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Abstract. An active set algorithm (ASA) for box constrained optimization is developed. The
algorithm consists of a nonmonotone gradient projection step, an unconstrained optimization step,
and a set of rules for branching between the two steps. Global convergence to a stationary point is
established. For a nondegenerate stationary point, the algorithm eventually reduces to unconstrained
optimization without restarts. Similarly, for a degenerate stationary point, where the strong second-
order sufficient optimality condition holds, the algorithm eventually reduces to unconstrained opti-
mization without restarts. A specific implementation of the ASA is given which exploits the recently
developed cyclic Barzilai–Borwein (CBB) algorithm for the gradient projection step and the recently
developed conjugate gradient algorithm CG DESCENT for unconstrained optimization. Numeri-
cal experiments are presented using box constrained problems in the CUTEr and MINPACK-2 test
problem libraries.
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1. Introduction. We develop an active set method for the box constrained op-
timization problem

min {f(x) : x ∈ B},(1.1)

where f is a real-valued, continuously differentiable function defined on the set

B = {x ∈ R
n : l ≤ x ≤ u}.(1.2)

Here l < u, and possibly li = −∞ or ui = ∞.
The box constrained optimization problem appears in a wide range of applica-

tions, including the obstacle problem [67], the elastic-plastic torsion problem [47],
optimal design problems [7], journal bearing lubrication [20], inversion problems in
elastic wave propagation [6], and molecular conformation analysis [48]. Problem (1.1)
is often a subproblem of augmented Lagrangian or penalty schemes for general con-
strained optimization (see [24, 25, 37, 38, 43, 46, 52, 53, 65]). Thus the development of
numerical algorithms to efficiently solve (1.1), especially when the dimension is large,
is important in both theory and applications.

We begin with an overview of the development of active set methods. A seminal
paper is Polyak’s 1969 paper [68] which considers a convex, quadratic cost function.
The conjugate gradient method is used to explore a face of the feasible set, and the
negative gradient is used to leave a face. Since Polyak’s algorithm added or dropped
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only one constraint in each iteration, Dembo and Tulowitzki proposed [32] the conju-
gate gradient projection (CGP) algorithm which could add and drop many constraints
in an iteration. Later, Yang and Tolle [79] further developed this algorithm to ob-
tain finite termination, even when the problem was degenerate at a local minimizer
x∗. That is, for some i, x∗

i = li or x∗
i = ui and ∇f(x∗)i = 0. Another variation

of the CGP algorithm, for which there is a rigorous convergence theory, is developed
by Wright [77]. Moré and Toraldo [67] point out that when the CGP scheme starts
far from the solution, many iterations may be required to identify a suitable working
face. Hence, they propose using the gradient projection method to identify a working
face, followed by the conjugate gradient method to explore the face. Their algorithm,
called GPCG, has finite termination for nondegenerate quadratic problems. Recently,
adaptive conjugate gradient algorithms have been developed by Dostál [35, 36] and
Dostál, Friedlander, and Santos [38] which have finite termination for a strictly convex
quadratic cost function, even when the problem is degenerate.

For general nonlinear functions, some of the earlier research [3, 19, 49, 61, 66, 71]
focused on gradient projection methods. To accelerate the convergence, more recent
research has developed Newton and trust region methods (see [26] for an in-depth
analysis). In [4, 17, 24, 42] superlinear and quadratic convergence is established for
nondegenerate problems, while [44, 46, 60, 63] establish analogous convergence results,
even for degenerate problems. Although computing a Newton step can be computa-
tionally expensive, approximation techniques, such as a sparse, incomplete Cholesky
factorization [62], could be used to reduce the computational expense. Nonetheless,
for large-dimensional problems or for problems in which the initial guess is far from
the solution, the Newton/trust region approach can be inefficient. In cases when the
Newton step is unacceptable, a gradient projection step is preferred.

The affine-scaling interior-point method of Coleman and Li [21, 22, 23] (also see
Branch, Coleman, and Li [14]) is a different approach to (1.1), related to the trust
region algorithm. More recent research on this strategy includes [33, 58, 59, 76, 83].
These methods are based on a reformulation of the necessary optimality conditions
obtained by multiplication with a scaling matrix. The resulting system is often solved
by Newton-type methods. Without assuming strict complementarity (i.e., for degen-
erate problems), the affine-scaling interior-point method converges superlinearly or
quadratically, for a suitable choice of the scaling matrix, when the strong second-
order sufficient optimality condition [70] holds. When the dimension is large, forming
and solving the system of equations at each iteration can be time consuming, unless
the problem has special structure. Recently, Zhang [83] proposed an interior-point
gradient approach for solving the system at each iteration. Convergence results for
other interior-point methods applied to more general constrained optimization appear
in [39, 40, 78].

The method developed in this paper is an active set algorithm (ASA) which con-
sists of a nonmonotone gradient projection step, an unconstrained optimization step,
and a set of rules for branching between the steps. Global convergence to a station-
ary point is established. For a nondegenerate stationary point, the ASA eventually
reduces to unconstrained optimization without restarts. Similarly, for a degenerate
stationary point, where the strong second-order sufficient optimality condition holds,
the ASA eventually reduces to unconstrained optimization without restarts. If strict
complementarity holds and all the constraints are active at a stationary point, then
convergence occurs in a finite number of iterations. In general, our analysis does not
show that the strictly active constraints are identified in a finite number of iterations;
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instead, when the strong second-order sufficient optimality condition holds, we show
that the ASA eventually branches to the unconstrained optimization step, and hence-
forth, the active set does not change. Thus in the limit, the ASA reduces to uncon-
strained optimization without restarts. Furthermore, if the ith constraint in (1.1) is
strictly active at a stationary point x∗ (i.e., ∇f(x∗)i �= 0) and the iterates xk converge
to x∗, then the distance between the ith component of xk and the associated limit,
either li or ui, is on the order of the square of the distance between xk and x∗.

A specific implementation of the ASA is given, which utilizes our recently devel-
oped cyclic Barzilai–Borwein (CBB) algorithm [30] for the gradient projection step
and our recently developed conjugate gradient algorithm CG DESCENT [54, 55, 56,
57] for the unconstrained optimization step. Recent numerical results [27, 45, 50,
51, 74, 81] indicate that in some cases, a nonmonotone line search is superior to
a monotone line search. Moreover, gradient methods based on a Barzilai–Borwein
(BB) step [2] have exhibited impressive performance in a variety of applications
[7, 10, 28, 29, 48, 64, 72]. The BB methods developed in [8, 9, 10, 11, 12, 69] are
all based on a Grippo–Lampariello–Lucidi (GLL) type of line search [50]. We have
obtained better performance using an adaptive, nonmonotone line search which orig-
inates from [31, 75]. Using the adaptive nonmonotone line search, more constraints
can be added or dropped in a single iteration. In addition, the cyclic implementation
of the BB step [30], in which the same BB stepsize is reused for several iterations,
performs better than the original BB step. Hence, in the gradient projection phase of
the ASA, we use the CBB scheme of [30] and an adaptive nonmonotone line search.

After detecting a suitable working face, the ASA branches to the unconstrained
optimization algorithm, which operates in a lower-dimensional space since some com-
ponents of x are fixed. For the numerical experiments, we implement this step using
our conjugate gradient algorithm CG DESCENT. An attractive feature of this algo-
rithm is that the search directions are always sufficient descent directions; furthermore,
when the cost function is a strongly convex quadratic, the ASA converges in a finite
number of iterations, even when strict complementary slackness does not hold.

Our paper is organized as follows. In section 2 we present the nonmonotone
gradient projection algorithm (NGPA) and analyze its global convergence properties.
Section 3 presents the ASA and specifies the requirements of the unconstrained op-
timization algorithm. Section 4 establishes global convergence results for the ASA,
while section 5 analyzes local convergence. Section 6 presents numerical comparisons
using box constrained problems in the CUTEr [13] and MINPACK-2 [1] test problem
libraries. Finally, the appendix gives a specific implementation of the nonmonotone
gradient projection method based on our CBB method.

Throughout this paper, we use the following notation. For any set S, |S| stands
for the number of elements (cardinality) of S, while Sc is the complement of S. ‖ ·‖ is
the Euclidean norm of a vector. The subscript k is often used to denote the iteration
number in an algorithm, while xki stands for the ith component of the iterate xk.
The gradient ∇f(x) is a row vector, while g(x) = ∇f(x)T is a column vector; here
T denotes transpose. The gradient at the iterate xk is gk = g(xk). We let ∇2f(x)
denote the Hessian of f at x. The ball with center x and radius ρ is denoted Bρ(x).

2. Nonmonotone gradient projection algorithm. In this section, we con-
sider a generalization of (1.1) in which the box B is replaced with a nonempty, closed
convex set Ω:

min {f(x) : x ∈ Ω}.(2.1)
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Fig. 2.1. The gradient projection step.

We begin with an overview of our gradient projection algorithm. Step k in our algo-
rithm is depicted in Figure 2.1. Here P denotes the projection onto Ω:

P (x) = arg min
y∈Ω

‖x − y‖.(2.2)

Starting at the current iterate xk, we compute an initial iterate x̄k = xk − αkgk.
The only constraint on the initial steplength αk is that αk ∈ [αmin, αmax], where αmin

and αmax are fixed, positive constants, independent of k. Since the nominal iterate
may lie outside Ω, we compute its projection P (x̄k) onto Ω. The search direction is
dk = P (x̄k)−xk, similar to the choice made in SPG2 [11]. Using a nonmonotone line
search along the line segment connecting xk and P (x̄k), we arrive at the new iterate
xk+1.

