤ ‖xk − x∗‖ +
L∑

i=0

‖sk+i‖

≤ (1 + (L + 1)c2)‖xk − x∗‖ ≤ (1 + (L + 1)c2)δ. (6.14)

Consequently, by choosing δ smaller if necessary, we have xk+L+1 ∈ Br (x∗) when
xk ∈ Bδ(x∗).

By the triangle inequality, (6.14) with L replaced by L − 1, and Proposition 5.1,
we have

‖xk+L+1 − zk,L+1‖ ≤ ‖xk+L+1 − x̂k+L+1‖ + ‖x̂k+L+1 − zk,L+1‖
≤ c1‖xk+L − x̂k+L‖2 + ‖x̂k+L+1 − zk,L+1‖
≤ c1‖xk+L − x∗‖2 + ‖x̂k+L+1 − zk,L+1‖
≤ c1(1 + Lc2)

2‖xk − x∗‖2 + ‖x̂k+L+1 − zk,L+1‖. (6.15)

123



20 W. W. Hager et al.

By the definition of the AS_CBB and CBB iterates, and by (6.5) for j = L ,

‖x̂k+L+1 − zk,L+1‖ ≤ ‖x̂k+L − zk,L‖ + ‖ŝk+L − αk,L ĝ(zk,L)‖
≤ ‖xk+L − zk,L‖ + ‖ŝk+L − αk,L ĝ(zk,L)‖
≤ c2‖xk − x∗‖3/2 + ‖ŝk+L − αk,L ĝ(zk,L)‖. (6.16)

For i ∈ Ac, we have

|(ŝk+L − αk,L ĝ(zk,L))i | = |α(k+L)i gi (xk+L) − αk,L gi (zk,L)|
≤ (|α(k+L)i |)|gi (xk+L) − gi (zk,L)|

+(|αk,L − α(k+L)i |)|gi (zk,L)|. (6.17)

Suppose that δ is small enough that c2δ
3/2 ≤ r . It follows from (6.5) that zk, j ∈ B2r (x∗)

for all j ∈ [0, L]. We apply the Lipschitz continuity of g on B2r (x∗) to (6.17) to obtain

|(ŝk+L − αk,L ĝ(zk,L))i |
≤ µλ−1

0 ‖xk+L − zk,L‖ + c2‖xk − x∗‖1/2‖gi (zk,L) − gi (x∗)‖
≤ µλ−1

0 c2‖xk − x∗‖3/2 + c2µ‖xk − x∗‖1/2‖zk,L − x∗‖ (6.18)

since |αki | ≤ 1/λ0 for any k and both (6.5) and (6.7) hold for j = L . By the triangle
inequality, (6.5), and (6.14), we have

‖zk,L − x∗‖ ≤ ‖zk,L − xk+L‖ + ‖xk+L − x∗‖
≤ c2‖xk − x∗‖3/2 + (1 + Lc2)‖xk − x∗‖. (6.19)

Combine (6.15)–(6.19) to obtain (6.5) for j = L +1, assuming δ is sufficiently small.
As a consequence, zk,L+1 ∈ B2r (x∗).

To complete the induction step, we must verify (6.6) and (6.7) for j = L +1. Since
xk+L+1 ∈ Br (x∗), it follows from Proposition 5.1 and (6.14) that

‖sk+L+1‖ ≤ c1‖xk+L+1 − x∗‖ ≤ c1(1 + (L + 1)c2)‖xk − x∗‖,

which gives (6.6) for j = L + 1.
Finally, let us focus on (6.7). If ν(k + L + 1) = ν(k), then by the same analysis

used in (6.11)–(6.13), (6.7) holds for j = L + 1. If ν(k + L + 1) > ν(k), then there
exists an index j ∈ (0, L] such that

λ̂k+L+1 = vT
k+ j wk+ j

vT
k+ j vk+ j

and λk+L+1 = sT
k+ j yk+ j

sT
k+ j sk+ j

.

