
SIAM J. OPTIM. c© 2011 Society for Industrial and Applied Mathematics
Vol. 21, No. 1, pp. 361–390

AN AFFINE-SCALING INTERIOR-POINT METHOD FOR
CONTINUOUS KNAPSACK CONSTRAINTS WITH APPLICATION

TO SUPPORT VECTOR MACHINES∗

MARIA D. GONZALEZ-LIMA† , WILLIAM W. HAGER‡ , AND HONGCHAO ZHANG§

Abstract. An affine-scaling algorithm (ASL) for optimization problems with a single linear
equality constraint and box restrictions is developed. The algorithm has the property that each iterate
lies in the relative interior of the feasible set. The search direction is obtained by approximating the
Hessian of the objective function in Newton’s method by a multiple of the identity matrix. The
algorithm is particularly well suited for optimization problems where the Hessian of the objective
function is a large, dense, and possibly ill-conditioned matrix. Global convergence to a stationary
point is established for a nonmonotone line search. When the objective function is strongly convex,
ASL converges R-linearly to the global optimum provided the constraint multiplier is unique and
a nondegeneracy condition holds. A specific implementation of the algorithm is developed in which
the Hessian approximation is given by the cyclic Barzilai-Borwein (CBB) formula. The algorithm is
evaluated numerically using support vector machine test problems.

Key words. interior-point, affine-scaling, cyclic Barzilai-Borwein methods, global convergence,
linear convergence, support vector machines

AMS subject classifications. 90C06, 90C26, 65Y20

DOI. 10.1137/090766255

1. Introduction. In this paper we develop an interior-point algorithm for a
box-constrained optimization problem with a linear equality constraint:

(1.1) min f(x) subject to x ∈ R
n, l ≤ x ≤ u, aTx = b.

Here f is a real-valued, continuously differentiable function, a ∈ R
n, a �= 0, b ∈ R

1,
and l < u with possibly, li = −∞ or ui = ∞. We refer to the constraints in (1.1)
as knapsack constraints since they represent a continuous version of the constraints
which arise in the discrete knapsack problem. Initially, to simplify the exposition, we
focus on the special case u = ∞ and l = 0:

(1.2) min f(x) subject to x ∈ F ,
where

(1.3) F = {x ∈ R
n : x ≥ 0, aTx = b}.

The gradient projection algorithm can be applied to (1.2) since the projection
on the feasible set (1.3) can be evaluated quickly. A general framework for a non-
monotone spectral gradient projection algorithm is developed by Birgin, Mart́ınez,

∗Received by the editors July 27, 2009; accepted for publication (in revised form) February 2,
2011; published electronically March 17, 2011. This material is based upon work supported by the
National Science Foundation under grants 0619080, 0620286, and 1016204, by the Office of Naval
Research under grant N00014-11-1-0068, and by the Universidad Simón Boĺıvar.

http://www.siam.org/journals/siopt/21-1/76625.html
†Departamento de Cómputo Cient́ıfico y Estad́ıstica, Universidad Simón Boĺıvar, Apdo. 89000,

Caracas 1080-A, Venezuela (mgl@cesma.usb.ve).
‡Department of Mathematics, University of Florida, PO Box 118105, Gainesville, FL 32611-8105

(hager@math.ufl.edu, http://www.math.ufl.edu/∼hager).
§Department of Mathematics, Center for Computation and Technology, Louisiana State Univer-

sity, 140 Lockett Hall, Baton Rouge, LA 70803-4918 (hozhang@math.lsu.edu, http://www.math.
lsu.edu/∼hozhang).

361

362 M. D. GONZALEZ-LIMA, W. W. HAGER, AND H. ZHANG

and Raydan in [4, 5, 6, 7], while Dai and Fletcher [17] develop a version tailored to
a knapsack constraint such as (1.3). In this paper, we develop a new affine-scaling
algorithm, denoted ASL, tailored to the knapsack constraint (1.3), and compare it
to the algorithm of Dai and Fletcher. Our algorithm is an extension of an earlier
affine-scaling algorithm [34] for box-constrained optimization. The algorithm starts
at a point x1 in the relative interior of the feasible set F and generates a sequence
xk, k ≥ 2 by the following rule:

(1.4) xk+1 = xk + skdk,

where sk ∈ (0, 1] is a positive stepsize, and the ith component of dk is given by

(1.5) dki = −
(

1

λk +∇xLi(xk, μk)+/xki

)
∇xLi(xk, μk).

Here L : Rn × R → R is the Lagrangian defined by

L(x, μ) = f(x) + μ(b− aTx),

and∇xLi is the ith component of the gradient of L with respect to variable x. In (1.5),
λk is a positive scalar, t+ = max{0, t} for any scalar t, and the parameter μk is chosen
so that aTdk = 0. We give numerical results for a specific implementation of ASL in
which λk is computed using a cyclic version of the Barzilai-Borwein (CBB) stepsize
rule [3, 18]. In the CBB method, the same BB step is reused in several iterations.
Since the BB method does not monotonically reduce the value of the cost function, a
nonmonotone line search is needed to ensure that the stepsize in the line search is 1
when the iterates converge [18, 19, 54].

We now motivate the search direction dk in (1.5). The first-order optimality
conditions (KKT conditions) for (1.2) can be expressed as

(1.6) X1(x, μ) ◦ ∇xL(x, μ) = 0, aTx = b, x ≥ 0,

where

(1.7) X1
i (x, μ) =

{
1 if ∇xLi(x, μ) ≤ 0,
xi otherwise.

Here “◦” denotes the Hadamard (or componentwise) product of two vectors. That is,
if x,y ∈ R

n, then x ◦ y ∈ R
n and (x ◦ y)i = xiyi, where xi is the ith component

of x. The parameter μ is the Lagrange multiplier associated with the linear equality
constraint. For a convex optimization problem, the KKT conditions (1.6) are necessary
and sufficient for optimality. Our algorithm amounts to an iterative method for solving
(1.6).

The ASL iterates are chosen to lie in the relative interior of the feasible set F in
(1.3). Let xk denote the current iterate, and let us substitute xk+1 = xk +dk in (1.6)
and linearize around xk to obtain

(1.8) H(xk, μ)dk = −X1(xk, μ) ◦ ∇L(xk, μ), aTdk = 0,

where

(1.9) H(xk, μ) = diag(X1(xk, μ))∇2f(xk) + diag(∇xL(xk, μ)
+).

AFFINE-SCALING INTERIOR-POINT METHOD AND SVM 363

Here diag(x) is an n by n diagonal matrix with ith diagonal element xi. In situations
where ∇2f(x) is a huge, dense matrix, it can be time consuming to solve the linear
system (1.8). In the ASL algorithm, we make the approximation ∇2f(xk) ≈ λkI,
where λk > 0. With this approximation, the matrix in (1.9) is diagonal. For each
choice of μ, there is an associated solution dk(μ) to the first equation in (1.8) with
∇2f(xk) replaced by λkI. In the ASL algorithm, we choose μ such that aTdk(μ) = 0;
in other words, μ is chosen so that the solution to the first equation in (1.8) satisfies the
second equation in (1.8). As we will see, there is a unique choice for μ with the property
that aTdk(μ) = 0. In the ASL iteration (1.4), an additional stepsize parameter sk is
introduced to ensure global convergence; moreover, for each sk ∈ (0, 1], if xk lies in
the relative interior of the feasible set F , then so does xk+1 = xk + skdk.

ASL generalizes the affine-scaling algorithm in [34] by allowing for an additional
linear equality constraint aTx = b. There are many important applications that in-
volve both bound constraints and an additional linear equality constraint. Examples
include the maximum clique problem [29, 48], the graph partitioning problem [33],
and the support vector machine (SVM) [10, 15, 64]. In this paper, we will compare
the performance of ASL, when applied to SVM test problems, to that of the SVM
codes LIBSVM [14, 23] and GPDT [60, 61, 67, 68]. SVM has been used in many real
life applications including pattern recognition and classification problems such as iso-
lated handwritten digit recognition [11, 12, 15, 58, 59], object recognition [8], speaker
identification [57], face detection [50, 51], text categorization [38], and nonlinear least
squares problems arising in inverse density estimation [65].

Our paper is organized as follows: In section 2 an implementation of the ASL al-
gorithm is presented; the line search is based on the nonmonotone scheme of Grippo,
Lampariello, and Lucidi (GLL) [32]. Note, though, that the numerical experiments
employ the nonmonotone line search in [34] for which the analysis is more complex,
but which often yields better performance in practice. In section 3 various continuity
properties of the ASL algorithm are developed. Section 4 establishes global conver-
gence to a stationary point, while section 5 gives a global linear convergence result
for strongly convex functions. Section 6 discusses the BB choice for the parameter λk.
The generalization of ASL to box constraints is given in section 7, while section 8 gives
a Newton–Secant scheme for computing the parameter μk in (1.5). Some of the most
effective algorithms for SVM problems have been block coordinate descent methods in
which each iteration involves an optimization over a working set. In section 9 we give
a procedure for selecting a working set, and we compare it to a scheme of Joachims
[39]. Finally, in section 10 we evaluate the performance of a version of ASL, denoted
svmASL, which is specialized to SVM problems.

Notation. For any scalar t, t+ = max{0, t}, while for any vector v ∈ R
n, v+ is

the vector whose ith component is v+i . ∇f(x) denotes the gradient of f , a row vector.
The gradient of f(x), arranged as a column vector, is g(x). The subscript k often
represents the iteration number in an algorithm, and gk stands for g(xk). If x

∗ is an
optimal solution of (1.2), then g∗ denotes g(x∗). We let xki denote the ith component
of the iterate xk. The Hadamard (or componentwise) product x ◦ y of two vectors
x,y ∈ R

n is the vector in R
n defined by (x◦y)i = xiyi. diag(x) is an n by n diagonal

matrix with ith diagonal element xi. ‖ ·‖ is the Euclidean norm and |S| is the number
of elements in the set S.