In the statement of the NGPA given below, fr
k denotes the “reference” function

value. A monotone line search corresponds to the choice fr
k = f(xk). The nonmono-

tone GLL scheme takes fr
k = fmax

k , where

fmax
k = max{f(xk−i) : 0 ≤ i ≤ min(k,M − 1)}.(2.3)

Here M > 0 is a fixed integer, the memory. In the appendix, we give a procedure for
choosing the reference function value based on our CBB scheme.

NGPA parameters.

• ε ∈ [0,∞), error tolerance
• δ ∈ (0, 1), descent parameter used in Armijo line search
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• η ∈ (0, 1), decay factor for stepsize in Armijo line search
• [αmin, αmax] ⊂ (0,∞), interval containing initial stepsize

Nonmonotone gradient projection algorithm (ngpa).

Initialize k = 0, x0 = starting guess, and fr
−1 = f(x0).

While ‖P (xk − gk) − xk‖ > ε
1. Choose αk ∈ [αmin, αmax] and set dk = P (xk − αkgk) − xk.
2. Choose fr

k so that f(xk) ≤ fr
k ≤ max{fr

k−1, f
max
k } and fr

k ≤ fmax
k

infinitely often.
3. Let fR be either fr

k or min{fmax
k , fr

k}. If f(xk +dk) ≤ fR + δgT
kdk, then

αk = 1.
4. If f(xk + dk) > fR + δgT

kdk, then αk = ηj , where j > 0 is the smallest
integer such that

f(xk + ηjdk) ≤ fR + ηjδgT
kdk.(2.4)

5. Set xk+1 = xk + αkdk and k = k + 1.
End

The condition f(xk) ≤ fr
k guarantees that the Armijo line search in step 4 can be

satisfied. The requirement that “fr
k ≤ fmax

k infinitely often” in step 2 is needed for the
global convergence result, Theorem 2.2. This is a rather weak requirement which can
be satisfied by many strategies. For example, at every L iteration, we could simply
set fr

k = fmax
k . Another strategy, closer in spirit to the one used in the numerical

experiments, is to choose a decrease parameter Δ > 0 and an integer L > 0 and set
fr
k = fmax

k if f(xk−L) − f(xk) ≤ Δ.
To begin the convergence analysis, recall that x∗ is a stationary point for (2.1) if

the first-order optimality condition holds:

∇f(x∗)(x − x∗) ≥ 0 for all x ∈ Ω.(2.5)

Let dα(x), α ∈ R, be defined in terms of the gradient g(x) = ∇f(x)T as follows:

dα(x) = P (x − αg(x)) − x.

In the NGPA, the search direction is dk = dαk(xk). For unconstrained optimization,
dα(x) points along the negative gradient at x when α > 0. Some properties of P and
dα are summarized below.

Proposition 2.1 (Properties of P and dα
).

P1. (P (x) − x)T(y − P (x)) ≥ 0 for all x ∈ R
n and y ∈ Ω.

P2. (P (x) − P (y))T(x − y) ≥ ‖P (x) − P (y)‖2 for all x and y ∈ R
n.

P3. ‖P (x) − P (y)‖ ≤ ‖x − y‖ for all x and y ∈ R
n.

P4. ‖dα(x)‖ is nondecreasing in α > 0 for any x ∈ Ω.
P5. ‖dα(x)‖/α is nonincreasing in α > 0 for any x ∈ Ω.
P6. g(x)Tdα(x) ≤ −‖dα(x)‖2/α for any x ∈ Ω and α > 0.
P7. For any x ∈ Ω and α > 0, dα(x) = 0 if and only if x is a stationary point

for (2.1).
P8. Suppose x∗ is a stationary point for (2.1). If for some x ∈ R

n there exist
positive scalars λ and γ such that

(g(x) − g(x∗))T(x − x∗) ≥ γ‖x − x∗‖2(2.6)

and

‖g(x) − g(x∗)‖ ≤ λ‖x − x∗‖,(2.7)
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then we have

‖x − x∗‖ ≤
(

1 + λ

γ

)
‖d1(x)‖.

Proof. P1 is the first-order optimality condition associated with the solution of
(2.2). Replacing y with P (y) in P1 gives

(P (x) − x)T(P (y) − P (x)) ≥ 0.

Adding this to the corresponding inequality obtained by interchanging x and y yields
P2 (see [80]). P3 is the nonexpansive property of a projection (for example, see [5,
Prop. 2.1.3]). P4 is given in [73]. For P5, see [5, Lem. 2.3.1]. P6 is obtained from
P1 by replacing x with x− αg(x) and replacing y with x. If x∗ is a stationary point
satisfying (2.5), then P6 with x replaced by x∗ yields dα(x∗) = 0. Conversely, if
dα(x∗) = 0, then by P1 with x replaced by x∗ − αg(x∗), we obtain

0 ≤ αg(x∗)T(y − P (x∗ − αg(x∗)) = αg(x∗)T(y − x∗),

which implies that x∗ is a stationary point (see [5, Fig. 2.3.2]).
Finally, let us consider P8. Replacing x with x − g(x) and replacing y with x∗

in P1 gives

[P (x − g(x)) − x + g(x)]T[x∗ − P (x − g(x))] ≥ 0.(2.8)

By the definition of dα(x), (2.8) is equivalent to

[d1(x) + g(x)]T[x∗ − x − d1(x)] ≥ 0.

Rearranging this and utilizing (2.6) gives

d1(x)T(x∗ − x) − g(x)Td1(x) − ‖d1(x)‖2 ≥ g(x)T(x − x∗)

≥ γ‖x − x∗‖2 + g(x∗)T(x − x∗).(2.9)

Focusing on the terms involving g and utilizing (2.7), we have

g(x∗)T(x∗ − x) − g(x)Td1(x) ≤ λ‖x − x∗‖ ‖d1(x)‖ + g(x∗)T(x∗ − x − d1(x))

= λ‖x − x∗‖ ‖d1(x)‖ + g(x∗)T[x∗ − P (x − g(x))]

≤ λ‖x − x∗‖ ‖d1(x)‖(2.10)

by (2.5), since P (x − g(x)) ∈ Ω. Combining (2.9) and (2.10), the proof is
complete.

Next, we establish a convergence result for the NGPA.
Theorem 2.2. Let L be the level set defined by

L = {x ∈ Ω : f(x) ≤ f(x0)}.(2.11)

We assume the following conditions hold:
G1. f is bounded from below on L and dmax = supk‖dk‖ < ∞.
G2. If L̄ is the collection of x ∈ Ω whose distance to L is at most dmax, then ∇f

is Lipschitz continuous on L̄.
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Then either the NGPA with ε = 0 terminates in a finite number of iterations at a
stationary point, or we have

lim inf
k→∞

‖d1(xk)‖ = 0.

Proof. By P6, the search direction dk generated in step 1 of the NGPA is a
descent direction. Since fr

k ≥ f(xk) and δ < 1, the Armijo line search condition
(2.4) is satisfied for j sufficiently large. We now show that xk ∈ L for each k. Since
fmax
0 = fr

−1 = f(x0), step 2 of the NGPA implies that fr
0 ≤ f(x0). Proceeding by

induction, suppose that for some k ≥ 0, we have

fr
j ≤ f(x0) and fmax

j ≤ f(x0)(2.12)

for all j ∈ [0, k]. Again, since the search direction dk generated in step 1 of the NGPA
is a descent direction, it follows from steps 3 and 4 of the NGPA and the induction
hypothesis that

f(xk+1) ≤ fr
k ≤ f(x0).(2.13)

Hence, fmax
k+1 ≤ f(x0) and fr

k+1 ≤ max{fr
k , f

max
k+1 } ≤ f(x0). This completes the induc-

tion. Thus (2.12) holds for all j. Consequently, we have fR ≤ f(x0) in steps 3 and 4
of the NGPA. Again, since the search direction dk generated in step 1 of the NGPA
is a descent direction, it follows from steps 3 and 4 that f(xk) ≤ f(x0), which implies
that xk ∈ L for each k.

Let λ be the Lipschitz constant for ∇f on L̄. As in [81, Lem. 2.1], we have

αk ≥ min

{
1,

(
2η(1 − δ)

λ

)
|gT

kdk|
‖dk‖2

}
(2.14)

for all k. By P6,

|gT
kdk| ≥

‖dk‖2

αk
≥ ‖dk‖2

αmax
.

It follows from (2.14) that

αk ≥ min

{
1,

(
2η(1 − δ)

λαmax

)}
:= c.(2.15)

By steps 3 and 4 of the NGPA and P6, we conclude that

f(xk+1) ≤ fr
k + δcgT

kdk ≤ fr
k − δc‖dk‖2/αk ≤ fr

k − δc‖dk‖2/αmax.(2.16)

We now prove that lim infk→∞ ‖dk‖ = 0. Suppose, to the contrary, that there
exists a constant γ > 0 such that ‖dk‖ ≥ γ for all k. By (2.16), we have

f(xk+1) ≤ fr
k − τ, where τ = δcγ2/αmax.(2.17)

Let ki, i = 0, 1, . . . , denote an increasing sequence of integers with the property that
fr
j ≤ fmax

j for j = ki and fr
j ≤ fr

j−1 when ki < j < ki+1. Such a sequence exists by
the requirement on fr

k given in step 2 of the NGPA. Hence, we have

fr
j ≤ fr

ki
≤ fmax

ki
when ki ≤ j < ki+1.(2.18)
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By (2.17) it follows that

f(xj) ≤ fr
j−1 − τ ≤ fmax

ki
− τ when ki < j ≤ ki+1.(2.19)

It follows that

fr
ki+1

≤ fmax
ki+1

≤ fmax
ki

.(2.20)

Hence, if a = ki1 and b = ki2 , where i1 > i2 and a− b > M , then by (2.18)–(2.20) we
have

fmax
a = max

0≤j<M
f(xa−j) ≤ max

1≤j≤M
fr
a−j − τ ≤ fmax

b − τ.