By the triangle inequality,

‖sk+ j − vk+ j‖ ≤ ‖xk+ j+1 − zk, j+1‖ + ‖xk+ j − zk, j‖.
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Since (6.5) has already been established for j ∈ [0, L + 1], it follows that

‖sk+ j − vk+ j‖ ≤ 2c2‖xk − x∗‖3/2. (6.20)

Combining this with (6.6) gives

|sT
k+i sk+i − vT

k+i vk+ j | =
∣∣∣2sT

k+ j (sk+ j − vk+ j ) − ‖vk+ j − sk+ j‖2
∣∣∣

≤ 4c2
2(‖xk − x∗‖5/2 + ‖xk − x∗‖3)

≤ 4c2
2(1 + √

r)‖xk − x∗‖5/2. (6.21)

Let �1 denote an upper bound for the largest eigenvalue for ∇2 f (x) over x ∈
B2r (x∗). Since zk, j ∈ B2r (x∗) for all j ∈ [0, L], a Taylor expansion yields

α/2 ≤ |̂λk+ j | ≤ �1, (6.22)

which implies that

|αk, j | = 1/|̂λk+ j | ≥ 1/�1.

By (6.2), it follows that

‖ĝ(zk, j )‖ = ‖ĝ(zk, j ) − ĝ(x∗)‖ ≥ (α/2)‖zk, j − x∗‖.
As a consequence of these relations, we have

‖vk+ j‖ = ‖αk, j ĝk, j‖ = ‖αk, j (ĝ(zk, j ) − ĝ(x∗))‖
≥ α

2�1
‖zk, j − x∗‖. (6.23)

Applying (6.4) with j = L and (6.9) gives

‖zk, j − x∗‖ ≥ 1

2
‖zk,0 − x∗‖ = 1

2
‖x̂k − x∗‖

≥ 1

2
(‖xk − x∗‖ − ‖x̂k − xk‖) ≥ 1

2
‖xk − x∗‖(1 − |A| 1

2
√

δ). (6.24)

By (6.23)–(6.24) and for δ sufficiently small, there exists a scalar σ > 0 such that

‖vk+ j‖ ≥ σ‖xk − x∗‖. (6.25)

Combining (6.21) and (6.25), we obtain∣∣∣∣∣1 − sT
k+ j sk+ j

vT
k+ j vk+ j

∣∣∣∣∣ = |sT
k+ j sk+ j − vT

k+ j vk+ j |
vT

k+ j vk+ j
≤ c‖xk − x∗‖1/2, (6.26)

where c is a generic constant.
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Next, we estimate the difference in the numerators of λk+ j and λ̂k+ j . Since the
components of zk, j associated with i ∈ A vanish, it follows that

sT
k+ j yk+ j − vT

k+ j wk+ j = sT
k+ j yk+ j − vT

k+ j (g(zk, j+1) − g(zk, j ))

= sT
k+ j (yk+ j − (g(zk, j+1) − g(zk, j )))

+(sk+ j − vk+ j )
T(g(zk, j+1) − g(zk, j )). (6.27)

By (6.6) and (6.20) for j ∈ [0, L + 1], the Lipschitz continuity of g, and the fact that
zk, j ∈ B2r (x∗), we have

|(sk+ j − vk+ j )
T(g(zk, j+1) − g(zk, j ))|≤µ‖sk+ j − vk+ j‖‖vk+ j‖

≤µ‖sk+ j − vk+ j‖(‖sk+ j − vk+ j‖ + ‖sk+ j‖)
≤2µc2

2(2
√

δ + 1)‖xk − x∗‖5/2. (6.28)

Also, by (6.5) and (6.6) for all j ∈ [0, L + 1], we have

|sT
k+ j (yk+ j − (g(zk, j+1) − g(zk, j )))|
≤ ‖sk+ j‖

(
‖g(xk+ j+1) − g(zk, j+1)‖ + ‖g(xk+ j ) − g(zk, j )‖

)
≤ 2µc2

2‖xk − x∗‖5/2. (6.29)

Combining (6.27), (6.28) and (6.29) yields

∣∣∣sT
k+ j yk+ j − vT

k+ j wk+ j

∣∣∣ ≤ c‖xk − x∗‖5/2, (6.30)

where c is a generic constant.
On the other hand, since zk, j ∈ B2r (z∗), it follows from (6.25) that

vT
k+ j wk+ j ≥ αvT

k+ j vk+ j ≥ ασ 2‖xk − x∗‖2.