2. The ASL algorithm with GLL linear search. The general framework for
the ASL algorithm (1.4)–(1.5), with the nonmonotone GLL line search [32], is the
following:

364 M. D. GONZALEZ-LIMA, W. W. HAGER, AND H. ZHANG

Affine-Scaling Interior-Point Method for Knapsack Constraints (ASL)

Given λ0 > 0, δ and η ∈ (0, 1), and an integer M ≥ 0.
Choose x1 > 0 with aTx1 = b and set k = 1.
Step 1. Choose λk ≥ λ0 and find μk such that aTdk = 0 where dk

is defined in (1.5).

Step 2. If dk = 0, stop.

Step 3. Choose sk = ηj with j ≥ 0 the smallest integer such that

f(xk + skdk) ≤ fR
k + δsk∇f(xk)dk,

where fR
k = max{f(xk−j) : 0 ≤ j ≤ min(k − 1,M)}.

Step 4. Set xk+1 = xk + skdk.

Step 5. Set k = k + 1 and go to step 1.

The parameter fR
k is the reference function value. For the ordinary Armijo line search

[1], fR
k = f(xk). For the GLL line search, fR

k is the local maximum function value
defined in step 3. The choice for fR

k used in the numerical experiments appears
in [34].

We first show that if the ASL iterate xk lies in the relative interior of the feasible
set, then so does xk+1.

Proposition 2.1. If xk lies in the relative interior of the feasible set F and
aTdk = 0, then xk+1 = xk +αkdk lies in the relative interior of F for all αk ∈ [0, 1].

Proof. In order to show that xk+1 > 0 if xk > 0, it suffices to prove that if dki < 0,
then dki > −xki, which implies that xki+αkdki > 0 because αk ∈ [0, 1]. By definition
of dki in (1.5) and the requirement that λk > 0, we have

dki =

⎧⎪⎨
⎪⎩

−gi(xk)− μkai
λk

≥ 0 if gi(xk)− μkai ≤ 0,

− gi(xk)− μkai
λk + (gi(xk)− μkai)/xki

> −xki if gi(xk)− μkai > 0.

Hence, xk+1 > 0. Furthermore, aTxk+1 = aT(xk + αkdk) = aTxk = b since aTdk =
0.

We now show that there exists a unique μk such that aTdk = 0. Given x > 0 and
λ > 0, let us introduce the functions

di(μ) = − gi − μai
λ+ (gi − μai)+/xi

,(2.1)

ri(μ) = aidi(μ), and r(μ) =

n∑
i=1

ri(μ) = aTd(μ).(2.2)

Finding μk such that aTdk = 0 amounts to finding a zero of r(·) = aTd(·) in the case
λ = λk, x = xk, and g = g(xk).

Proposition 2.2. Suppose that x > 0 and λ > 0, and define

μ0 = min {gi/ai : 1 ≤ i ≤ n, ai �= 0},
μ1 = max {gi/ai : 1 ≤ i ≤ n, ai �= 0}.

The function r(μ) has a unique zero on the interval [μ0, μ1], r(μ) < 0 for all μ < μ0,
and r(μ) > 0 for all μ > μ1. Moreover, r is continuously differentiable and monotone
with r′(μ) > 0 for every μ.

Proof. Since

ri(μ) =

⎧⎪⎨
⎪⎩

− xiai(gi − μai)

xiλ+ (gi − μai)
if gi − μai > 0,

−ai(gi − μai)

λ
if gi − μai ≤ 0,

AFFINE-SCALING INTERIOR-POINT METHOD AND SVM 365

it is clear that ri(μ) is continuously differentiable when μai �= gi. In the case that
μai = gi and ai ≥ 0, we have

lim
h→0+

ri(μ+ h)− ri(μ)

h
= lim

h→0+

ai(hai)

λh
=
a2i
λ
,

lim
h→0−

ri(μ+ h)− ri(μ)

h
= lim

h→0−

xiha
2
i

h(xiλ− hai)
=
a2i
λ
.

If ai < 0, the same result holds. Therefore, ri(μ) is differentiable for all μ and its
derivative is continuous with

r′i(μ) =

⎧⎪⎨
⎪⎩

λa2ix
2
i

(xiλ+ gi − μai)2
> 0 if gi − μai > 0,

a2i
λ

> 0 if gi − μai ≤ 0.

If ai �= 0, then r′i(μ) > 0 for all μ, and ri(·) is strictly increasing. Since ri(gi/ai) = 0,
it follows that ri(μ) < 0 for μ < gi/ai and ri(μ) > 0 for μ > gi/ai. Consequently,
ri(μ) < 0 for μ < μ0 and ri(μ) > 0 for μ > μ1. In the case ai = 0, ri(·) = 0. Since
a �= 0 by assumption, it follows from the definition of r that r(μ) < 0 for μ < μ0, and
r(μ) > 0 for μ > μ1.

Proposition 2.2 implies that the ASL algorithm is well defined. Next, we show that
the search direction (1.5) associated with the ASL algorithm is a descent direction
whenever ‖d(μ)‖ �= 0. This implies that the Armijo line search in step 3 of ASL
terminates at a finite j.

Proposition 2.3. If x > 0, λ > 0, and μ is chosen such that aTd(μ) = 0, then
we have

gTd(μ) ≤ −λ‖d(μ)‖2,
where d is defined in (2.1). Therefore, gTd(μ) < 0 whenever d(μ) �= 0.

Proof. Since aTd(μ) = 0, we have

gTd(μ) = (g − μa)Td(μ) =

n∑
i=1

(gi − μai)di(μ)

= −
n∑

i=1

(λ + (gi − μai)
+/xi)di(μ)

2(2.3)

≤ −λ‖d(μ)‖2.
The equality (2.3) follows from (2.1).

3. Continuity properties. In this section, some continuity properties of ASL
are established. The proofs of Propositions 3.1 and 3.2 and Lemma 3.3 are analogous
to proofs given in [34]. They are included for completeness.

Proposition 3.1. If f is continuously differentiable and X1(·) is defined by (1.7),
then the map

X1(·, ·) ◦ ∇xL(·, ·) : Rn
+ × R → R

n, R
n
+ := {x ∈ R

n : x ≥ 0},
is continuous.

Proof. Since ∇f is continuous, ∇xLi(·, ·) is continuous. If either ∇xLi(x, μ) < 0
or ∇L(x, μ)i > 0, then X1

i (·, ·) is continuous at x; consequently, the product

366 M. D. GONZALEZ-LIMA, W. W. HAGER, AND H. ZHANG

∇xLi(·, ·)X1
i (·, ·) is continuous at (x, μ). Suppose that ∇xLi(x, μ) = 0. By the defini-

tion of X1, we have

|∇xLi(y, ν)X
1
i (y, ν)| ≤ max{1, yi}|∇xLi(y, ν)|

for any y ≥ 0 and i ∈ [1, n]. Since ∇xLi(·, ·) is continuous and ∇xLi(x, μ) = 0, it fol-
lows that ∇xLi(y, ν)X

1
i (y, ν) approaches zero as (y, ν) approaches (x, μ). Therefore,

the product ∇xL(·, ·) ◦X1(·, ·) is continuous everywhere.
Now we show that the ASL search directions approach zero if and only if the

KKT conditions are satisfied in an asymptotic sense.
Proposition 3.2. Suppose f is continuously differentiable on the feasible set

F , and the parameter λk in (1.5) is bounded from above and below by finite positive
constants:

(3.1) 0 < λ0 := inf
k≥1

λk ≤ sup
k≥1

λk := λmax <∞.

If {(xk, μk) : 1 ≤ k <∞} is uniformly bounded and xk is in the relative interior of F
for each k, then

lim
k→∞

dk = 0 if and only if lim
k→∞

X1(xk, μk) ◦ ∇xL(xk, μk) = 0,

where dk and X1 are defined in (1.5) and (1.7), respectively.
Proof. We will show that, for any i ∈ [1, n],

(3.2) lim
k→∞

dki = 0 if and only if lim
k→∞

X1
i (xk, μk)∇xLi(xk, μk) = 0,

in which case the proposition follows immediately. By (1.5), we have

(3.3) dki = − xki∇xLi(xk, μk)

λkxki +∇xLi(xk, μk)+
.

Since the xk lie in the relative interior of F and the λk are positive by (3.1), the
denominator of (3.3) is positive for each k. Since xk, μk, and λk are bounded and
f is continuously differentiable, the denominator on the right-hand side of (3.3) is
bounded. Consequently, if dki tends to zero, the numerator xki∇xLi(xk, μk) tends to
zero. If ∇xLi(xk, μk) > 0, then X1

i (xk, μk) = xki; hence, along the subsequence of
iterates where ∇xLi(xk, μk) > 0, X1

i (xk, μk)∇xLi(xk, μk) = xki∇xLi(xk, μk), which
tends to zero. Along the subsequence of iterates where ∇xLi(xk, μk) ≤ 0, we have
dki = −∇xLi(xk, μk)/λk. Hence, if dki tends to zero, then ∇xLi(xk, μk) tends to
zero, which implies that X1

i (xk, μk)∇xLi(xk, μk) tends to zero since X1
i (xk, μk) is

bounded.
Conversely, suppose that X1

i (xk, μk)∇xLi(xk, μk) tends to zero. In this case, we
can write

{1, 2, . . .} = K1 ∪ K2,

where either K1 or K2 may be empty and

(a) lim
k∈K1

∇Li(xk, μk) = 0 and (b) lim
k∈K2

X1
i (xk, μk) = 0.

If K1 has an infinite number of elements, then (3.1) and (3.3) imply that dki tends
to zero for k ∈ K1 approaching ∞. If K2 has an infinite number of elements, then

AFFINE-SCALING INTERIOR-POINT METHOD AND SVM 367

for k ∈ K2 with k sufficiently large, we have X1
i (xk, μk) = xki and ∇xLi(xk, μk)

+ =
∇xLi(xk, μk) > 0. Consequently, (3.3) can be rewritten

(3.4) dki = − xki
1 + λkxki/∇xLi(xk, μk)

, k ∈ K2.