Since the sequence ki, i = 0, 1, . . . , is infinite, this contradicts the fact that f is
bounded from below. Consequently, lim infk→∞ ‖dk‖ = 0. By P4 and P5, it follows
that

‖dk‖ ≥ min{αmin, 1}‖d1(xk)‖.

Thus lim infk→∞ ‖d1(xk)‖ = 0.
Recall that f is strongly convex on Ω if there exists a scalar γ > 0 such that

f(x) ≥ f(y) + ∇f(y)(x − y) +
γ

2
‖x − y‖2(2.21)

for all x and y ∈ Ω. Interchanging x and y in (2.21) and adding, we obtain the
(usual) monotonicity condition

(∇f(y) −∇f(x))(y − x) ≥ γ‖y − x‖2.(2.22)

For a strongly convex function, (2.1) has a unique minimizer x∗, and the conclusion
of Theorem 2.2 can be strengthened as follows.

Corollary 2.3. Suppose f is strongly convex and twice continuously differen-
tiable on Ω, and there is a positive integer L with the property that for each k, there
exists j ∈ [k, k + L) such that fr

j ≤ fmax
j . Then the iterates xk of the NGPA with

ε = 0 converge to the global minimizer x∗.
Proof. As shown at the start of the proof of Theorem 2.2, f(xk) ≤ f(x0) for each

k. Hence, xk lies in the level set L defined in (2.11). Since f is strongly convex, L
is a bounded set; since f is twice continuously differentiable, ‖∇f(xk)‖ is bounded
uniformly in k. For any x ∈ Ω, we have P (x) = x. By P3, it follows that

‖dα‖ = ‖P (x − αg(x)) − x‖ = ‖P (x − αg(x)) − P (x)‖ ≤ α‖g(x)‖.

Since ᾱk ∈ [αmin, αmax], dmax = supk ‖dk‖ < ∞. Consequently, the set L̄ defined in
G2 is bounded. Again, since f is twice continuously differentiable, ∇f is Lipschitz
continuous on L̄. By assumption, fr

k ≤ fmax
k infinitely often. Consequently, the

hypotheses of Theorem 2.2 are satisfied, and either the NGPA with ε = 0 terminates
in a finite number of iterations at a stationary point, or we have

lim inf
k→∞

‖d1(xk)‖ = 0.(2.23)

Since f is strongly convex on Ω, x∗ is the unique stationary point for (2.1). Hence,
when the iterates converge in a finite number of steps, they converge to x∗. Otherwise,
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(2.23) holds, in which case there exists an infinite sequence l1 < l2 < · · · such that
‖d1(xlj )‖ approaches zero as j tends to ∞. Since (2.22) holds, it follows from P8 that
xlj approaches x∗ as j tends to ∞. By P4 and P5, we have

‖dα(x)‖ ≤ max{1, α}‖d1(x)‖.

Since ᾱk ∈ [αmin, αmax], it follows that

‖dk‖ ≤ max{1, αmax}‖d1(xk)‖.

Since the stepsize αk ∈ (0, 1], we deduce that

‖xk+1 − xk‖ = αk‖dk‖ ≤ ‖dk‖ ≤ max{1, αmax}‖d1(xk)‖.(2.24)

By P3, P is continuous; consequently, dα(x) is a continuous function of x. The
continuity of dα(·) and f(·) combined with (2.24) and the fact that xlj converges to
x∗ implies that for any δ > 0 and for j sufficiently large, we have

f(xk) ≤ f(x∗) + δ for all k ∈ [lj , lj + M + L].

By the definition of fmax
k ,

fmax
k ≤ f(x∗) + δ for all k ∈ [lj + M, lj + M + L].(2.25)

As in the proof of Theorem 2.2, let ki, i = 0, 1, . . . , denote an increasing sequence
of integers with the property that fr

j ≤ fmax
j for j = ki and fr

j ≤ fr
j−1 when ki < j <

ki+1. As shown in (2.20),

fmax
ki+1

≤ fmax
ki

(2.26)

for each i. The assumption that for each k, there exists j ∈ [k, k + L) such that
fr
j ≤ fmax

j , implies that

ki+1 − ki ≤ L.(2.27)

Combining (2.25) and (2.27), for each lj , there exists some ki ∈ [lj + M, lj + M + L]
and

fmax
ki

≤ f(x∗) + δ.(2.28)

Since δ was arbitrary, it follows from (2.26) and (2.28) that

lim
i→∞

fmax
ki

= f(x∗);(2.29)

the convergence is monotone by (2.26). By the choice of ki and by the inequality
f(xk) ≤ fr

k in step 2, we have

f(xk) ≤ fr
k ≤ fmax

ki
for all k ≥ ki.(2.30)

Combining (2.29) and (2.30),

lim
k→∞

f(xk) = f(x∗).(2.31)

Together, (2.5) and (2.21) yield

f(xk) ≥ f(x∗) +
γ

2
‖xk − x∗‖2.(2.32)

Combining this with (2.31), the proof is complete.
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3. The active set algorithm. Starting with this section, we focus on the box
constrained problem (1.1). To simplify the exposition, we consider the special case
when l = 0 and u = ∞:

min {f(x) : x ≥ 0}.

We emphasize that the analysis and algorithm apply to the general box constrained
problem (1.1) with both upper and lower bounds.

Although the gradient projection scheme of the NGPA has an attractive global
convergence theory, the convergence rate can be slow in a neighborhood of a local
minimizer. In contrast, for unconstrained optimization, the conjugate gradient algo-
rithm often exhibits superlinear convergence in a neighborhood of a local minimizer.
We develop an ASA which uses the NGPA to identify active constraints, and which
uses an unconstrained optimization algorithm, such as the CG DESCENT scheme in
[54, 55, 57, 56], to optimize f over a face identified by the NGPA.

We begin with some notation. For any x ∈ Ω, let A(x) and I(x) denote the
active and inactive indices, respectively:

A(x) = {i ∈ [1, n] : xi = 0},
I(x) = {i ∈ [1, n] : xi > 0}.

The active indices are further subdivided into those indices satisfying strict comple-
mentarity and the degenerate indices:

A+(x) = {i ∈ A(x) : gi(x) > 0},
A0(x) = {i ∈ A(x) : gi(x) = 0}.

We let gI(x) denote the vector whose components associated with the set I(x) are
identical to those of g(x), while the components associated with A(x) are zero:

gIi(x) =

{
0 if xi = 0,
gi(x) if xi > 0.

An important feature of our algorithm is that we try to distinguish between active
constraints satisfying strict complementarity and active constraints that are degener-
ate using an identification strategy, which is related to the idea of an identification
function introduced in [41]. Given fixed parameters α ∈ (0, 1) and β ∈ (1, 2), we
define the (undecided index) set U at x ∈ B as follows:

U(x) = {i ∈ [1, n] : |gi(x)| ≥ ‖d1(x)‖α and xi ≥ ‖d1(x)‖β}.

In the numerical experiments, we take α = 1/2 and β = 3/2. In practice, U is almost
always empty when we reach a neighborhood of a minimizer, and the specific choice
of α and β does not have a significant effect on convergence. The introduction of the
U set leads to a strong local convergence theory developed in section 5.

The indices in U correspond to components of x for which the associated gradient
component gi(x) is relatively large, while xi is not close to 0 (in the sense that
xi ≥ ‖d1(x)‖β). When the set U of uncertain indices is empty, we feel that the
indices with large associated gradient components are almost identified. In this case
we prefer the unconstrained optimization algorithm.

Although our numerical experiments are based on the conjugate gradient code
CG DESCENT, a broad class of unconstrained optimization algorithms (UAs) can
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be applied. The following requirements for the UA are sufficient for establishing the
convergence results that follow. Conditions U1–U3 are sufficient for global conver-
gence, while U1–U4 are sufficient for the local convergence analysis. Condition U4
could be replaced with another descent condition for the initial line search; however,
the analysis of section 5 has been carried out under U4.

Unconstrained algorithm (ua) requirements.

U1. xk ≥ 0 and f(xk+1) ≤ f(xk) for each k.
U2. A(xk) ⊂ A(xk+1) for each k.
U3. If A(xj+1) = A(xj) for j ≥ k, then lim infj→∞ ‖gI(xj)‖ = 0.
U4. Whenever the UA is started, xk+1 = P (xk−αkgI(xk)), where αk is obtained

from a Wolfe line search. That is, αk is chosen to satisfy

φ(αk) ≤ φ(0) + δαkφ
′(0) and φ′(αk) ≥ σφ′(0),(3.1)

where

φ(α) = f(P (xk − αgI(xk))), 0 < δ < σ < 1.(3.2)

Condition U1 implies that the UA is a monotone algorithm, so that the cost function
can only decrease in each iteration. Condition U2 concerns how the algorithm behaves
when an infeasible iterate is generated. Condition U3 describes the global convergence
of the UA when the active set does not change. In U4, φ′(α) is the derivative from
the right side of α; αk exists since φ is piecewise smooth with a finite number of
discontinuities in its derivative, and φ′(α) is continuous at α = 0.

Our ASA is presented in Figure 3.1. In the first step of the algorithm, we execute
the NGPA until we feel that the active constraints satisfying strict complementarity
have been identified. In step 2, we execute the UA until a subproblem has been solved
(step 2a). When new constraints become active in step 2b, we may decide to restart
either the NGPA or the UA. By restarting the NGPA, we mean that x0 in the NGPA
is identified with the current iterate xk. By restarting the UA, we mean that iterates
are generated by the UA using the current iterate as the starting point.