Combining this with (6.30) gives

∣∣∣∣∣1 − sT
k+ j yk+ j

vT
k+ j wk+ j

∣∣∣∣∣ = |sT
k+ j yk+ j − vT

k+ j wk+ j |
vT

k+ j wk+ j
≤ c‖xk − x∗‖1/2,

where c is a generic constant. Hence, sT
k+ j yk+ j/vT

k+ j wk+ j is close to 1 for δ suf-

ficiently small. Consequently, the reciprocal vT
k+ j wk+ j/sT

k+ j yk+ j is also close to 1.
More precisely, we have

∣∣∣∣∣1 − vT
k+ j wk+ j

sT
k+ j yk+ j

∣∣∣∣∣ ≤ c‖xk − x∗‖1/2, (6.31)
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where c is a generic constant. We utilize (6.22) to obtain

|λ−1
k+L+1 − λ̂−1

k+L+1| =
∣∣∣∣∣

sT
k+ j sk+ j

sT
k+ j yk+ j

− vT
k+ j vk+ j

vT
k+ j wk+ j

∣∣∣∣∣
= λ̂−1

k+L+1

∣∣∣∣∣1 −
(

sT
k+ j sk+ j

vT
k+ j vk+ j

)(
vT

k+ j wk+ j

sT
k+ j yk+ j

)∣∣∣∣∣
≤ 2

α

∣∣∣∣∣1 −
(

sT
k+ j sk+ j

vT
k+ j vk+ j

) (
vT

k+ j wk+ j

sT
k+ j yk+ j

)∣∣∣∣∣
= 2

α
|a(1 − b) + b| ≤ 2

α
(|a| + |b| + |ab|), (6.32)

where

a = 1 − sT
k+ j sk+ j

vT
k+ j vk+ j

and b = 1 − vT
k+ j wk+ j

sT
k+ j yk+ j

.

Together, (6.26), (6.31), and (6.32) yield

|λ−1
k+L+1 − λ̂−1

k+L+1| ≤ c‖xk − x∗‖1/2 (6.33)

for δ sufficiently small. By (6.22), λ̂−1
k+L+1 ≤ 2/α. Hence, for δ sufficiently small,

λ−1
k+L+1 ≤ 3/α, or equivalently, λk+L+1 ≥ α/3. Since λ0 ≤ α/4, we conclude that

max{λ0, λk+L+1} = λk+L+1 (6.34)

for δ sufficiently small. It follows that

|α(k+L+1)i − αk,L+1| =
∣∣∣∣∣ 1

λk+L+1 + g+
i (xk)/xki

− λ̂−1
k,L+1

∣∣∣∣∣ .
Therefore, by (6.14), (6.33) and (6.34) and for any i ∈ A(x∗)c, we have

|α(k+L+1)i − αk,L+1| =
⎧⎨
⎩

|λ−1
k+L+1 − λ̂−1

k,L+1| if g(k+L+1)i ≤ 0,∣∣∣∣ 1

λk+L+1 + gi (xk)/xki
− λ̂−1

k,L+1

∣∣∣∣ otherwise,

≤ |λ−1
k+L+1 − λ̂−1

k,L+1| + c‖xk+L+1 − x∗‖
≤ c‖xk − x∗‖1/2

for δ sufficiently small. This establishes (6.7) for � = L +1. Hence, the induction step
is complete. 
�

123



24 W. W. Hager et al.

7 Linear convergence for AS_CBB

In this section, we combine the local R-linear convergence of the CBB algorithm,
the comparison between CBB and AS_CBB iterates, as given in Lemma 6.1, and the
Q-quadratic decay of AS_CBB active components, as given in Proposition 5.1, to
obtain local R-linear convergence for AS_CBB.

Theorem 7.1 Suppose that for some ρ > 0, f is twice continuously differentiable on
the domain

Bρ(x∗) ∩ {x ∈ R
n : x ≥ 0},

where x∗ is a nondegenerate local minimizer satisfying the second-order sufficient
optimality condition (1.12). Let λ0 be chosen in accordance with Lemma 6.1. Then
there exist positive scalars δ and η, and a positive scalar γ < 1 with the property
that for all starting points x0, x1 ∈ Bδ(x∗), x0 �= x1, and with λ1 given by (1.11), the
AS_CBB iterates generated by (5.1) satisfy

‖xk − x∗‖ ≤ ηγ k‖x1 − x∗‖. (7.1)