By (b) X1
i (xk, μk) = xki tends to zero as k ∈ K2 tends to ∞. By (3.4), dki tends to

zero as k ∈ K2 tends to ∞. Hence, the entire sequence {dki : k ≥ 1} approaches zero,
which completes the proof of (3.2).

The next lemma shows that if x∗ is a KKT point with corresponding multiplier
μ∗, then dk approaches 0 as (xk, μk) approaches (x

∗, μ∗).
Lemma 3.3. Suppose f is Lipschitz continuously differentiable in a neighborhood

of a KKT point x∗ for (1.2). If μ∗ is the multiplier associated with x∗, then there
exists a constant c such that, for all (xk, μk) near (x∗, μ∗) with xk > 0, and for all
λk ≥ λ0 > 0, we have

(3.5) ‖dk‖ ≤ c(‖x∗ − xk‖+ |μ∗ − μk|).

Proof. Since x∗ is a KKT point for (1.2) with corresponding multiplier μ∗, we
have X1(x∗, μ∗) ◦ ∇xL(x

∗, μ∗) = 0. Hence, for each i, either

(a) gi(x
∗)− μ∗ai = 0, or (b) gi(x

∗)− μ∗ai > 0 and X1
i (x

∗, μ∗) = x∗i = 0.

From the definition of dk, it follows that, for any xk > 0, we have

|dki| ≤ |gi(xk)− μkai|/λ0.

Hence, for those indices i where (a) holds,

|dki| ≤ (|gi(xk)− gi(x
∗)|+ |(μk − μ∗)ai|)/λ0

≤
(
κ+ |ai|
λ0

)
(‖x∗ − xk‖+ |μ∗ − μk|),(3.6)

where κ > 0 is the Lipschitz constant of ∇f . For any index i where (b) holds and
for (xk, μk) in a neighborhood of (x∗, μ∗) with xk > 0, we have (gi(xk) − μkai)

+ =
gi(xk)− μkai > 0 and

(3.7) |dki| ≤ xki ≤ ‖xk − x∗‖.

Combining (3.6) and (3.7) gives (3.5) for a suitable choice of c.
We now show that the stepsize sk is bounded away from zero.
Proposition 3.4. If sk is chosen in accordance with step 3 of ASL, and ∇f is

Lipschitz continuous with Lipschitz constant κ on the line segment connecting xk and
xk + dk, then we have

(3.8) sk ≥ min

{
1,

2η(1− δ)λk
κ

}
.

Proof. If step 3 of ASL terminates with j = 0, then sk = 1, which satisfies (3.8).
On the other hand, if step 3 terminates with j > 0, the we must have that

(3.9) f(xk + ηj−1dk) ≥ fR
k + δηj−1gT

kdk ≥ f(xk) + δηj−1gT
kdk.

368 M. D. GONZALEZ-LIMA, W. W. HAGER, AND H. ZHANG

By the fundamental theorem of calculus,

f(xk + ηj−1dk)− f(xk) = ηj−1∇f(xk)dk +

∫ ηj−1

0

(∇f(xk + tdk)−∇f(xk))dkdt.

By the Lipschitz continuity of ∇f ,

(3.10) f(xk + ηj−1dk)− f(xk) ≤ ηj−1gT
kdk + 0.5κηj−1‖dk‖2.

Combining (3.9) and (3.10) gives

(3.11) (δ − 1)gT
kdk ≤ 0.5κηj−1‖dk‖2.

Multiplying by η, we obtain

sk = ηj ≥ 2η(1− δ)|gT
kdk|/(κ‖dk‖2).

Utilizing Proposition 2.3, the proof is complete.

4. Global convergence. We now prove the global convergence of ASL. Accord-
ing to step 3 of the ASL algorithm,

(4.1) f(xk+1) ≤ fR
k

for each k. Hence, we have

(4.2) fR
k+1 ≤ fR

k ≤ · · · ≤ fR
1 = f(x1).

We assume that the following level set L is bounded:

(4.3) L = {x ∈ F : f(x) ≤ f(x1)}.

Combining (4.1) and (4.2), it follows that f(xk) ≤ f(x1) and xk ∈ L for each k.
Hence, the iterates xk lie in a bounded set. Since f is continuously differentiable, the
gradients gk are bounded. By Proposition 2.2, μk is bounded uniformly in k. These
uniform bounds for ‖xk‖ and μk together with the lower bound λk ≥ λ0 > 0 in (3.1)
imply that ‖dk‖ is uniformly bounded by some finite constant β.

Theorem 4.1. If λk ≥ λ0 > 0 for all k, the level set L is bounded, and f is
Lipschitz continuously differentiable on the set

(4.4) L := {x ∈ F : ‖x− y‖ ≤ β for some y ∈ L},

then ASL either terminates in a finite number of iterations at a KKT point, or

(4.5) lim
k→∞

dk = 0.

Proof. If algorithm ASL terminates at iteration k, then dk = 0 and∇xL(xk, μk) =
0, which implies that the KKT conditions hold at xk. In the case that dk �= 0 for all k,
we show that dk approaches 0. By Proposition 3.4 and the lower bound λk ≥ λ0 > 0,
there exists a constant C such that sk ≥ C for all k. By step 3 of ASL and Proposition
2.3, we have

(4.6) f(xk+1) ≤ fR
k + δskg

T
kdk ≤ fR

k − δCλ0‖dk‖2.

AFFINE-SCALING INTERIOR-POINT METHOD AND SVM 369

By (4.2) and the fact that f is bounded from below on L, we conclude that fR
k

monotonically approaches a limit denoted fR∞. We now show that

(4.7) lim
k→∞

f(xk) = fR
∞.

Since fR
k = max{f(xk−j) : 0 ≤ j ≤ min(k − 1,M)}, it follows that, for each k,

there exists an index l such that

(4.8) fR
k = f(xl), where k −M ≤ l ≤ k.

Since l depends on k, we let l(k) denote the index associated with k as in (4.8). Since
fR
k = f(xl(k)), it follows that

(4.9) lim
k→∞

f(xl(k)) = lim
k→∞

fR
k = fR

∞.

We prove by induction that, for all j ≥ 0,

(4.10) lim
k→∞

f(xl(k)−j) = fR
∞.

This holds for j = 0 by (4.9). Assume that (4.10) holds for each j between zero and
i; we will show that (4.10) holds for j = i+1. By (4.6) with k = l(k)− i− 1, we have

f(xl(k)−i) ≤ fR
l(k)−i−1 − δCλ0‖dl(k)−i−1‖2.

By the induction hypothesis, f(xl(k)−i) approaches f
R
∞ as k tends to ∞. Since fR

k also
approaches fR

∞, we conclude that dl(k)−i−1 tends to 0. Since sk ≤ 1, it follows that

lim
k→∞

‖xl(k)−i − xl(k)−i−1‖ = 0.

The Lipschitz continuity of f over L implies that

lim
k→∞

|f(xl(k)−i)− f(xl(k)−i−1)| = 0.

Hence, by (4.10) for j = i, we have

fR
∞ = lim

k→∞
f(xl(k)−i) = lim

k→∞
f(xl(k)−i−1).

Consequently, (4.10) holds for j = i+1. This completes the induction and (4.10) holds
for all j ≥ 0.

For j = 0, 1, . . . ,M , define the sets

Ij = ∪k≥1{l(k)− j}.
The identity (4.10) is equivalent to

lim
k ∈ Ij
k → ∞

f(xk) = fR
∞.

Since k − l(k) ≤ M , it follows that each k lies in one of the sets Ij , 0 ≤ j ≤ M . For
the indices k in any of these sets Ij , the function values f(xk) approach fR∞. This
establishes (4.7), and by (4.6) it follows that dk approaches 0 as k tends to ∞.

Remark. Together, Theorem 4.1 and Proposition 3.2 imply that, if the parameter
λk in ASL is uniformly bounded from above, then the KKT conditions are satisfied
in an asymptotic sense. In particular, section 6 shows that the BB choice for λk is
uniformly bounded.

370 M. D. GONZALEZ-LIMA, W. W. HAGER, AND H. ZHANG

5. Global and local convergence for strongly convex functions. In this
section, we develop a global linear convergence result in the case that f is strongly
convex over the feasible set F . Recall that f is strongly convex if there exists a constant
γ > 0 such that

(5.1) f(y) ≥ f(x) +∇f(x)(y − x) + γ‖x− y‖2

for all x and y ∈ F . We first show that, if f also satisfies the hypotheses of Theorem
4.1, then the iterates xk converge to the unique solution of (1.2).

Theorem 5.1. Suppose f is strongly convex over the feasible set F , and the
parameter λk is uniformly bounded away from zero and ∞ in accordance with (3.1).
If f is Lipschitz continuously differentiable over the set (4.4), then the iterates xk

generated by ASL either converge in a finite number of iterations to the unique solution
x∗ of (1.2), or

(5.2) lim
k→∞

xk = x∗.

Proof. If ASL converges in finite number of iterations to a point x∗, then by
Theorem 4.1, the KKT conditions hold at x∗. Due to the strong convexity of f and
the convexity of the feasible set F , it follows that x∗ is the unique solution of (1.2).
Conversely, suppose that ASL does not terminate in a finite number of iterations.
Since f is strongly convex, the level set L is bounded; that is,

‖x− x1‖ ≤ ‖∇f(x1)‖/γ

for all x ∈ L. By (4.1) and (4.2), each of the ASL iterates xk lies in L. Therefore, the
gradients gk are uniformly bounded, which together with Proposition 2.2 ensures μk

is also uniformly bounded. Hence, the sequence {(xk, μk)} is uniformly bounded, and
there exists a subsequence {(xki , μki)} which converges to a pair (x∗, μ∗) ∈ F × R.
By Theorem 4.1, dki approaches 0 as i tends to ∞. By Proposition 3.2,

lim
i→∞

X1(xki , μki) ◦ ∇xL(xki , μki) = 0.