4. Global convergence. We begin with a global convergence result for the
ASA.

Theorem 4.1. Let L be the level set defined by

L = {x ∈ B : f(x) ≤ f(x0)}.

Assume the following conditions hold:
A1. f is bounded from below on L and dmax = supk‖dk‖ < ∞.
A2. If L̄ is the collection of x ∈ B whose distance to L is at most dmax, then ∇f

is Lipschitz continuous on L̄.
A3. The UA satisfies U1–U3.

Then either the ASA with ε = 0 terminates in a finite number of iterations at a
stationary point, or we have

lim inf
k→∞

‖d1(xk)‖ = 0.(4.1)

Proof. If only the NGPA is performed for large k, then (4.1) follows from Theorem
2.2. If only the UA is performed for large k, then by U2, the active sets A(xk) must
approach a limit. Since μ does not change in the UA, it follows from U3 and the
condition ‖gI(xk)‖ ≥ μ‖d1(xk)‖ that (4.1) holds. Finally, suppose that the NGPA
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ASA parameters.

• ε ∈ [0,∞), error tolerance, stop when ‖d1(xk)‖ ≤ ε
• μ ∈ (0, 1), ‖gI(xk)‖ < μ‖d1(xk)‖ implies subproblem solved
• ρ ∈ (0, 1), decay factor for μ tolerance
• n1 ∈ [1, n), number of repeated A(xk) before switch from the NGPA to the

UA
• n2 ∈ [1, n), used in switch from the UA to the NGPA

Active set algorithm (asa).
1. While ‖d1(xk)‖ > ε execute the NGPA and check the following:

a. If U(xk) = ∅, then
If ‖gI(xk)‖ < μ‖d1(xk)‖, then μ = ρμ.
Otherwise, goto step 2.

b. Else if A(xk) = A(xk−1) = · · · = A(xk−n1), then
If ‖gI(xk)‖ ≥ μ‖d1(xk)‖, then goto step 2.

End

2. While ‖d1(xk)‖ > ε execute the UA and check the following:
a. If ‖gI(xk)‖ < μ‖d1(xk)‖, then restart the NGPA (step 1).
b. If |A(xk−1)| < |A(xk)|, then

If U(xk) = ∅ or |A(xk)| > |A(xk−1)| + n2, restart the UA at xk.
Else restart the NGPA.

End
End

Fig. 3.1. Statement of the ASA.

is restarted an infinite number of times at k1 < k2 < · · · and that it terminates at
k1 + l1 < k2 + l2 < · · · , respectively. Thus ki < ki + li ≤ ki+1 for each i. If (4.1) does
not hold, then by (2.19) and (2.20), we have

f(xki+li) ≤ f(xki
) − τ.(4.2)

By U1,

f(xki+1) ≤ f(xki+li).(4.3)

Combining (4.2) and (4.3), we have f(xki+1
) ≤ f(xki) − τ , which contradicts the

assumption that f is bounded from below.
When f is strongly convex, the entire sequence of iterates converges to the global

minimizer x∗, as stated in the following corollary. Since the proof of this result relies
on the local convergence analysis, the proof is delayed until the end of section 5.

Corollary 4.2. If f is strongly convex and twice continuously differentiable on
B, and assumption A3 of Theorem 4.1 is satisfied, then the iterates xk of the ASA
with ε = 0 converge to the global minimizer x∗.

5. Local convergence. In the next series of lemmas, we analyze local con-
vergence properties of the ASA. We begin by focusing on nondegenerate stationary
points; that is, stationary points x∗ with the property that gi(x

∗) > 0 whenever
x∗
i = 0.



538 WILLIAM W. HAGER AND HONGCHAO ZHANG

5.1. Nondegenerate problems. In this case, it is relatively easy to show that
the ASA eventually performs only the UA without restarts. The analogous result for
degenerate problems is established in section 5.2.

Theorem 5.1. If f is continuously differentiable, 0 < μ ≤ 1, and the iterates
xk generated by the ASA with ε = 0 converge to a nondegenerate stationary point
x∗, then after a finite number of iterations, the ASA performs only the UA without
restarts.

Proof. Since x∗ is a nondegenerate stationary point and f is continuously differ-
entiable, there exists ρ > 0 with the property that for all x ∈ Bρ(x

∗), we have

gi(x) > 0 if i ∈ A(x∗) and xi > 0 if i ∈ A(x∗)c.(5.1)

Let k+ be chosen large enough that xk ∈ Bρ(x
∗) for all k ≥ k+. If k ≥ k+ and xki = 0,

then dki = 0 in step 1 of the NGPA. Hence, xk+1,i = 0 if xk+1 is generated by the
NGPA. By U2, the UA cannot free a bound constraint. It follows that if k ≥ k+ and
xki = 0, then xji = 0 for all j ≥ k. Consequently, there exists an index K ≥ k+ with
the property that A(xk) = A(xj) for all j ≥ k ≥ K.

For any index i, |d1
i (x)| ≤ |gi(x)|. Suppose x ∈ Bρ(x

∗); by (5.1), d1
i (x) = 0 if

xi = 0. Hence,

‖d1(x)‖ ≤ ‖gI(x)‖(5.2)

for all x ∈ Bρ(x
∗). If k > K + n1, then in step 1b of the ASA, it follows from

(5.2) and the assumption μ ∈ (0, 1] that the NGPA will branch to step 2 (UA). In
step 2, the condition “‖gI(xk)‖ < μ‖d1(xk)‖” of step 2a is never satisfied by (5.2).
Moreover, the condition “|A(xk−1)| < |A(xk)|” of step 2b is never satisfied since
k > K. Hence, the iterates never branch from the UA to the NPGA and the UA is
never restarted.

5.2. Degenerate problems. We now focus on degenerate problems and show
that a result analogous to Theorem 5.1 holds under the strong second-order sufficient
optimality condition. We begin with a series of preliminary results.

Lemma 5.2. If f is twice-continuously differentiable and there exists an infinite
sequence of iterates xk generated by the ASA with ε = 0 converging to a stationary
point x∗, xk �= x∗ for each k, then for each i ∈ A+(x∗) we have

lim sup
k→∞

xki

‖xk − x∗‖2
< ∞.(5.3)

Proof. Assume that A+(x∗) is nonempty; otherwise there is nothing to prove.
Let k+ be chosen large enough that gi(xk) > 0 for all i ∈ A+(x∗) and k ≥ k+. Since
f is twice-continuously differentiable, ∇f is Lipschitz continuous in a neighborhood
of x∗. Choose ρ > 0 and let λ be the Lipschitz constant for ∇f in the ball Bρ(x

∗)
with center x∗ and radius ρ. Since d1(x∗) = 0, it follows from the continuity of d1(·)
that dk tends to 0 (see (2.24)). Choose k+ large enough that the ball with center xk

and radius ‖dk‖ is contained in Bρ(x
∗) for all k ≥ k+. If xli = 0 for some i ∈ A+(x∗)

and l ≥ k+, then by the definition of dk in the NGPA, we have dki = 0 for all k ≥ l.
Hence, xki = 0 for each k ≥ l in the NGPA. Likewise, in the UA it follows from
U2 that xji = 0 for j ≥ k when xki = 0; that is, the UA does not free an active
constraint. In other words, when an index i ∈ A+(x∗) becomes active at iterate xk,
k ≥ k+, it remains active for all the subsequent iterations. Thus (5.3) holds trivially
for any i ∈ A+(x∗) with the property that xki = 0 for some k ≥ k+.
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Now, let us focus on the nontrivial indices in A+(x∗). That is, suppose that there
exists l ∈ A+(x∗) and xkl > 0 for all k ≥ k+. By the analysis given in the previous
paragraph, when k+ is sufficiently large,

either xki > 0 or xki = 0(5.4)

for all k ≥ k+ and i ∈ A+(x∗) (since an index i ∈ A+(x∗), which becomes active at
iterate xk, remains active for all the subsequent iterations). We consider the following
possible cases.

Case 1. For an infinite number of iterations k, xk is generated by the UA, and
the UA is restarted a finite number of times.

In this case, the ASA eventually performs only the UA, without restarts. By
U2 and U3, we have lim infk→∞ ‖gI(xk)‖ = 0. On the other hand, by assumption,
l ∈ I(xk) for k ≥ k+ and gl(x

∗) > 0, which is a contradiction since gl(xk) converges
to gl(x

∗).
Case 2. For an infinite number of iterations k, xk is generated by the UA, and

the UA is restarted an infinite number of times.
In this case, we will show that after a finite number of iterations, xki = 0 for

all i ∈ A+(x∗). Suppose, to the contrary, that there exists an l ∈ A+(x∗) such that
xkl > 0 for all k ≥ k+. By U4, each time the UA is restarted, we perform a Wolfe
line search. By the second half of (3.1), we have

φ′(αk) − φ′(0) ≥ (σ − 1)φ′(0).(5.5)

It follows from the definition (3.2) of φ(α) that

φ′(0) = −
∑

i∈I(xk)

g2
ki = −‖gI(xk)‖2 and(5.6)

φ′(αk) = −
∑

i∈I(xk+1)

gkigk+1,i

= −
∑

i∈I(xk)

gkigk+1,i +
∑

i∈A(xk+1)\A(xk)

gkigk+1,i.(5.7)

By the Lipschitz continuity of ∇f and P3, we have

‖g(xk) − g(xk+1)‖ = ‖g(P (xk)) − g(P (xk − αkgI(xk)))‖
≤ λαk‖gI(xk)‖.