Proof Let N > 0 be the integer given in Proposition 5.3 and let r be the constant in
Lemma 6.1. Choose r smaller if necessary to ensure that

r ≤ min

{
1

2c1
,

1

182c2
1(1 + c1)3

}
, (7.2)

where c1 is the constant of Proposition 5.1. Let δ1 be the minimum of the δ’s in
Proposition 5.3 and Lemma 6.1. Let � be the absolute largest eigenvalue for ∇2 f (x)

over x ∈ B2r and let c2 be the constant in (6.5) and (6.6). The theorem is established
for the following choice of δ:

δ = min

{
1, δ1,

r

1 + c1
,

1

16c2
2

}
. (7.3)

If x j ∈ Br (x∗) for all j ∈ [0, k], then λ j ≤ � for all j ∈ [1, k]. By Proposition 5.1
and the fact that r ≤ 1/(2c1), we have

‖x j+1 − x̂ j+1‖ ≤ 1

2
‖x j − x̂ j‖ ≤ · · · ≤

{( 1
2

) j( 1
2

) j ‖x1 − x∗‖ (7.4)

for all j ∈ [0, k]. The top inequality is due the fact that x1 ∈ Bδ(x∗) with δ ≤ 1, and
the bottom inequality is due to the relation ‖x1 − x̂1‖ ≤ ‖x1 − x∗‖.

Suppose that x j ∈ Br (x∗) for all j ∈ [0, k − 1], and

max{|x ji | : i ∈ A} > ‖x̂ j − x∗‖3/2 (7.5)
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for j = k. We now show that

‖x j − x∗‖ ≤
(

1

2

) j−1

‖x1 − x∗‖, for j = k or j = k + 1. (7.6)

Observe that

‖xk − x∗‖2 ≤ max{|xki |4/3 : i ∈ A} +
∑
i∈A

x2
ki

≤
(∑

i∈A
x2

ki

)2/3

+
∑
i∈A

x2
ki ≤ 2

(∑
i∈A

x2
ki

)2/3

≤ 2‖xk − x̂k‖4/3 ≤ 2(c1‖xk−1 − x̂k−1‖2)4/3 = 2c4/3
1 ‖xk−1 − x̂k−1‖8/3.

The first inequality is due to (7.5), the second inequality is from (7.4), and the fourth
inequality is from Proposition 5.1. Taking square roots gives

‖xk − x∗‖ ≤ √
2c2/3

1 ‖xk−1 − x̂k−1‖4/3 = (
√

2c2/3
2 ‖xk−1 − x̂k−1‖1/3)‖xk−1 − x̂k−1‖

≤ (
√

2c2/3
2 ‖xk−1 − x∗‖1/3)‖xk−1 − x̂k−1‖

≤ (
√

2c2/3
2 r1/3)‖xk−1 − x̂k−1‖.

The constraint r ≤ 1/[182c2
1(1 + c1)

3] in (7.2) ensures that

√
2c2/3

2 r1/3 ≤ 1/[4(1 + c1)].

This together with (7.4) imply

‖xk − x∗‖ ≤
(

1

4(1 + c1)

)
‖xk−1 − x̂k−1‖

≤ 1

4(1 + c1)

(
1

2

)k−2

‖x1 − x̂1‖ ≤ 1

2(1 + c1)

(
1

2

)k−1

‖x1 − x∗‖. (7.7)

This establishes (7.6) for j = k. Proposition 5.1 and (7.7) give

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ + ‖sk‖ ≤ (1 + c1)‖xk − x∗‖
≤

(
1

2

)k

‖x1 − x∗‖, (7.8)

which establishes (7.6) for j = k + 1.
Now, suppose that x j ∈ Br (x∗) for all j ∈ [0, k − 1], and for some integer � > k,

(7.5) holds for all j ∈ [k, �). Since δ ≤ r , it follows from repeated application of (7.6)
that
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x j ∈ Bδ(x∗) and ‖x j − x∗‖ ≤
(

1

2

) j−1

‖x1 − x∗‖ for all j ∈ [k, �]. (7.9)

On the other hand, suppose that xk ∈ Bδ(x∗) and (7.5) is violated for j = k. Let
� > 0 be the smallest integer with the property that

‖zk,� − x∗‖ ≤ 1

2
‖zk,0 − x∗‖.