By Proposition 3.1, we have

X1(x∗, μ∗) ◦ ∇xL(x
∗, μ∗) = 0.

Hence x∗ is a KKT point for (1.2) with corresponding multiplier μ∗. Again, since f
is strongly convex over the convex set F , x∗ is the unique solution of (1.2), which
achieves the global minimum. During the proof of Theorem 4.1, we show that the
entire sequence f(xk) approaches a limit. Since the subsequence f(xki) approaches
the global minimum f(x∗), it follows that the entire sequence f(xk) approaches the
global minimum. By the first-order optimality condition

∇f(x∗)(x− x∗) ≥ 0

for all x ∈ F , and by the strong convexity condition (5.1), we have

(5.3) γ‖xk − x∗‖2 ≤ f(xk)− f(x∗).

Hence, xk approaches x∗ as f(xk) approaches f(x
∗). This completes the proof.

AFFINE-SCALING INTERIOR-POINT METHOD AND SVM 371

Next, we show that f(xk) converges to f(x
∗) at least R-linearly when the following

multiplier uniqueness and nondegeneracy assumptions hold. As a result, by (5.3), the
iterates xk converge linearly to x∗:

Multiplier uniqueness: There exists an index i such that ai �= 0 and x∗i > 0, where
x∗ is the global minimizer of (1.2).

Let μ∗ be a multiplier associated with x∗ and the linear equality constraint. The
KKT conditions imply that gi(x

∗) − μ∗ai = 0 when x∗i > 0. Hence, μ∗ = gi(x
∗)/ai

when the multiplier uniqueness condition holds. In other words, the multiplier is
uniquely determined.

Nondegeneracy: the strict complementarity condition holds at x∗; that is,

gi(x
∗)− μ∗ai > 0 whenever x∗i = 0.

The following lemma shows that μk converges to μ∗ at least as fast as xk approaches
x∗. Moreover, the search direction dk provides a local error bound.

Lemma 5.2. Suppose the multiplier uniqueness and nondegeneracy conditions
hold, f is strongly convex over the feasible set F , and f is Lipschitz continuously
differentiable over the convex hull of the level set (4.3). If λk is bounded away from
zero and ∞ in accordance with (3.1), then there exist positive constants τ1, τ2, ζ1, and
ζ2 such that

|μk − μ∗| ≤ τ1‖xk − x∗‖,(5.4)

‖xk − x∗‖ ≤ τ2‖dk‖, and(5.5)

(5.6) −ζ1gT
kdk ≤ gT

k (xk − x∗) ≤ −ζ2gT
kdk

for all k sufficiently large.
Proof. We first show that the parameters μk converge to the unique Lagrange

multiplier μ∗ associated with x∗ and the linear constraint aTx = b. By Theorem 5.1,
xk converges to x∗. By Proposition 2.2, the μk are uniformly bounded. Suppose that
a subsequence of the {μk} approaches a limit ν. As seen in the proof of Theorem
5.1, x∗ is a KKT point for (1.2) with corresponding multiplier ν. By the multiplier
uniqueness condition, ν = μ∗. Hence, the entire sequence μk converges to μ∗.

Since xk → x∗ and μk → μ∗ as k → ∞, the first-order optimality conditions
along with the nondegeneracy condition imply that

lim
k→∞

(gki − μkai) =

{
g∗i − μ∗ai = 0 if i /∈ A,
g∗i − μ∗ai > 0 if i ∈ A,(5.7)

where g∗i = gi(x
∗) and

A = {i ∈ [1, n] : x∗i = 0}.
We rearrange the identity aTdk = 0 and take k large enough that gki − μkai > 0 for
all i ∈ A to obtain∣∣∣∣∣

∑
i/∈A

ai(gki − μkai)

λk + (gki − μkai)+/xki

∣∣∣∣∣ =
∣∣∣∣∣
∑
i∈A

aixki
(λk/(gki − μkai))xki + 1

∣∣∣∣∣
≤
∑
i∈A

|aixki| ≤ ‖a‖‖xk − x∗‖.(5.8)

372 M. D. GONZALEZ-LIMA, W. W. HAGER, AND H. ZHANG

In the last inequality, we utilize the Schwarz inequality and fact that x∗i = 0 for i ∈ A.
Since g∗i − μ∗ai = 0 when i �∈ A, we have∑

i/∈A

ai(gki − μkai)

λk + (gki − μkai)+/xki
=
∑
i/∈A

ai((gki − μkai)− (g∗i − μ∗ai))
λk + (gki − μkai)+/xki

(5.9)

=
∑
i/∈A

a2i (μ
∗ − μk)

λk + (gki − μkai)+/xki

+
∑
i/∈A

ai(gki − g∗i)
λk + (gki − μkai)+/xki

.

For i �∈ A, gki −μkai approaches zero and xki is bounded away from zero. Since λk is
bounded away from zero, it follows that

(5.10)
(gki − μkai)

+

xki
≤ λk for all i �∈ A and k sufficiently large,

which implies that

(5.11)
∑
i	∈A

a2i
2λmax

≤
∑
i	∈A

a2i
2λk

≤
∑
i	∈A

a2i
λk + (gki − μkai)+/xki

,

where λmax is the upper bound for λk. We rearrange (5.9) and combine with (5.11)
to obtain

|μk − μ∗|
∑
i	∈A

a2i
2λmax

≤
∑
i	∈A

a2i |μk − μ∗|
λk + (gki − μkai)+/xki

≤
∣∣∣∣∣
∑
i/∈A

ai(gki − g∗i)
λk + (gki − μkai)+/xki

∣∣∣∣∣+
∣∣∣∣∣
∑
i/∈A

ai(gki − μkai)

λk + (gki − μkai)+/xki

∣∣∣∣∣
≤
∑
i/∈A

|ai(gki − g∗i)|
λ0

+

∣∣∣∣∣
∑
i/∈A

ai(gki − μkai)

λk + (gki − μkai)+/xki

∣∣∣∣∣
≤ κ‖a‖‖xk − x∗‖

λ0
+

∣∣∣∣∣
∑
i/∈A

ai(gki − μkai)

λk + (gki − μkai)+/xki

∣∣∣∣∣
≤
(
1 +

κ

λ0

)
‖a‖‖xk − x∗‖.

Here, κ is the Lipschitz constant for g and the last inequality is from (5.8). This
establishes (5.4).

Next, we establish the error bound condition ‖xk − x∗‖ ≤ τ2‖dk‖. The strong
convexity assumption (5.1) implies that

(5.12) ‖xk − x∗‖2 ≤ (gk − g∗)T(xk − x∗)/(2γ).

By the first-order optimality conditions, g∗i − μ∗ai = 0 for i �∈ A. Since xk is feasible
in (1.2), we have aT(xk − x∗) = 0. Consequently, we have

(gk − g∗)T(xk − x∗) = ((gk − μka) − (g∗ − μ∗a))T(xk − x∗)(5.13)

=
∑
i/∈A

(gki − μkai)(xki − x∗ki)

+
∑
i∈A

[(gki − g∗ki) + ai(μ
∗ − μk)]xki.

AFFINE-SCALING INTERIOR-POINT METHOD AND SVM 373

The Schwarz inequality yields

(5.14)
∑
i/∈A

(gki − μkai)(xki − x∗ki) ≤ ‖xk − x∗‖
√∑

i/∈A
(gki − μkai)2.

By the Lipschitz continuity of g and by the estimate (5.4) for μk −μ∗, it follows that

(5.15)
∑
i∈A

[(gki − g∗ki) + ai(μ
∗ − μk)]xki ≤ (κ+ τ1‖a‖)‖xk − x∗‖

√∑
i∈A

x2ki.

Combining (5.12)–(5.15) gives

(5.16) ‖xk − x∗‖ ≤ 1

2γ

⎛
⎝√∑

i/∈A
(gki − μkai)2 + (κ+ τ1‖a‖)

√∑
i∈A

x2ki

⎞
⎠ .

We now give an upper bound for the right side of (5.16) in terms of ‖dk‖.
Choose k large enough that

(5.17) gki − μkai > 0 and
xkiλk

gki − μkai
≤ 1 for all i ∈ A.

By the nondegeneracy condition and the fact that gki−μkai approaches g
∗
i −μ∗ai > 0

for all i ∈ A, it is always possible to choose k in this way. By the definition of d, it
follows from (5.17) that

(5.18) dki ≥ xki/2 for all i ∈ A
for k large enough. For i �∈ A, choose k large enough that (5.10) holds. Hence, we
have

(5.19) dki ≥ |gki − μkai|/(2λk) ≥ |gki − μkai|/(2λmax) for all i �∈ A.
Combining (5.16), (5.18), and (5.19) gives (5.5).

Next, we establish the upper bound in (5.6). Utilizing the identity aT(xk−x∗) = 0
gives

gT
k (xk − x∗) = (gk − μka)

T(xk − x∗)

=
∑
i/∈A

(gki − μkai)(xki − x∗ki) +
∑
i∈A

(gki − μkai)(xki − x∗ki)

≤
√∑

i/∈A
(gki − μkai)2‖xk − x∗‖+

∑
i∈A

(gki − μkai)xki.(5.20)

By (5.16) we have √∑
i/∈A

(gki − μkai)2‖xk − x∗‖ ≤

c

⎛
⎝∑

i/∈A
(gki − μkai)

2 +

√∑
i/∈A

(gki − μkai)2
√∑

i∈A
x2ki

⎞
⎠(5.21)

374 M. D. GONZALEZ-LIMA, W. W. HAGER, AND H. ZHANG

for a suitable choice of the constant c. Since gki − μkai approaches zero for all i ∈ A,
it follows from the nondegeneracy assumption that

(5.22)

√∑
i/∈A

(gki − μkai)2 ≤ min
i∈A

{gki − μkai}

for k large enough. Since the 2-norm is bounded by the 1-norm, it follows from (5.22)
that

(5.23)

√∑
i/∈A

(gki − μkai)2
√∑

i∈A
x2ki ≤ min

i∈A
{gki − μkai}

∑
i∈A

xki

for k sufficiently large. Hence, we have

(5.24) min
i∈A

{gki − μkai}
∑
i∈A

xki +
∑
i∈A

(gki − μkai)xki ≤ 2
∑
i∈A

(gki − μkai)xki.