Hence, by the Schwarz inequality,∣∣∣∣∣∣
∑

i∈I(xk)

gki(gki − gk+1,i)

∣∣∣∣∣∣ ≤ λαk‖gI(xk)‖2.(5.8)

Since A(xk+1) \ A(xk) ⊂ I(xk), the Schwarz inequality also gives∑
i∈A(xk+1)\A(xk)

gkigk+1,i ≤ ‖gI(xk)‖‖gk+1‖N ,(5.9)

where

‖gk+1‖2
N =

∑
i∈A(xk+1)\A(xk)

g2
k+1,i.
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Here N = A(xk+1) \ A(xk) corresponds to the set of constraints that are newly
activated as we move from xk to xk+1. Combining (5.5)–(5.9),

αk ≥ 1 − σ

λ
− ‖gk+1‖N

λ‖gI(xk)‖
, where ‖gk+1‖2

N =
∑

i∈A(xk+1)\A(xk)

g2
k+1,i.(5.10)

For k sufficiently large, (5.4) implies that the newly activated constraints A(xk+1) \
A(xk) exclude all members of A+(x∗). Since the xk converge to x∗, ‖gk+1‖N tends
to zero. On the other hand, ‖gI(xk)‖ is bounded away from zero since the index l is
contained in I(xk). Hence, the last term in (5.10) tends to 0 as k increases, and the
lower bound for αk approaches (1−σ)/λ. Since x∗

l = 0, it follows that xkl approaches
0. Since the lower bound for αk approaches (1 − σ)/λ, gl(x

∗) > 0, and xk converges
to x∗, we conclude that

xk+1,l = xkl − αkgkl < 0

for k sufficiently large. This contradicts the initial assumption that constraint l is
inactive for k sufficiently large. Hence, in a finite number of iterations, xki = 0 for all
i ∈ A+(x∗).

Case 3. The UA is executed a finite number of iterations.
In this case, the iterates are generated by the NGPA for k sufficiently large.

Suppose that (5.3) is violated for some l ∈ A+(x∗). We show that this leads to a
contradiction. By (5.4), xkl > 0 for all k ≥ k+. Since xk converges to x∗, x∗

l = 0, and
gl(x

∗) > 0, it is possible to choose k larger, if necessary, so that

xkl − gklαmin < 0.(5.11)

Since (5.3) is violated and xk converges to x∗, we can choose k larger, if necessary, so
that

xkl

‖xk − x∗‖2
≥ λ(2 + λ)2 max{1, αmax}2

2(1 − δ)gkl
,(5.12)

where 0 < δ < 1 is the parameter appearing in step 3 of the NGPA, and λ is the
Lipschitz constant for ∇f . We will show that for this k, we have

f(xk + dk) ≤ fR + δgT
kdk,(5.13)

where fR is specified in step 3 of the NGPA. According to step 3 of the NGPA, when
(5.13) holds, αk = 1, which implies that

xk+1,l = xkl + dkl.(5.14)

Since (5.11) holds and ᾱk ≥ αmin, we have

dkl = max{xkl − ᾱkgkl, 0} − xkl = −xkl.(5.15)

This substitution in (5.14) gives xk+1,l = 0, which contradicts the fact that xkl > 0
for all k ≥ k+.
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To complete the proof, we need to show that when (5.12) holds, (5.13) is satisfied.
Expanding in a Taylor series around xk and utilizing (5.15) gives

f(xk + dk) = f(xk) +

∫ 1

0

f ′(xk + tdk)dt

= f(xk) + gT
kdk +

∫ 1

0

(∇f(xk + tdk) − gT
k )dkdt

≤ f(xk) + gT
kdk +

λ

2
‖dk‖2

= f(xk) + δgT
kdk + (1 − δ)gT

kdk +
λ

2
‖dk‖2

≤ f(xk) + δgT
kdk + (1 − δ)gkldkl +

λ

2
‖dk‖2(5.16a)

= f(xk) + δgT
kdk − (1 − δ)gklxkl +

λ

2
‖dk‖2.(5.16b)

The inequality (5.16a) is due to the fact that gkidki ≤ 0 for each i. By P3, P4, P5,
and P7, and by the Lipschitz continuity of ∇f , we have

‖dk‖ ≤ max{1, αmax}‖d1(xk)‖
= max{1, αmax}‖d1(xk) − d1(x∗)‖
= max{1, αmax}‖P (xk − gk) − xk − P (x∗ − g(x∗)) + x∗‖
≤ max{1, αmax}(‖xk − x∗‖ + ‖P (xk − gk) − P (x∗ − g(x∗))‖)
≤ max{1, αmax}(‖xk − x∗‖ + ‖xk − gk − (x∗ − g(x∗))‖)
≤ max{1, αmax}(2‖xk − x∗‖ + ‖gk − g(x∗)‖)
≤ max{1, αmax}(2 + λ)‖xk − x∗‖.

Combining this upper bound for ‖dk‖ with the lower bound (5.12) for xkl, we conclude
that

λ

2
‖dk‖2 ≤ λ

2
max{1, αmax}2(2 + λ)2‖xk − x∗‖2

≤ 1

2

(
2(1 − δ)xklgkl
‖xk − x∗‖2

)
‖xk − x∗‖2

= (1 − δ)xklgkl.

Hence, by (5.16b) and by the choice for fR specified in step 3 of the NGPA, we have

f(xk + dk) ≤ f(xk) + δgT
kdk ≤ fR + δgT

kdk.(5.17)

This completes the proof of (5.13).
There is a fundamental difference between the gradient projection algorithm

presented in this paper and algorithms based on a “piecewise projected gradient”
[15, 16, 17]. For our gradient projection algorithm, we perform a single projection,
and then we backtrack towards the starting point. Thus we are unable to show that
the active constraints are identified in a finite number of iterations; in contrast, with
the piecewise project gradient approach, where a series of projections may be per-
formed, the active constraints can be identified in a finite number of iterations. In
Lemma 5.2 we show that even though we do not identify the active constraints, the
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components of xk corresponding to the strictly active constraints are on the order of
the error in xk squared.

If all the constraints are active at a stationary point x∗ and strict complementarity
holds, then convergence is achieved in a finite number of iterations.

Corollary 5.3. If f is twice-continuously differentiable, the iterates xk gener-
ated by the ASA with ε = 0 converge to a stationary point x∗, and |A+(x∗)| = n, then
xk = x∗ after a finite number of iterations.

Proof. Let xk,max denote the largest component of xk. Since ‖xk‖2 ≤ nx2
k,max,

we have

xk,max

‖xk‖2
≥ 1

nxk,max
.(5.18)

Since all the constraints are active at x∗, xk,max tends to zero. By (5.18) the con-
clusion (5.3) of Lemma 5.2 does not hold. Hence, after a finite number of iterations,
xk = x∗.

Recall [70] that for any stationary point x∗ of (1.1), the strong second-order
sufficient optimality condition holds if there exists γ > 0 such that

dT∇2f(x∗)d ≥ γ‖d‖2 whenever di = 0 for all i ∈ A+(x∗).(5.19)

Using P8, we establish the following.
Lemma 5.4. If f is twice-continuously differentiable near a stationary point x∗

of (1.1) satisfying the strong second-order sufficient optimality condition, then there
exists ρ > 0 with the following property:

‖x − x∗‖ ≤

√
1 +

(
(1 + λ)2

.5γ

)2

‖d1(x)‖(5.20)

for all x ∈ Bρ(x
∗), where λ is any Lipschitz constant for ∇f over Bρ(x

∗).
Proof. By the continuity of the second derivative of f , it follows from (5.19) that

for ρ > 0 sufficiently small,

(g(x) − g(x∗))T(x − x∗) ≥ .5γ‖x − x∗‖2(5.21)

for all x ∈ Bρ(x
∗) with xi = 0 for all i ∈ A+(x∗). Choose ρ smaller if necessary so

that

xi − gi(x) ≤ 0 for all i ∈ A+(x∗) and x ∈ Bρ(x
∗).(5.22)

Let x̄ be defined as follows:

x̄i =

{
0 if i ∈ A+(x∗),
xi otherwise.

(5.23)

Since (5.22) holds, it follows that

‖x − x̄‖ ≤ ‖d1(x)‖(5.24)

for all x ∈ Bρ(x
∗). Also, by (5.22), we have

[P (x̄ − g(x)) − x̄]i = 0 and d1(x)i = [P (x − g(x)) − x]i = −xi
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for all i ∈ A+(x∗), while

[P (x̄ − g(x)) − x̄]i = d1(x)i = [P (x − g(x)) − x]i

for i �∈ A+(x∗). Hence, we have

‖P (x̄ − g(x)) − x̄‖ ≤ ‖d1(x)‖(5.25)

for all x ∈ Bρ(x
∗). By the Lipschitz continuity of g, (5.24), (5.25), and P3, it follows

that

‖d1(x̄)‖ = ‖P (x̄ − g(x̄)) − P (x̄ − g(x)) + P (x̄ − g(x)) − x̄‖
≤ λ‖x̄ − x‖ + ‖d1(x)‖
≤ (1 + λ)‖d1(x)‖(5.26)

for all x ∈ Bρ(x
∗). By P8, (5.21), and (5.26), we have

‖x̄ − x∗‖ ≤
(

1 + λ

.5γ

)
‖d1(x̄)‖ ≤

(
(1 + λ)2

.5γ

)
‖d1(x)‖.(5.27)

Since ‖x − x̄‖2 + ‖x̄ − x∗‖2 = ‖x − x∗‖2, the proof is completed by squaring and
adding (5.27) and (5.24).

We now show that the undecided index set U becomes empty as the iterates
approach a stationary point, where the strong second-order sufficient optimality con-
dition holds.