By Proposition 5.3, � ≤ N . By Lemma 6.1, (6.5) and (6.6) hold and we have

‖xk+� − x∗‖ ≤ ‖xk+� − zk,�‖ + ‖zk,� − x∗‖
≤ c2‖xk − x∗‖3/2 + 1

2
‖zk,0 − x∗‖

= c2‖xk − x∗‖3/2 + 1

2
‖xk − x∗‖

≤ (c2
√

δ + 1/2)‖xk − x∗‖
≤ 3

4
‖xk − x∗‖. (7.10)

The last inequality is due to the fact that xk ∈ Bδ(x∗) where δ ≤ 1/(16c2
2). The last

inequality also implies that xk+� ∈ Bδ(x∗). Moreover, by (6.5) we have x j ∈ Br (x∗)
and λ j ≤ � for all j ∈ [k, k + �].

Starting with k1 = 1, we apply either (7.9) or (7.10) to generate a sequence of
iterates xki , i = 1, 2, . . ., for which the error tends to zero at a geometric rate. If the
sequence has reached k = ki , then ki+1 is obtained in the following way:

A. If (7.5) holds for j = ki , then ki+1 = � where � (possibly infinite) is chosen so
that (7.5) holds for all j ∈ [ki , �) and

max{|x�i | : i ∈ A} ≤ ‖x̂� − x∗‖3/2.

B. If (7.5) is violated for j = ki , then ki+1 = ki + � where � is chosen so that (7.10)
holds for k = ki .

If ki+1 is chosen in accordance with Rule B, then since ki+1 − ki ≤ N , we have

‖xki+1 − x∗‖ ≤
(

3

4

)
‖xki − x∗‖ ≤

(
3

4

)(ki+1−ki )/N

‖xki − x∗‖

= γ ki+1−ki ‖xki − x∗‖, where γ =
(

3

4

)1/N

. (7.11)

If ki+1 is chosen in accordance with Rule A, then by (7.9) and the fact that γ ≥ 1/2,
we have

‖xk − x∗‖ ≤ γ k−1‖x1 − x∗‖ = γ k−k1‖x1 − x∗‖ for all k ∈ [ki , ki+1]. (7.12)
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Together, (7.11) and (7.12) imply that for each i ,

‖xki − x∗‖ ≤ γ ki −k1‖x1 − x∗‖ = γ −1γ ki ‖x1 − x∗‖. (7.13)

By Lemma 6.1, we know that for any xk ∈ Bδ(x∗) satisfying (6.3)–(6.4), the
relations (6.5)–(6.6) hold for all j ∈ [0, �]. Moreover, since j ≤ � ≤ N , it follows
from (6.14) that

‖xk+ j − x∗‖ ≤ (1 + Nc2)‖xk − x∗‖.

If k ∈ [ki , ki+1) where ki+1 is chosen in accordance with Rule B, then we have

‖xk − x∗‖ ≤ (1 + Nc2)‖xki − x∗‖
≤ γ −1(1 + Nc2)γ

ki ‖x1 − x∗‖ ≤ ηγ k‖x1 − x∗‖, (7.14)

where η = (1 + Nc2)/γ
N+1. If k ∈ [ki , ki+1) where ki+1 is chosen in accordance

with Rule A, then by (7.9), we have

‖xk − x∗‖ ≤
(

1

2

)k−1

‖x1 − x∗‖ ≤ γ k−1‖x1 − x∗‖ ≤ ηγ k‖x1 − x∗‖. (7.15)

Together, (7.13)–(7.15) complete the proof. 
�

8 Box constraints

We now generalize AS_CBB to handle the box constrained problem (1.1). In this case,
the definition of X1 in (1.7) is replaced by

Xi (x) =
{

ui − xi if gi (x) ≤ 0,

xi − li otherwise.

With the convention that ∞ × 0 = 0, the KKT conditions can be expressed

X(x) ◦ g(x) = 0 and l ≤ x ≤ u.

With the convention that 1/∞ = 0, the new approximation to the Newton search
direction is

dki = − 1

λk + |gi (xk)|/Xi (xk)
gi (xk).