Combining (5.20)–(5.24) gives

(5.25) gT
k (xk − x∗) ≤ c

(∑
i/∈A

(gki − μkai)
2 +

∑
i∈A

(gki − μkai)xki

)

for a suitable choice of c and for k sufficiently large. Also, choose k large enough that
(5.10) and (5.17) hold. Since aTdk = 0, it follows from the definition of dk that

−gT
kdk = −(gk − μka)

Tdk

=
∑
i/∈A

(gki − μkai)
2

λk + (gki − μkai)+/xki
+
∑
i∈A

(gki − μkai)xki
(xkiλk/(gki − μkai)) + 1

(5.26)

≥ 1

2λk

∑
i/∈A

(gki − μkai)
2 +

1

2

∑
i∈A

(gki − μkai)xki

≥ 1

2λmax

∑
i/∈A

(gki − μkai)
2 +

1

2

∑
i∈A

(gki − μkai)xki.(5.27)

Combining (5.25) and (5.27) yields the upper bound in (5.6).
Finally, we focus on the lower bound in (5.6). The convexity inequality (5.12) and

the first half of (5.13) can be rearranged as

(gk − μka)
T(xk − x∗) ≥ 2γ‖xk − x∗‖2 +

∑
i∈A

(g∗i − μ∗ai)xki.

Since aT(xk − x∗) = 0, it follows that

(5.28) gT
k (xk − x∗) ≥ 2γ‖xk − x∗‖2 +

∑
i∈A

(g∗i − μ∗ai)xki.

Again, take k large enough that (5.17) holds. If the denominators in (5.26) are replaced
by the respective lower bounds λk and 1, we obtain

−gT
kdk = −(gk − μka)

Tdk ≤ 1

λk

∑
i/∈A

(gki − μkai)
2 +

∑
i∈A

(gki − μkai)xki

≤ 1

λ0

∑
i/∈A

(gki − μkai)
2 +

∑
i∈A

(gki − μkai)xki.(5.29)

AFFINE-SCALING INTERIOR-POINT METHOD AND SVM 375

Also, choose k large enough that

gki − μkai ≤ 2(g∗i − μ∗ai) for all i ∈ A.

Hence, we have

(5.30)
∑
i∈A

(gki − μkai)xki ≤ 2
∑
i∈A

(g∗i − μ∗ai)xki.

Since g∗i − μ∗ai = 0 for i �∈ A, we obtain

∑
i/∈A

(gki − μkai)
2 =

∑
i/∈A

((gki − μkai)− (g∗i − μ∗ai))2

≤ (‖gk − g∗‖+ |μk − μ∗|‖a‖)2
≤ (κ+ τ1‖a‖)2‖xk − x∗‖2.(5.31)

Combining (5.28)–(5.31), the lower bound in (5.6) is established.
We now show that the function value f(xk) generated by ASL converge R-linearly

when f is strongly convex.
Theorem 5.3. Suppose the multiplier uniqueness and nondegeneracy conditions

hold, f is strongly convex over the feasible set F , and f is Lipschitz continuously
differentiable over the convex hull of the level set (4.3) and over the set (4.4). If λk is
bounded away from zero and ∞ in accordance with (3.1), then either ASL converges
in a finite number of iterations, or there exists θ ∈ (0, 1) and an integer K > 0 such
that

(5.32) f(xk)− f(x∗) ≤ θk(f(x1)− f(x∗))

for all k > K.
Proof. Suppose that ASL does not converge in finite number of iterations, oth-

erwise the proof is complete. Choose K ≥ M + 1 large enough that (5.4)–(5.6) hold
for all k ≥ K. Recall that the ASL iterates are given by xk+1 = xk + skdk with
sk ∈ (0, 1]. Let κ denote the Lipschitz constant for g. Observe that

|gT
k+1(xk+1 − x∗)− gT

k (xk − x∗)|
≤ |(gk+1 − gk)

T(xk+1 − x∗)|+ |gT
k (xk+1 − xk)|

≤ κ‖xk+1 − xk‖‖xk+1 − x∗‖+ |sk||gT
kdk|

≤ κ‖xk+1 − xk‖(‖xk+1 − xk‖+ ‖xk − x∗‖) + |sk||gT
kdk|

≤ κ(s2k + τ2)‖dk‖2 − skg
T
kdk(5.33)

≤ −κ(1 + τ2)

λ0
gT
kdk − gT

kdk(5.34)

= −
(
κ(1 + τ2) + λ0

λ0

)
gT
kdk.(5.35)

Here (5.33) is due to (5.5) and the relation xk+1 −xk = skdk; (5.34) is a consequence
of Proposition 2.3 and the condition sk ∈ (0, 1]. By (5.6) and (5.35), we have, for
k ≥ K,

376 M. D. GONZALEZ-LIMA, W. W. HAGER, AND H. ZHANG

−gT
k+1dk+1 ≤ gT

k+1(xk+1 − x∗)/ζ1

≤ 1

ζ1

(
gT
k (xk − x∗) + |gT

k+1(xk+1 − x∗)− gT
k (xk − x∗)|)

≤ 1

ζ1

(
gT
k (xk − x∗)− κ(1 + τ2) + λ0

λ0
gT
kdk

)

≤ −
(
κ(1 + τ2) + λ0(1 + ζ2)

ζ1λ0

)
gT
kdk := −τgT

kdk.(5.36)

In Theorem 4.1, in the proof of (4.6), it was shown that there exists a constant
ρ > 0 such that

(5.37) f(xk+1) ≤ fR
k + ρgT

kdk

for each k. In step 3 of the ASL algorithm, we set fR
k = max{f(xk−j) : 0 ≤ j ≤

min(k− 1,M)}. Hence, for any k > M , there exists l such that k− 1−M ≤ l ≤ k− 1
and

(5.38) f(xk) ≤ f(xl) + ρgT
k−1dk−1.

Note that k − l ≤M + 1. Combining (5.36) and (5.38) gives

(5.39) f(xk) ≤ f(xl) +
(ρ
τ

)
gT
kdk.

On the other hand, by the convexity of f and by (5.6), we have

(5.40) f(xk)− f(x∗) ≤ g(xk)
T(xk − x∗) ≤ −ζ2gT

kdk for all k ≥ K.

Subtracting f(x∗) from both sides of (5.39) and using (5.40) to bound the gT
kdk term,

we have

f(xk)− f(x∗) ≤ f(xl)− f(x∗)− ρ

τζ2
(f(xk)− f(x∗)).

Rearranging this gives

f(xk)− f(x∗) ≤ ψ(f(xl)− f(x∗)), ψ =
τζ2

τζ2 + ρ
< 1.

We apply this decay formula in a recursive fashion. The recursion is stopped when
reaching an index l for which l < K. When this occurs, we utilize the trivial estimate

f(xl)− f(x∗) ≤ f(x1)− f(x∗)

based on (4.1) and (4.2). Since k − l ≤ M + 1, there are at least (k −K)/(M + 1)�
steps in the recursion:

f(xk)− f(x∗) ≤ ψ(k−K)/(M+1)(f(x1)− f(x∗))
= (ψ(1−K/k)/(M+1))k(f(x1)− f(x∗)).

For k > 2K, we have 1−K/k ≥ 1/2, which implies

f(xk)− f(x∗) ≤ θk(f(x1)− f(x∗)),

where θ = ψ1/(2M+2) < 1 for k > 2K. This completes the proof.

AFFINE-SCALING INTERIOR-POINT METHOD AND SVM 377

6. The BB choice of λk. Our choice of λk in the numerical experiments is
based on the CBB method where the same Hessian estimate is reused for multiple
iterations. The BB method is due to Barzilai and Borwein [3]. It was further developed
by Raydan [54]. The first cyclic idea, which includes the BB method as a special case,
was presented by Friedlander et al. in [27] for unconstrained quadratic optimization.
Dai [16] and Raydan and Svaiter [55] presented cyclic versions of the BB algorithm
with cycle length two. Later, Dai et al. [18] introduced the CBB method where the
cycle length is arbitrary and proved local linear convergence at a local minimizer of a
quadratic with a positive definite Hessian.

The BB method is a quasi-Newton method, where the Hessian∇2f(xk) is replaced
by λkI at each iteration k ≥ 2. The parameter λk is the solution of the least squares
problem

min
λ∈R

‖λsk−1 − yk−1‖.

Here, sk−1 = xk − xk−1, yk−1 = gk − gk−1, and gk = g(xk). In [34] a lower bound
λ0 > 0 for λ is introduced to ensure global convergence of the affine-scaling algorithm.
The modified least squares problem was

(6.1) λBB
k := arg min

λ≥λ0

‖λsk−1 − yk−1‖2 = max

{
λ0,

sTk−1yk−1

sTk−1sk−1

}
,

where k ≥ 2. The starting parameter value λ1 can be chosen freely, subject to the
constraint λ1 ≥ λ0. In our algorithm we will also use this choice of the stepsize in
conjunction with the cyclic strategy used in [18]. That is, if m ≥ 1 is the cycle length
and � ≥ 0 is the cycle number, then the cyclic choice for λk is

(6.2) λm�+i = λBB
m�+1 for i = 1, · · · ,m.

Of course, when the cycle length is 1, then λk = λBB
k for each k.

As the following proposition indicates, this choice of λk satisfies (3.1). For a proof
of this result, see the remark that follows [34, Prop. 3.2].

Proposition 6.1. Under the hypotheses of Theorem 4.1, we have

λ0 ≤ λBB
k ≤ λ,

where λ is any bound for the spectral radius of the Hessian of f on the convex hull of
the level set L in (4.3).