Lemma 5.5. Suppose f is twice-continuously differentiable, x∗ is a stationary
point of (1.1) satisfying the strong second-order sufficient optimality condition, and
xk, k = 0, 1, . . . , is an infinite sequence of feasible iterates for (1.1) converging to x∗,
xk �= x∗ for each k. If there exists a constant ξ such that

lim sup
k→∞

xki

‖xk − x∗‖2
≤ ξ < ∞(5.28)

for all i ∈ A+(x∗), then U(xk) is empty for k sufficiently large.
Proof. To prove that U(x) is empty, we must show that for each i ∈ [1, n], one of

the following inequalities is violated:

|gi(x)| ≥ ‖d1(x)‖α or(5.29)

xi ≥ ‖d1(x)‖β .(5.30)

By Lemma 5.4, there exists a constant c such that ‖x−x∗‖ ≤ c‖d1(x)‖ for all x near
x∗. If i ∈ A+(x∗), then by (5.28), we have

lim sup
k→∞

xki

‖d1(xk)‖β
≤ lim sup

k→∞

ξ‖xk − x∗‖2

‖d1(xk)‖β
≤ lim sup

k→∞
ξc2‖d1(xk)‖2−β = 0

since β ∈ (1, 2). Hence, for each i ∈ A+(x∗), (5.30) is violated for k sufficiently large.
If i �∈ A+(x∗), then gi(x

∗) = 0. By Lemma 5.4, we have

lim sup
k→∞

|gi(xk)|
‖d1(xk)‖α

= lim sup
k→∞

|gi(xk) − gi(x
∗)|

‖d1(xk)‖α

≤ lim sup
k→∞

λ‖xk − x∗‖
‖d1(xk)‖α

≤ lim sup
k→∞

λc‖d1(xk)‖1−α = 0,



544 WILLIAM W. HAGER AND HONGCHAO ZHANG

since α ∈ (0, 1). Here, λ is a Lipschitz constant for g in a neighborhood of x∗. Hence,
(5.29) is violated if i �∈ A+(x∗).

Remark. If i ∈ A+(x∗) and the iterates xk converge to a stationary point x∗, then
gi(xk) is bounded away from 0 for k sufficiently large. Since d1(xk) tends to zero, the
inequality |gi(xk)| ≥ ‖d1(xk)‖α is satisfied for k sufficiently large. Hence, if U(xk) is
empty and i ∈ A+(x∗), then xki < ‖d1(xk)‖β where β ∈ (1, 2). In other words, when
U(xk) is empty, the components of xk associated with strictly active indices A+(x∗)
are going to zero faster than the error ‖d1(xk)‖.

Lemma 5.6. Suppose f is twice-continuously differentiable, x∗ is a stationary
point of (1.1) satisfying the strong second-order sufficient optimality condition, and
xk, k = 0, 1, . . . , is an infinite sequence of feasible iterates for (1.1) converging to x∗,
xk �= x∗ for each k. If there exists a constant ξ such that

lim sup
k→∞

xki

‖xk − x∗‖2
≤ ξ < ∞(5.31)

for all i ∈ A+(x∗), then there exist μ∗ > 0 such that

‖gI(xk)‖ ≥ μ∗‖d1(xk)‖(5.32)

for k sufficiently large.
Proof. Choose ρ > 0, and let λ be the Lipschitz constant for ∇f in Bρ(x

∗). As in
(5.23), let x̄ be defined by x̄i = 0 if i ∈ A+(x∗) and x̄i = xi otherwise. If xk ∈ Bρ(x

∗),
we have

‖d1(xk)‖ ≤ ‖d1(xk) − d1(x∗)‖
≤ ‖d1(xk) − d1(x̄k)‖ + ‖d1(x̄k) − d1(x∗)‖
≤ (2 + λ)(‖xk − x̄k‖ + ‖x̄k − x∗‖).(5.33)

Utilizing (5.31) gives

‖x̄k − xk‖ ≤
n∑

i=1

|x̄ki − xki|

=
∑

i∈A+(x∗)

xki ≤ nξ‖xk − x∗‖2

≤ nξ‖xk − x∗‖(‖xk − x̄k‖ + ‖x̄k − x∗‖).

Since xk converges to x∗, it follows that for any ε > 0,

‖x̄k − xk‖ ≤ ε‖x̄k − x∗‖(5.34)

when k is sufficiently large. Combining (5.33) and (5.34), there exists a constant c > 0
such that

‖d1(xk)‖ ≤ c‖x̄k − x∗‖(5.35)

for k sufficiently large.
Let k be chosen large enough that

‖xk − x∗‖ < min{x∗
i : i ∈ I(x∗)}.(5.36)
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Suppose, in this case, that i ∈ A(xk). If x∗
i > 0, then ‖xk − x∗‖ ≥ x∗

i , which
contradicts (5.36). Hence, x̄ki = x∗

i = 0. Moreover, if i ∈ A+(x∗), then by the
definition (5.23), x̄ki = x∗

i = 0. In summary,{
x̄ki = x∗

i = 0 for each i ∈ A(xk) ∪ A+(x∗),
gi(x

∗) = 0 for each i ∈ A+(x∗)c,
(5.37)

where A+(x∗)c is the complement of A+(x∗). Define Z = A(xk)
c ∩ A+(x∗)c.

By the strong second-order sufficient optimality condition and for x near x∗, we
have

γ

2
‖x̄ − x∗‖2 ≤ [x̄ − x∗]T

∫ 1

0

∇2f(x∗ + t(x̄ − x∗))dt [x̄ − x∗]

= (x̄ − x∗)T(g(x̄) − g(x∗)).(5.38)

We substitute x = xk in (5.38) and utilize (5.37) to obtain

(x̄k − x∗)T(g(x̄k) − g(x∗)) =

n∑
i=1

(x̄ki − x∗
i )(gi(x̄k) − gi(x

∗))

=
∑
i∈Z

(x̄ki − x∗
i )gi(x̄k)

≤ ‖x̄k − x∗‖

⎛
⎝ ∑

i∈I(xk)

gi(x̄k)
2

⎞
⎠

1/2

,(5.39)

since Z ⊂ A(xk)
c = I(xk). Exploiting the Lipschitz continuity of ∇f , (5.39) gives

(x̄k − x∗)T(g(x̄k) − g(x∗)) ≤ ‖x̄k − x∗‖(‖gI(xk)‖ + λ‖x̄k − xk‖).(5.40)

Combining (5.34), (5.38), and (5.40), we conclude that for k sufficiently large,

γ

4
‖x̄k − x∗‖ ≤ ‖gI(xk)‖.(5.41)

Combining (5.35) and (5.41), the proof is complete.
Remark. If xk is a sequence converging to a nondegenerate stationary point

x∗, then (5.32) holds with μ∗ = 1, without assuming either the strong second-order
sufficient optimality condition or (5.31)—see Theorem 5.1. In Lemma 5.6, the opti-
mization problem could be degenerate.

We now show that after a finite number of iterations, the ASA will perform only
the UA with a fixed active constraint set.

Theorem 5.7. If f is twice-continuously differentiable and the iterates xk gen-
erated by the ASA with ε = 0 converge to a stationary point x∗ satisfying the strong
second-order sufficient optimality condition, then after a finite number of iterations,
the ASA performs only the UA without restarts.

Proof. By Lemma 5.2, the hypotheses (5.28) and (5.31) of Lemmas 5.5 and 5.6
are satisfied. Hence, for k sufficiently large, the undecided set U(xk) is empty and the
lower bound (5.32) holds. In step 1a, if ‖gI(xk)‖ < μ‖d1(xk)‖, then μ is multiplied
by the factor ρ < 1. When μ < μ∗, Lemma 5.6 implies that ‖gI(xk)‖ ≥ μ‖d1(xk)‖.
Hence, step 1a of the ASA branches to step 2, while step 2 cannot branch to step
1 since the condition ‖gI(xk)‖ < μ‖d1(xk)‖ is never satisfied in step 2a and U(xk)
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is empty in step 2b for k sufficiently large. Since the UA only adds constraints, we
conclude that after a finite number of iterations, the active set does not change.

Remark. If f is a strongly convex quadratic function, then by Corollary 4.2,
the iterates xk converge to the global minimizer x∗. If the UA is based on the
conjugate gradient method for which there is finite convergence when applied to a
convex quadratic, it follows from Theorem 5.7 that the ASA converges in a finite
number of iterations.

We now give the proof of Corollary 4.2; that is, when f is strongly convex and
twice-continuously differentiable on B, and assumption A3 of Theorem 4.1 is satisfied,
then the entire sequence of iterates generated by the ASA converges to the global
minimizer x∗. Note that the assumptions of Corollary 4.2 are weaker than those of
Corollary 2.3 (global convergence of the NGPA) since Corollary 4.2 requires only that
fr
k ≤ fmax

k infinitely often in the NGPA.
Proof. For a strongly convex function, A1 and A2 always hold. Since all the

assumptions of Theorem 4.1 are satisfied, there exists a subsequence xkj , j = 1, 2, . . . ,
of the iterates such that

lim
j→∞

‖d1(xkj )‖ = 0.

Since the UA is monotone and since the NGPA satisfies (2.12) and (2.13), it follows
from the strong convexity of f that the xkj are contained in a bounded set. Since
d1(·) is continuous, there exists a subsequence, also denoted xkj , converging to a limit
x∗ with d1(x∗) = 0. Since the unique stationary point of a strongly convex function
is its global minimizer, x∗ is the global solution of (1.1).

Case A. There exists an infinite subsequence, also denoted {xkj}, with the prop-
erty that xkj+1 is generated by the UA.