In the special case considered earlier where li = 0 and ui = ∞, we have Xi (x) = ∞
when gi (x) ≤ 0 and |gi (x)|/Xi (x) = 0, exactly as in (1.5).
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9 Experimental studies

In our first set of numerical experiments, we investigate how the convergence speed
of AS_CBB depends on the problem condition number. We consider the linear least
square problem:

min{‖Ax − b‖2 : x ≥ 0},

where the elements of b are chosen randomly on the interval [−1, 1], and A is a 20
by 10 matrix with 10% of its elements nonzero, and with condition number varying
between 10 and 108. Hence, the condition number of the matrix ATA associated
with the quadratic objective function varies between 100 and 1016. Our matrix A was
generated using MATLAB’s sprand command. The syntax is as follows:

A = sprand (m, n, density, 1/condA)

where m= 20, n= 10, density= 0.1, and condA had values between 10 and 108.
The vector b was generated using MATLAB’s rand command with the following
syntax:

b = 2*rand (m, 1) − 1.

Hence, b typically lies outside the column space of A. In our implementation of
AS_CBB, the cycle length in the cyclic BB iteration (2.1) was m = 4, while the
memory in the nonmonotone line search was M = 8. In Fig. 2 we plot the quantity

log10(‖(xk − gk)
+ − xk‖∞)

versus the iteration number, where ‖ · ‖∞ is the maximum absolute component of a
vector.

These results indicate that the convergence speed is relatively insensitive to the
problem conditioning. The matrices A and the vector b associated with the plots in
Fig. 2 can be found at the following web site for the paper:

http://www.math.ufl.edu/~hager/papers/PET

In the second set of numerical experiments, we compare the convergence speed of
AS_CBB to that of the conjugate gradient-based active set algorithm ASA develo-
ped in [20] using an image reconstruction problem that arises in Positron Emission
Tomography. The data, obtained from a PET scan of the thorax, and a Fortran code
to evaluate the cost function and the gradient are also available at the web site for the
paper.

Figure 3 plots log10(error) versus the iteration number. Although the conjugate
gradient-based algorithm reaches the 10−6 error level in less than 500 iterations,
AS_CBB is able to reduce the error more quickly during the initial iterations; for
example, the error is less than 10−1 within 16 iterations, while ASA uses 50 iterations
to reach the same error level. Since the line search in the conjugate gradient routine
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Fig. 2 Iteration number versus log10(error) for matrices with various condition numbers: a 102, b 104,
c 108, d 1016
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Fig. 3 Iteration number versus log10(error) for a AS_CBB and b ASA (a conjugate gradient-based active
set algorithm)

requires both the function and the gradient (to satisfy the Wolfe conditions), while the
Armijo line search in AS_CBB only requires the function value, AS_CBB is initially
much faster than the conjugate gradient code; there are fewer iterations to achieve
a given error tolerance and each iteration requires fewer gradient evaluations. Due
to the asymptotic superiority of the conjugate gradient code, it eventually surpasses
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Fig. 4 Reconstructed image for error tolerance 10−4

AS_CBB in speed as the error tolerance becomes tiny. However, in practice a low
accuracy solution of (1.10) is often sufficient. The reconstructed image corresponding
to the error tolerance 10−4 appears in Fig. 4

10 Conclusions

We develop a new affine scaling algorithm for box constrained optimization. This
algorithm was obtained by applying Newton’s method to the first-order optimality
conditions and approximating the Hessian matrix at iteration k by λkI where λk is
obtained from a quasi-Newton condition. This approximation to the Hessian leads to
a scaled iterate which lies in the interior of the feasible set. This feature is especially
useful for problems where the cost function is infinite on the boundary of the fea-
sible set. We obtain λk using a cyclic Barzilai–Borwein stepsize given by (1.11) and
(2.1). By Theorem 4.1, the resulting affine-scaling cyclic Barzilai–Borwein algorithm
AS_CBB is globally convergent when implemented using a nonmonotone line search
shown in Fig. 1. By Theorem 7.1, the algorithm is locally R-linearly convergent at a
nondegenerate local minimizer where the second-order sufficient optimality condition
holds. As seen in Fig. 2, the convergence of AS_CBB is relatively insensitive to the
problem condition number. We compared performance to that of the asymptotically
faster active set algorithm ASA using a test problem which arises in Positron Emission
Tomography (PET). AS_CBB is initially much faster than ASA, while ASA is faster
in the limit, as the error tolerance becomes tiny.
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