7. Box constraints. Our analysis has focused on the nonnegativity constraint
x ≥ 0, however, with small adjustments, ASL can be applied to the box-constrained
optimization problem (1.1), similar to [34]. The modifications are as follows: The
definition of X1 in (1.7) should be replaced by

Xi(x, μ) =

{
ui − xi if ∇xLi(x, μ) ≤ 0,
xi − li otherwise.

With the convention that ∞× 0 = 0, the KKT conditions can be expressed

X(x, μ) ◦ ∇xL(x, μ) = 0, aTx = b, l ≤ x ≤ u.

With the convention that 1/∞ = 0, the new approximation to the Newton search
direction is

dki = − 1

λk + |∇xLi(xk, μk)|/Xi(xk, μk)
∇xLi(xk, μk).

378 M. D. GONZALEZ-LIMA, W. W. HAGER, AND H. ZHANG

In the special case considered earlier, where li = 0 and ui = ∞, we have Xi(x, μ) = ∞
when ∇xLi(x, μ) ≤ 0 and |∇xLi(x, μ)|/Xi(x, μ) = 0, exactly as in (1.5). If li = −∞
and ui = ∞ (no bound constraints), and if we make the BB choice for λk, then ASL
reduces to a CBB method [18] in the null space of the linear constraints aTx = b.

8. Computation of μk. The parameter μk in ASL can be computed using
a safeguarded, Newton–Secant scheme. A Secant–Secant version of this scheme was
presented in [35]; however, due to the special structure of r in (2.2), we can compute
r′ at the same time that we compute r. Hence, we can exploit the derivative at no
additional computational cost and replace every other secant step in [35] by a Newton
step.

In Figure 8.1 we illustrate the Newton–Secant iteration. We start from an interval
[a, b] which brackets the root α of r. By Proposition 2.2, we could take a = μ0 and
b = μ1 to bracket the root. One step of Newton’s method is applied, starting from a
or b, whichever has the absolute smallest function value. In Figure 8.1(a), this Newton
step moves the right end point b of the bracketing interval to b′. From b′, we apply
a secant iteration which moves the left end point a of the bracketing interval to a′.
The next Newton–Secant iteration starts from a′ which now has the smallest function
value. The Newton iteration overshoots the root, landing at a point b′′, similar to what
is seen in Figure 8.1(b). The subsequent Secant iteration generates a′′. The reason
for alternating between a Newton and a secant step is that the combination typically
updates both sides of the bracketing interval. Whenever the Newton step generates an
iterate outside the bracketing interval, we should replace this iterate by one generated
by a bisection step. Also, when the convergence is slower than linear, a bisection step
will ensure linear convergence.

(a)

r

μ
a

a’
b’

bα

(b)

α
μ

r

a’
a’’ b’’ b’

Fig. 8.1. Newton–Secant iteration used to compute μk.

Let (a′′, b′′) = Newton–Secant2(a, b) denote this iteration which alternates be-
tween the use of Newton’s method and the secant method. Altogether Newton–Secant2

constitutes 2 Newton steps and 2 secant steps. The Newton step is applied to the
endpoint of the bracketing interval with the absolute smallest function value. The
secant iteration is applied to the current bracketing interval.

Theorem 8.1. Suppose that φ : R → R is three times continuously differentiable
near a root α. If both φ′(α) �= 0 and φ′′(α) �= 0, then, for a0 and b0 sufficiently close

AFFINE-SCALING INTERIOR-POINT METHOD AND SVM 379

to α with a0 ≤ α ≤ b0, the iteration

(ak+1, bk+1) = Newton–Secant2(ak, bk)

converges to α, and the interval width bk − ak tends to zero with root convergence
order 7.

Proof. The condition φ′(α) �= 0 ensures that α is a simple root. The condition
φ′′(α) �= 0 ensures that, near α, each step in the iteration Newton–Secant2 iteration
generates a point on the opposite side of the root. Suppose for convenience that φ′(a) >
0 and φ′′(a) > 0 when a is sufficiently close to α, and that 0 < φ(b) < |φ(a)| = −φ(a);
this geometry corresponds to Figure 8.1. The other cases are treated in a similar way.
It is well known (e.g., see [2, p. 49]) that the error in a secant step applied to an
interval [a, b] bracketing the root α generates a point c which satisfies

c− α = (a− α)(b − α)Φ(a, b), Φ(a, b) =
φ′′(ξ)
2φ′′(ξ)

,

where ξ, ξ ∈ [a, b]. A Newton step from a generates a point c which satisfies

c− α = (a− α)2Ψ(a, α),(8.1)

Ψ(a, α) =
φ′′(ξ)
φ′(ξ)

+
φ(ξ)

φ′(ξ)2

(
φ′′′(ξ)− 2

φ′′(ξ)2

φ′(ξ)

)
,

where ξ ∈ [a, α] ⊂ [a, b]. Obviously, if the Newton step starts at b, then the factor
(a − α)2 in (8.1) should be replaced by (b − α)2. Since φ′(α) > 0, φ′′(α) > 0, and
φ(α) = 0, both Φ(a, b) and Ψ(a, b) are positive when a and b are sufficiently close to α.
Hence, a Newton iteration from either a or b generates a point c > α, while a secant
step applied to a and b generates a point c < α. Consequently, alternating Newton
and secant steps generate points on opposite sides of α when a and b are sufficiently
close to α.

Since |φ(b)| < |φ(a)|, the Newton, secant, Newton, and secant steps taken by
Newton–Secant2 satisfy

b′ − α = (b− α)2Ψ(b, α),

a′ − α = (a− α)(b′ − α)Φ(a, b′),
b′′ − α = (a′ − α)2Ψ(a′, α),
a′′ − α = (a′ − α)(b′′ − α)Φ(a′, b′′).

Combining these relations gives

a′′ − α = (a− α)3(b− α)6Ψ(b, α)Φ(a, b′)Ψ(a′, α)Φ(a′, b′′),
b′′ − α = (a− α)2(b− α)4Ψ(b, α)Φ(a, b′)Ψ(a′, α).

We now identify a and b with ak and bk, and a′′ and b′′ with ak+1 and bk+1. The
Newton–Secant iteration is (ak+1, bk+1) = Newton–Secant2(ak, bk). Choose λ ∈ (0, 1)
and let [a0, b0] be an interval containing α in its interior which is chosen small enough
to ensure that both Φ(a, b) and Ψ(a, α) are nonnegative and bounded, and

λ ≥ (a− α)2(b − α)6Ψ(b, α)Φ(a, b′)Ψ(a′, α)Φ(a′, b′′),
λ ≥ (a− α)2(b − α)3Ψ(b, α)Φ(a, b′)Ψ(a′, α)

380 M. D. GONZALEZ-LIMA, W. W. HAGER, AND H. ZHANG

for all a, b ∈ [a0, b0]. It follows that

ek+1 ≤ λek, ek =

[|ak − α|
|bk − α|

]
.

Hence, the bracketing intervals converge at least linearly to the root.
Choose C and D such that

C ≥ Ψ(b, α)Φ(a, b′)Ψ(a′, α)Φ(a′, b′′),
D ≥ Ψ(b, α)Φ(a, b′)Ψ(a′, α)

for all a, b ∈ [a0, b0]. Consider the following recurrence:

[
Ak+1

Bk+1

]
=

[
CA3

kB
6
k

DA2
kB

4
k

]
,

[
A0

B0

]
=

[|a0 − α|
|b0 − α|

]
.

Clearly, |ak − α| ≤ Ak and |bk − α| ≤ Bk for each k.
Make the substitution Ak = pAk and Bk = qBk, where

p =

√
C

D
and q =

3

√
D

C
.

The new variables satisfy the recurrence

(8.2)

[
Ak+1

Bk+1

]
=

[
A

3

kB
6

k

A
2

kB
4

k

]
.

Finally, we make the change of variables

vk = log(Ak) and wk = log(Bk)

to obtain the recurrence [
vk+1

wk+1

]
=

[
3 6
2 4

] [
vk
wk

]

from (8.2). The eigenvalues of the matrix are zero and 7, and the solution of the
recurrence is [

vk
wk

]
= 7k−1(v0 + 2w0)

[
3
2

]
, k ≥ 1.

As a result ak and bk converge to α with root convergence order 7.
Remark. The root convergence rate for the Secant–Secant iteration in [35] was

1 +
√
2 for two successive secant steps. Hence, four successive secant steps has the

root convergence rate

(1 +
√
2)2 ≈ 5.83,

which is slightly smaller than the root convergence rate 7 for Newton–Secant2.

AFFINE-SCALING INTERIOR-POINT METHOD AND SVM 381

9. Subspace implementation. For problems where the evaluation of the ob-
jective function and its gradient is relatively costly, it can be more efficient to solve
(1.2) through a sequence of subspace optimization problems. At iteration k, we solve
the problem

(9.1) min f(x) subject to x ∈ R
n, x ≥ 0, aTx = b, x ∈ Sk,

where Sk is a subspace of Rn. In a series of papers [60, 61, 67, 68], Serafini, Zanghirati,
and Zanni show that such a subspace approach can be very effective for SVM problems.
In the numerical experiments of the next section, we apply ASL to the subspace
problem (9.1). In this section, we explain how we choose the subspaces Sk since our
choice is slightly different from the scheme of Joachims [39] that was the basis for the
subspace approach of Serafini, Zanghirati, and Zanni.

Let m denote a bound on the subspace size. The subspace selection scheme of
Serafini, Zanghirati, and Zanni is given by a solution of the problem

(9.2) min gT
kd subject to

{
aTd = 0, −1 ≤ d ≤ 1,
di ≥ 0 if xki = 0, |{di : di �= 0}| ≤ m,

where |S| denote the number of elements in the set S. The indices of the nonzero
components of a solution d to (9.2) correspond to the subspace. Our subspace selection
scheme is based on a solution of the problem

(9.3) min
λk
2
dTd+ gT

kd subject to

{
aTd = 0, xk + d ≥ 0,
|{di : di �= 0}| ≤ m,

where λk ≥ 0 is chosen so that λkI ≈ ∇2f(xk). An advantage of the problem (9.2) is
that it has a very simple solution, as proved by Lin [45]. An advantage of (9.3) is that
the objective function and constraints may provide a better model for the nonlinear
optimization problem (1.1).