In this case, we are done since the UA is monotone and the inequality

f(xk) ≤ f(xkj )(5.42)

holds for all k ≥ kj (see (2.12) and (2.13)). Since xkj
converges to x∗, it follows

that f(xkj ) converges to f(x∗), and hence, by (5.42) and (2.32), the entire sequence
converges to x∗.

Case B. There exists an infinite subsequence, also denoted {xkj
}, with the prop-

erty that xkj+1 is generated by the NGPA.
Either

lim sup
j→∞

(xkj )i

‖xkj
− x∗‖2

< ∞ for all i ∈ A+(x∗)(5.43)

holds or (5.43) is violated. By the analysis given in Case 3 of the proof of Lemma
5.2, when (5.43) is violated, (5.13) holds, from which it follows that for j sufficiently
large,

xkj+1,i = 0 for all i ∈ A+(x∗).(5.44)

Hence, either the sequence xkj satisfies (5.43) or the sequence xkj+1 satisfies (5.44).
In this latter case, it follows from (5.17) that

f(xkj+1) ≤ f(xkj ).

Since f(xkj ) converges to f(x∗), we conclude that f(xkj+1) converges to f(x∗), and
xkj+1 converges to x∗.
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In either case (5.43) or (5.44), there exists a sequence Kj (either Kj = kj or
Kj = kj + 1) with the property that xKj converges to x∗ and

lim sup
j→∞

(xKj )i

‖xKj − x∗‖2
< ∞ for all i ∈ A+(x∗).

By Lemma 5.5, U(xKj ) is empty for j sufficiently large. By Lemma 5.6, there exists
μ∗ > 0 such that

‖gI(xKj )‖ ≥ μ∗‖d1(xKj )‖

for j sufficiently large. As in the proof of Theorem 5.7, at iteration Kj for j sufficiently
large, the ASA jumps from step 1 to the UA in step 2. Hence, for j sufficiently large,
xKj+1 is generated by the UA, which implies that Case A holds.

6. Numerical experiments. This section compares the CPU time performance
of the ASA, implemented using the nonlinear conjugate gradient code CG DESCENT
for the UA and the CBB method (see the appendix) for the NGPA, to the performance
of the following codes:

• L-BFGS-B [18, 84]: The limited memory quasi-Newton method of Zhu, Byrd,
and Nocedal (ACM algorithm 778).

• SPG2 version 2.1 [10, 11]: The nonmonotone spectral projected gradient
method of Birgin, Mart́ınez, and Raydan (ACM algorithm 813).

• GENCAN [9]: The monotone active set method with spectral projected gra-
dients developed by Birgin and Mart́ınez.

• TRON version 1.2 [63]: A Newton trust region method with incomplete
Cholesky preconditioning developed by Lin and Moré.

A detailed description of our implementation of the ASA is given in the appendix.
L-BFGS-B was downloaded from Jorge Nocedal’s Web page (http://www.ece.

northwestern.edu/∼nocedal/lbfgsb.html); TRON was downloaded from Jorge Moré’s
Web page (http://www-unix.mcs.anl.gov/∼more/tron/); and SPG2 and GENCAN
were downloaded on June 28, 2005, from the TANGO Web page maintained by
Ernesto Birgin (http://www.ime.usp.br/∼egbirgin/tango/downloads.php). All codes
are written in Fortran and compiled with f77 (default compiler settings) on a Sun
workstation. The stopping condition was

‖P (x − g(x)) − x‖∞ ≤ 10−6,

where ‖ · ‖∞ denotes the sup-norm of a vector. In running any of these codes, default
values were used for all parameters. In the NGPA, we chose the following parameter
values:

αmin = 10−20, αmax = 10+20, η = .5, δ = 10−4, M = 8.

Here M is the memory used to evaluate fmax
k (see (2.3)). In the ASA the parameter

values were as follows:

μ = .1, ρ = .5, n1 = 2, n2 = 1.

In the CBB method (see the appendix), the parameter values were the following:

θ = .975, L = 3, A = 40, m = 4, γ1 = M/L, γ2 = A/M.
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Fig. 6.1. Performance profiles, CPU time metric, 50 CUTEr test problems, gradient-based
methods.

The separation parameter Δ in condition R4 of the appendix was the natural sepa-
ration between floating point numbers. That is, R4 was satisfied when the floating
point version of fk+1 was strictly less than the floating point version of fmin

k .
The test set consisted of all 50 box constrained problems in the CUTEr library [13]

with dimensions between 50 and 15,625, and all 23 box constrained problems in the
MINPACK-2 library [1] with dimension 2500. TRON is somewhat different from the
other codes since it employs Hessian information and an incomplete Cholesky precon-
ditioner, while the codes ASA, L-BFGS-B, SPG2, and GENCAN utilize only gradient
information. When we compare our code to TRON, we use the same Lin–Moré pre-
conditioner [62] used by TRON for our unconstrained algorithm. The preconditioned
ASA code is called P-ASA. Since TRON is targeted to large-sparse problems, we
compare our code to TRON using the 23 MINPACK-2 problems and the 42 sparsest
CUTEr problems (the number of nonzeros in the Hessian was at most 1/5 the total
number of entries). The codes L-BFGS-B, SPG2, and GENCAN were implemented
for the CUTEr test problems, while ASA and TRON were implemented for both test
sets CUTEr and MINPACK-2.

The CPU time in seconds and the number of iterations, function evaluations,
gradient evaluations, and Hessian evaluations for each of the methods are posted
at the following Web site: http://www.math.ufl.edu/∼hager/papers/CG. In running
the numerical experiments, we checked whether different codes converged to different
local minimizers; when comparing the codes, we restricted ourselves to test problems
in which all codes converged to the same local minimizer, and where the running time
of the fastest code exceeded .01 seconds. The numerical results are now analyzed.

The performance of the algorithms, relative to CPU time, was evaluated using
the performance profiles of Dolan and Moré [34]. That is, for each method, we plot
the fraction P of problems for which the method is within a factor τ of the best time.
In Figure 6.1, we compare the performance of the four codes ASA, L-BFGS-B, SPG2,
and GENCAN using the 50 CUTEr test problems. The left side of the figure gives
the percentage of the test problems for which a method is the fastest; the right side
gives the percentage of the test problems that were successfully solved by each of the
methods. The top curve is the method that solved the most problems in a time that
was within a factor τ of the best time. Since the top curve in Figure 6.1 corresponds
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Fig. 6.2. Performance profiles, CPU time metric, 42 sparsest CUTEr problems, 23 MINPACK-
2 problems, ε = 10−6.
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Fig. 6.3. Performance profiles, CPU time metric, ε = 10−2‖d1(x0)‖∞.

to the ASA, this algorithm is clearly fastest for this set of 50 test problems with
dimensions ranging from 50 to 15,625. The relative difference in performance between
the ASA and the competing methods seen in Figure 6.1 is greater than the relative
difference in performance between CG DESCENT and the competing methods, as
seen in the figures given in [55, 57]. Hence, both the gradient projection algorithm
and the conjugate gradient algorithm are contributing to the better performance of
the ASA.

In Figure 6.2 we compare the performance of TRON to P-ASA and ASA for the
42 sparsest CUTEr test problems and the 23 MINPACK-2 problems. Observe that
P-ASA has the top performance, and that ASA, which utilizes only the gradient,
performs almost as well as the Hessian-based code TRON. The number of conjugate
gradient iterations performed by the P-ASA code is much less than the number of
conjugate gradient iterations performed by the ASA code. Finally, in Figure 6.3 we
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compare the performance of P-ASA to ASA for the relaxed convergence tolerance
ε = 10−2‖d1(x0)‖∞. Based on Figures 6.2 and 6.3, the preconditioned ASA scheme
is more efficient than unconditioned ASA for the more stringent stopping criterion,
while the unconditioned and preconditioned schemes are equally effective for a more
relaxed stopping criterion. Although the performance profile for ASA is beneath 1 in
Figure 6.2, it reaches 1 as τ increases—there are some problems in which P-ASA is
more than 16 times faster than ASA. Due to these difficult problems, the ASA profile
is still beneath 1 for τ = 16.

When we solve an optimization problem, the solution time consists of two parts,
as follows:

T1. The time associated with the evaluation of the function or its gradient or its
Hessian.

T2. The remaining time, which is often dominated by the time used in the linear
algebra.

The CPU time performance profile measures a mixture of T1 and T2 for a set
of test problems. In some applications, T1 (the evaluation time) may dominate. In
order to assess how the algorithms may perform in the limit, when T2 is negligible
compared to T1, we could ignore T2 and compare the algorithms based on T1. In
the next set of experiments, we explore how the algorithms perform in the limit, as
T1 becomes infinitely large relative to T2.

Typically, the time to evaluate the gradient of a function is greater than the time
to evaluate the function itself. Also, the time to evaluate the Hessian is greater than
the time to evaluate the gradient. If the time to evaluate the function is 1, then the
average time to evaluate the gradient and Hessian for the CUTEr bound constrained
test set is as follows:

function = 1, gradient = 2.6, Hessian = 21.0.

Similarly, for the MINPACK-2 test set, the relative evaluation times are

function = 1, gradient = 2.0, Hessian = 40.5

on average.
For each method and for each test problem, we compute an “evaluation time”

where the time for a function evaluation is 1, the time for a gradient evaluation is either
2.6 (CUTEr) or 2.0 (MINPACK-2), and the time for a Hessian evaluation is either
21.0 (CUTEr) or 40.5 (MINPACK-2). In Figure 6.4 we compare the performance
of gradient-based methods, and in Figure 6.5 we compare the performance of the
gradient-based ASA and the method which exploits the Hessian (P-ASA or TRON).