We obtain an approximation to a solution of (9.3) by using a heuristic algorithm
modeled on the exact algorithm for (9.2). Let d denote a solution of (9.3) with the
sparsity constraint neglected, let ν be the Lagrange multiplier associated with the
equality constraint, and let �i denote the ith term in the Lagrangian:

�i =
λk
2
d
2

i + (gki + νai)di.

We partition the indices of d into two sets, I0 corresponding to indices i for which
aidi ≤ 0 and I1 corresponding to indices i for which aidi > 0. We build Sk by
alternately inserting into Sk indices from one of the sets, say I0, followed by indices
from the other set I1. We start by initializing Sk to be the set consisting of an index
i associated with the smallest Lagrangian term of �i. Suppose i ∈ I0. Next, we insert
indices from I1 into Sk using those indices for which �i is smallest, stopping as soon
as

(9.4)
∑
i∈Sk

aidi > 0.

The algorithm continues to alternate between I0 and I1. We always select from the
remaining indices those for which �i is smallest, and we stop selection when the sum-
mation in (9.4) changes sign.

There has been much work concerning the convergence of algorithms based on
subspace selections. References include [13, 42, 44, 45, 46, 52, 63]. To ensure conver-
gence, we should include in Sk the index which makes �i smallest (as we do), and an
index j from the opposite set, either I0 or I1, that makes |ajdj | largest.

382 M. D. GONZALEZ-LIMA, W. W. HAGER, AND H. ZHANG

10. Numerical experiments. In this section, we present some numerical ex-
periments to assess the performance of ASL using SVM test problems. The dual of
the two-class SVM classification problem is equivalent to the following quadratic pro-
gramming problem:

(10.1) min
1

2
xTAx− 1Tx subject to aTx = 0, 0 ≤ x ≤ C1,

where 1 is the vector whose entries are all 1, the vector a corresponds to the two
data classes with ai = 1 or ai = −1 for each i, A is an n by n matrix with
Aij = aiajK(wi,wj), wi ∈ R

m is the data, K : Rm × R
m → R is a given “ker-

nel function,” and C is a scalar connected with the flexibility which is allowed in
the data separation. Increasing C increases the penalty associated with a violation in
the separation condition. The components of a solution x of (10.1) are the Lagrange
multipliers associated with the separation condition. Generally, A is positive semidef-
inite; however, there are some kernel functions which lead to an indefinite matrix. In
applications, A can be huge, dense, and ill-conditioned. In fact, the rank of A could
be tiny compared to n. In particular, for a “linear kernel” K(wi,wj) = wT

i wj , the
rank of A is at mostm, which can be much smaller than n, the number of data points.

Algorithms for SVM include active set methods, primal/dual interior-point meth-
ods, semismooth methods, Lagrangianmethod, and decomposition methods. Some ref-
erences include [21, 23, 24, 25, 26, 28, 30, 37, 39, 41, 42, 43, 45, 46, 47, 49, 53, 56, 63].
At least for nonlinear kernels, block coordinate descent methods have been particu-
larly popular. One of the reasons for the success of these approaches for nonlinear
kernels is that simply evaluating a column of A can be expensive. If there exists an
optimal solution of (10.1) which is sparse (a relatively small number of nonzero com-
ponents), then by starting from the initial guess x = 0, and by only changing a few
components of x in each iteration, it may be possible to converge to an optimal solu-
tion while staying approximately within the sparsity pattern of the optimal solution.
Consequently, not all the columns of A need to be evaluated, leading to a significant
computational savings.

The experiments utilized the following codes:
• LIBSVM, version 2.91, by Chih-Chung Chang and Chih-Jen Lin [23]. The
code is available at the Website [14]. In each iteration the algorithm optimizes
over a working set consisting of two components of x.

• GPDT (gradient projection-based decomposition technique) by Thomas Ser-
afini, Luca Zanni, and Gaetano Zanghirati. The code is available at the
Website [62]. The algorithm solves a series of subspace optimization prob-
lems by a gradient projection method. The dimension of the subspace can be
chosen arbitrarily.

We considered three kernel functions:
1. linear: K(x,y) = xTy,
2. radial basis function: K(x,y) = exp(−γ‖x− y‖2),
3. polynomial: K(x,y) = (γxTy)d,

where γ = 1/m and d = 3. For these kernels, A is a positive semidefinite matrix.
We considered the eight test problems listed in Table 10.1. The first seven prob-

lems were obtained from the LIBSVM Website [14], while mnist was obtained from
the Website [9] of Léon Bottou. mnist corresponds to a classification problem for
the digit 8. The eight data sets are also posted at the Website [31] for this paper.
The data is relatively sparse in the sense that the number of nonzeros in the data
is much smaller than the product between m, the number of features, and n, the

AFFINE-SCALING INTERIOR-POINT METHOD AND SVM 383

Table 10.1

The SVM test set.

Problem m n nnz
Name (features) (dimension) (nonzeros in data)

a7a 122 16100 223304
a8a 123 22696 314815
a9a 123 32561 451592
ijcnn1 22 49990 649870
w6a 300 17188 200470
w7a 300 24692 288148
real-sim 20958 72309 3709083
mnist 780 60000 8994156

number of data points. When the kernel is linear, this sparsity can be exploited in
the routines to evaluate the objective function. On the other hand, the A matrix is
completely nonzero for the radial basis function kernel, and for the poly kernel, A is
mostly nonzero. In these cases, the evaluation of the objective function and gradient
is relatively slow.

The stopping criterion in the numerical experiments was based on the violation
of the first-order optimality conditions. In our ASL-based algorithm for solving the
SVM problem, we estimated the violation e in the first-order optimality conditions at
a feasible point x and a multiplier μ as follows:

ei =

⎧⎪⎪⎨
⎪⎪⎩

xi if ∇xLi(x, μ) > xi,
∇xLi(x, μ) if xi ≥ ∇xLi(x, μ) ≥ 0,
C − xi if −∇xLi(x, μ) > C − xi,
−∇xLi(x, μ) if C − xi ≥ −∇xLi(x, μ) ≥ 0.

Note that e = 0 if and only if the first-order optimality conditions are satisfied.
Our stopping criterion was ‖e‖∞ ≤ 10−3. With this convergence tolerance, the codes
produced nearly the same objective function value to within 6 or 7 digits. Each of the
codes seems to use nearly the same stopping criterion.

In our first set of experiments, we compare the performance of ASL to that of
the gradient projection algorithm of Dai and Fletcher [17]. This algorithm can be
selected in the GPDT code to optimize over the subspace when solving an SVM
problem. When the subspace is the entire space, the gradient projection algorithm
is applied to the original SVM problem. When the GPDT code is used in this way
with the subspace equal to the entire space, the CPU time is abnormally large since
the GPDT code is designed to be efficient when the subspaces are relatively small
compared to the problem dimension. On the other hand, the number of iterations
of the gradient projection algorithm in GPDT can be compared to the number of
iterations of ASL since the running time of the two algorithms should, in principle, be
proportional to the number of iterations (the time of an iteration would be essentially
the time to update the gradient of the objective function).

Table 10.2 shows the comparison between the number of iterations of the gradient
projection algorithm and ASL. In 33 of the 36 cases, ASL uses fewer iterations to
satisfy the same stopping criterion. There are many cases where ASL uses on the
order of half as many iterations as the gradient projection algorithm.

In the next series of experiments, we compare the performance of the SVM codes
when they employ the subspace approach to solve the SVM test problems. We wrote
a wrapper svmASL which constructs the subspace and which calls ASL to solve the
subspace optimization problem. In the experiments, we consider four different choices

384 M. D. GONZALEZ-LIMA, W. W. HAGER, AND H. ZHANG

Table 10.2

The number of iterations for the ASL compared to the number of iterations for the gradient
projection algorithm GP using the same convergence tolerance .001.

Problem Kernel C ASL GP
Name Iterations Iterations

a7a lin 1 4088 7897
lin 10 36325 69677
rbf 1 206 193
rbf 10 954 1420
poly 1 28 44
poly 10 64 69

a8a lin 1 6624 11409
lin 10 41755 80785
rbf 1 192 266
rbf 10 1236 1869
poly 1 28 45
poly 10 62 94

a9a lin 1 6442 12369
lin 10 69614 131139
rbf 1 266 307
rbf 10 1771 3230
poly 1 33 53
poly 10 83 98

ijcnn1 lin 1 1959 3210
lin 10 17759 26343
rbf 1 454 457
rbf 10 2215 2315
poly 1 68 89
poly 10 104 192

w7a lin 1 3019 5332
lin 10 17275 35605
rbf 1 411 723
rbf 10 1929 4753
poly 1 28 17
poly 10 69 70

real-sim lin 1 384 575
lin 10 3064 4049
rbf 1 8 14
rbf 10 15 27
poly 1 3 2
poly 10 3 3

for the upper bound in (10.1): C = 1, 10, 100, and 1000. The numerical experiments
were performed on a single processor of a Rackable Systems shared-memory computer
with eight dual-core 2.2 GHz AMD Opteron 875 processors, 1 MB cache for each
processor, and 64 GB memory. Default parameter values were used for the codes with
the following exception: For svmASL and GPDT, the subspace dimension was 250 for
linear kernels and 450 for nonlinear kernels.

The starting guess in the codes was always x1 = 0. For the affine-scaling method
developed in this paper, the iterates should lie in the relative interior of the feasible
set. We handle the interior-point requirement as follows: If xi = 0, then we keep xi = 0
until the step along the negative gradient moves xi into the interior of the feasible
set. From that point on, xi lies in the interior of the bound constraint.