In Figure 6.4 we see that for the evaluation metric and τ near 1, L-BFGS-B
performs better than ASA, but as τ increases, ASA dominates L-BFGS-B. In other
words, in the evaluation metric, there are more problems in which L-BFGS-B is faster
than the other methods; however, ASA is not much slower than L-BFGS-B. When τ
reaches 1.5, ASA starts to dominate L-BFGS-B.

In Figure 6.5 we see that P-ASA dominates TRON in the evaluation metric.
Hence, even though TRON uses far fewer function evaluations, it uses many more
Hessian evaluations. Since the time to evaluate the Hessian is much greater than
the time to evaluate the function, P-ASA has better performance. In summary, by
neglecting the time associated with the linear algebra, the relative gap between P-
ASA and TRON decreases, while the relative gap between TRON and ASA increases,
as seen in Figure 6.5. Nonetheless, in the evaluation metric, the performance profile
for P-ASA is still above the profile for TRON.
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Fig. 6.4. Performance profiles, evaluation metric, 50 CUTEr test problems, gradient-based
methods.
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7. Conclusions. We have presented a new ASA for solving box constrained
optimization problems. The algorithm consists of a nonmonotone gradient projection
phase and an unconstrained optimization phase. Rules are given for deciding when
to branch from one phase to the other. The branching criteria are based on whether
the set of undecided indices is empty or the active set subproblem is solved with
sufficient accuracy. We show that for a nondegenerate stationary point, the algorithm
eventually reduces to unconstrained optimization without restarts. The analogous
result for a degenerate stationary point is established under the strong second-order
sufficient optimality condition.

For an implementation of the ASA which uses the CBB method [30] for the
nonmonotone gradient projection and which uses CG DESCENT [54, 55, 56, 57] for
unconstrained optimization, we obtained higher CPU time performance profiles than



552 WILLIAM W. HAGER AND HONGCHAO ZHANG

those of L-BFGS-B, SPG2, GENCAN, and TRON for a test set consisting of all 50
CUTEr [13] box constrained problems with dimension greater than 50, and all 23
MINPACK-2 [1] box constrained problems.

Appendix. An implementation of the ASA. For the numerical results in
section 6, our choice for the UA is the conjugate gradient algorithm CG DESCENT
[54, 55, 57, 56]. When an iterate lands outside the feasible set, we may increase the
size of the active set using an approach similar to that in [9]. Roughly, we perform
an approximate line search for the function

φ(α) = f(P (xk + αdk))

along the current search direction dk, and any components of xk+1 = P (xk + αkdk)
which reach the boundary are added to the current active set.

The initial stepsize ᾱk in the NGPA is generated using the CBB method [30].
In the remainder of this section, we explain in detail the initial stepsize computation
and choice for the reference function value fr

k in the NGPA (see [82] for preliminary
numerical results based on a closely related initial stepsize and reference function
value). We show that these choices satisfy the hypotheses of Theorem 2.2.

The BB stepsize [2] is given by

αBB
k+1 =

sT
ksk

sT
kyk

,(A.1)

where sk = xk+1 − xk and yk = gk+1 − gk. An attractive feature of the BB stepsize
is that for unconstrained optimization and without a line search, linear convergence
is achieved [30] for a starting guess in a neighborhood of the local minimizer with a
positive definite Hessian. Moreover, if the same BB stepsize is repeated for several
iterations, then even faster convergence is often achieved (see [30]). We refer to
schemes that employ the same BB stepsize for several iterations as cyclic BB (CBB)
schemes. From an asymptotic perspective, either BB or CBB schemes are inferior
to conjugate gradient schemes, for which the convergence rate can be superlinear.
On the other hand, for a bound constrained optimization problem, where the active
constraints at an optimal solution are unknown, the asymptotic convergence rate is
irrelevant until the active constraints are identified. A nonmonotone BB or CBB
iteration yields an efficient strategy for identifying active constraints.

When possible, the initial stepsize αk is given by the CBB formula

αk+j = αBB
k for j = 0, . . . ,m− 1,

where the BB step appears in (A.1) and m is the number of times the BB step is
reused. When αBB

k �∈ [αmin, αmax], we project it on the interval [αmin, αmax].
We now provide a more detailed statement of our algorithm for computing the

initial stepsize. The integer j counts the number of times the current BB step has
been reused, while the parameter m is the CBB memory (the maximum number of
times the BB step will be reused).

Initial stepsize.

I0. If k = 0, choose α0 ∈ [αmin, αmax] and a parameter θ < 1 near 1; set j = 0
and flag = 1. If k > 0, set flag = 0.

I1. If 0 < |dki| < ᾱk|gki| for some i, then set flag = 1.
I2. If αk = 1 in the NGPA, then set j = j + 1.
I3. If αk < 1 in the NGPA, then set flag = 1.
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I4. If j ≥ m or flag = 1 or sT
kyk/(‖sk‖‖yk‖) ≥ θ, then

a. If sT
kyk ≤ 0, then

1. If j ≥ 1.5m, then set t = min{‖xk‖∞, 1}/‖d1(xk)‖∞,
αk+1 = min{αmax,max[t, αk]}, and j = 0.

2. Else set αk+1 = αk.
b. Else set αk+1 = min{αmax,max[αmin, s

T
ksk/s

T
kyk]} and j = 0.

Since this procedure always generates an initial stepsize αk ∈ [αmin, αmax], it
complies with the requirement in step 1 of the NGPA. If the original BB step is
truncated (see I1), or an Armijo line search is performed (see I3), or the cycle number
j reaches m (see I4), or sT

kyk/(‖sk‖‖yk‖) is close to 1 (see I4), then we try to compute
a new BB step. The BB stepsize computation appears in step I4b. One motivation for
computing a new BB step when sT

kyk/(‖sk‖‖yk‖) is close to 1 is given in [30]; when f
is a quadratic, this condition is satisfied when the step sk is close to an eigenvector of
the Hessian. When sT

kyk ≤ 0 (see I4a), the function is not convex on the line segment
connecting xk and xk+1, and a relatively large stepsize is used in the next iteration.
A rationale for the step taken in this case appears in [57].

Now consider the reference function value fr
k . Let fk denote f(xk). In the algo-

rithm which follows, the integer a counts the number of consecutive iterations that
αk = 1 in the NGPA (and the Armijo line search in step 4 is skipped). The integer
l counts the number of iterations since the function value is strictly decreased by an
amount Δ > 0.

Reference function value.

R0. If k = 0, choose parameters A > L > 0, γ1 > 1, γ2 > 1, and Δ > 0; initialize
a = l = 0 and fmin

0 = fmax min
0 = fr

0 = fr
−1 = f0.

R1. Update fr
k as follows:

a. If l = L, then set l = 0 and

fr
k =

{
fmax min
k if

fmax
k −fmin

k

fmax min
k

−fmin
k

≥ γ1,

fmax
k otherwise.

b. Else if a > A, then set

fr
k =

{
fmax
k if fmax

k > fk and
fr
k−1−fk

fmax
k

−fk
≥ γ2,

fr
k−1 otherwise.

c. Otherwise, fr
k = fr

k−1.
R2. Set fR as follows in step 3 of the NGPA:

a. If j = 0 (first iterate in a CBB cycle), then fR = fr
k .

b. If j > 0, then fR = min{fmax
k , fr

k}.
If αk < 1 in the NGPA, then set a = 0.

R3. If αk = 1 in the NGPA, then set a = a + 1.
R4. If fk+1 ≤ fmin

k − Δ, then set fmax min
k+1 = fmin

k+1 = fk+1 and l = 0; otherwise,

put l = l + 1, fmin
k+1 = fmin

k , and fmax min
k+1 = max{fmax min

k , fk+1}.
The variable fmax

k , defined in (2.3), stores the maximum of recent function values.
The variable fmin

k stores the minimum function value to within the tolerance Δ. The
variable fmax min

k stores the maximum function value since the last new minimum was
recorded in fmin

k . More explanations concerning the choice of the reference function
value are given in [30, 31]. Now, let us check that the choice for fr

k given above
satisfies the requirements in step 2 of the NGPA.

Proof that fk ≤ fr
k . In R1, we set
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(i) fr
k = fmax min

k or
(ii) fr

k = fmax
k or

(iii) fr
k = fr

k−1.

By R4, fmax min
k ≥ fk. In case (ii), fmax

k ≥ fk by the definition of fmax
k . In steps 3

and 4 of the NGPA, we have fk ≤ fR ≤ fr
k−1. Hence, in each of the cases (i)–(iii), we

have fk ≤ fr
k .

Proof that fr
k ≤ max{fr

k−1, f
max
k }. In R1a, fr

k is equal to either fmax
k or fmax min

k .

Since γ1 > 1, we set only fr
k = fmax min

k when fmax min
k ≤ fmax

k . Hence, in R1a,
fr
k ≤ fmax

k . In R1b, fr
k is equal to either fmax

k or fr
k−1. Since γ2 > 1, we set only

fr
k = fr

k−1 when fr
k−1 ≥ fmax

k . Hence, in R1b, fr
k ≤ fmax

k . In R1c, we set fr
k = fr

k−1.
Combining these observations, fr

k ≤ max{fr
k−1, f

max
k } in R1a–R1c.

Proof that fr
k ≤ fmax

k infinitely often. The condition fk+1 ≤ fmin
k − Δ in R4 is

satisfied only a finite number of times when f is bounded from below. Thus for k
sufficiently large, fr

k is updated in R1a every L iterations. In this case, since γ1 > 1,
fr
k = fmax min

k only when fmax min
k ≤ fmax

k , which implies that fr
k ≤ fmax

k . Hence, for
large k, fr

k ≤ fmax
k every L iterations.
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[16] J. V. Burke and J. J. Moré, Exposing constraints, SIAM J. Optim., 4 (1994), pp. 573–595.
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