At the Website [31] for this paper we have posted the running times, number
of iterations, and final objective function values for the codes. Here we compare the
running time performance of the codes using the performance profiles of Dolan and

AFFINE-SCALING INTERIOR-POINT METHOD AND SVM 385

Moré [20]. A performance profile shows the fraction P of problems for which any given
method is within a factor τ of the best time. In a performance profile, the top curve is
the method that solved the most problems in a time that was within a factor τ of the
best time. The percentage of the test problems for which a method is the fastest is
given on the left axis of the plot. The right side of the plot gives the percentage of the
test problems that were successfully solved by each of the methods. In essence, the
right side is a measure of an algorithm’s robustness. Figures 10.1–10.3 compare
the CPU time performance of the methods for each of the kernels. These plots indicate
that svmASL provided the best running time performance for each of the kernels. For
the linear kernel, GPDT gave better performance than LIBSVM. For the nonlinear
kernels, GPDT and LIBSVM had similar performance for either small or large τ ; for
an intermediate range of τ , GPDT had better performance.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1 svmASL

GPDT

LIBSVM

1 2 8 164
τ

P

Fig. 10.1. CPU time performance profiles for linear kernel.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

LIBSVM
GPDT

svmASL

1 2 4 8 16

P

τ

Fig. 10.2. CPU time performance profiles for radial basis function kernel.

386 M. D. GONZALEZ-LIMA, W. W. HAGER, AND H. ZHANG

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

LIBSVM

GPDT

svmASL

1 2 4 8 16
τ

P

Fig. 10.3. CPU time performance profiles for polynomial kernel.

The codes LIBSVM, GPDT, and svmASL solve the dual formulation of the SVM
problem, and they handle both linear and nonlinear kernels. Special algorithms have
been developed for linear kernels. These include algorithms based on interior-point
methods [28, 66], a method LIBLINEAR [22] based on dual coordinate descent, and a
scheme SVMperf based on a “structural” formulation [40] of the SVM problem. CPU
time comparisons among these three methods are found in [66]. In these compar-
isons, LIBLINEAR was relatively fast. In Table 10.3 we compare the performance
of LIBLINEAR, Version 1.7 (L2 regularization and L1 loss function), to that of
svmASL, the affine-scaling gradient-based method developed in this paper, and
svmGP, the same code as svmASL except that the affine-scaling direction is replaced
by the direction given by our gradient projection algorithm [36].

As can be seen in Table 10.3, for some problems and for C sufficiently small,
LIBLINEAR is very fast. However, as C increases, either svmASL or svmGP are
faster than LIBLINEAR. The reason that svmGP is faster than svmASL is that,

Table 10.3

CPU time comparisons between an algorithm, LIBLINEAR, specifically tailored to linear ker-
nels, and both svmASL and svmGP.

Problem C LIBLINEAR svmASL svmGP
Name Time (secs) Time (secs) Time (secs)

a9a 1 1.9 7.4 4.3
10 16.0 24.1 10.3

100 144.9 144.3 48.8
1000 1107.7 965.1 315.5

ijcnn1 1 0.8 4.7 4.0
10 3.0 9.8 6.4

100 20.0 34.8 15.4
1000 138.0 206.4 72.0

mnist 1 greater than 24 hrs 90.8 80.7
10 greater than 24 hrs 618.3 515.9

100 greater than 24 hrs 5708.5 5084.5
1000 greater than 24 hrs 58403.9 53168.5

AFFINE-SCALING INTERIOR-POINT METHOD AND SVM 387

for a linear kernel, the running time is mostly the time spent solving the subspace
problem. And within the subspace, the time spent computing the search direction is
a significant fraction of the solution time. Even though the algorithm developed in
section 8 for computing the affine-scaling direction is fast, our algorithm for projecting
a vector into a knapsack constraint is much faster. Hence, for a linear kernel, svmGP
is generally more efficient than svmASL. For nonlinear kernels, svmASL can be faster
than svmGP due to a smaller number of outer iterations.

11. Conclusions. The affine-scaling algorithm of [34] for general nonlinear opti-
mization with box constraints was generalized to handle problems with an additional
linear constraint aTx = b. The ASL was obtained by linearizing the first-order opti-
mality conditions in x and approximating the Hessian of the objective function by a
positive multiple of the identity matrix. This led to a nonlinear system of equations
for the search direction dk and the associated multiplier μk. The nonlinear system has
a unique solution according to Proposition 2.2. It is shown in Theorem 4.1 that ASL
with a nonmonotone Armijo-type line search is globally convergent to a stationary
point. Theorem 5.3 establishes R-linear convergence to the global optimum when the
objective function is strongly convex, the constraint multiplier is unique, and a non-
degeneracy condition holds. An algorithm denoted Newton–Secant2 could be used to
compute the multiplier μk. Typically, successive steps of Newton–Secant2 bracket μk

and the width of the bracketing intervals tends to zero with root convergence order
7. We evaluated the performance of ASL using SVM test problems. In Table 10.2 we
observed that the affine-scaling approach generally led to a reduction in the number
of iterations when compared to a gradient projection algorithm. A subspace imple-
mentation of ASL, denoted svmASL, was developed and compared to the SVM codes
LIBSVM [14, 23], based on a working set of size 2, and GPDT [60, 61, 67, 68], for
which the working set was arbitrary. The profiles in Figures 10.1–10.3 indicated that
svmASL gave the best CPU time performance.

Acknowledgment. Constructive comments by the reviewers are gratefully
acknowledged.

REFERENCES

[1] L. Armijo, Minimization of functions having Lipschitz continuous first partial derivatives,
Pacific J. Math., 16 (1966), pp. 1–3.

[2] K. E. Atkinson, An Introduction to Numerical Analysis, John Wiley, New York, 1978.
[3] J. Barzilai and J. M. Borwein, Two point step size gradient methods, IMA J. Numer. Anal.,

8 (1988), pp. 141–148.
[4] E. G. Birgin and J. M. Mart́ınez, Large-scale active-set box-constrained optimization method

with spectral projected gradients, Comput. Optim. Appl., 23 (2002), pp. 101–125.
[5] E. G. Birgin, J. M. Mart́ınez, and M. Raydan, Nonmonotone spectral projected gradient

methods for convex sets, SIAM J. Optim., 10 (2000), pp. 1196–1211.
[6] E. G. Birgin, J. M. Mart́ınez, and M. Raydan, Algorithm 813: SPG—software for convex-

constrained optimization, ACM Trans. Math. Software, 27 (2001), pp. 340–349.
[7] E. G. Birgin, J. M. Mart́ınez, and M. Raydan, Inexact spectral projected gradient methods

on convex sets, IMA J. Numer. Anal., 23 (2003), pp. 539–559.
[8] V. Blanz, B. Schölkopf, H. Bülthoffand, C. Burges, V. N. Vapnik, and T. Vetter,

Comparison of view-based object recognition algorithms using realistic 3d models, in Arti-
ficial Neural Networks, ICIANN ’96, Lecture Notes in Comput. Sci. 1112 J. V. C. von der
Malsburg, W. von Seelen, and B. Sendhoff, eds., Springer, Berlin, 1996, pp. 251–256.

[9] A. Bordes, S. Ertekin, J. Weston, and L. Bottou, Fast kernel classifiers with online and
active learning, 2005. MNIST data set available at http://leon.bottou.org/papers/bordes-
ertekin-weston-bottou-2005.

388 M. D. GONZALEZ-LIMA, W. W. HAGER, AND H. ZHANG

[10] B. Boser, I. Guyon, and V. Vapnik, A training algorithm for optimal margin classifier, in
Proceedings of the 5th ACM Workshop on Computational Learning Theory, Pittsburgh,
PA, 1992, pp. 144–152.

[11] C. Burges, A tutorial on support vector machines for pattern recognition, Data Min. Knowl.
Disc., 2 (1998), pp. 121–167.

[12] C. Burges and B. Schölkopf, Improving the accuracy and speed of support vector ma-
chines, in Advances in Neural Information Processing Systems 9 M. Mozer, M. Jordan, and
T. Petsche, eds., MIT Press, Cambridge, MA, 1997.

[13] C.-C. Chang, C.-W. Hsu, and C.-J. Lin, The analysis of decomposition methods for support
vector machines, IEEE Trans. Neural Networks, 11 (2000), pp. 1003–1008.

[14] C.-C. Chang and C.-J. Lin, LIBSVM: A library for support vector machines, 2001. Software
available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[15] C. Cortes and V. Vapnik, Support vector networks, Mach. Learn., 20 (1995), pp. 1–25.
[16] Y. H. Dai, Alternate stepsize gradient method, Optimization, 52 (2003), pp. 395–415.
[17] Y. H. Dai and R. Fletcher, New algorithms for singly linearly constrained quadratic programs

subject to lower and upper bounds, Math. Program., 106 (2006), pp. 403–421.
[18] Y. H. Dai, W. W. Hager, K. Schittkowski, and H. Zhang, The cyclic Barzilai-Borwein

method for unconstrained optimization, IMA J. Numer. Anal., 26 (2006), pp. 604–627.
[19] Y. H. Dai and H. Zhang, An adaptive two-point stepsize gradient algorithm, Numer. Algo-

rithms, 27 (2001), pp. 377–385.
[20] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,

Math. Program., 91 (2002), pp. 201–213.
[21] J. X. Dong, A. Krzyzak, and C. Y. Suen, Fast SVM training algorithm with decomposition

on very large data sets, IEEE Trans. Pattern Anal. Mach. Intell., 27 (2005), pp. 603–
618.

[22] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, LIBLINEAR: A library
for large linear classification, J. Mach. Learn. Res., 9 (2008), pp. 1871–1874.

[23] R.-E. Fan, P.-H. Chen, and C.-J. Lin, Working set selection using second order information
for training support vector machines, J. Mach. Learn. Res., 6 (2005), pp. 1889–1918.

[24] M. C. Ferris and T. S. Munson, Interior point methods for massive support vector machines,
SIAM J. Optim., 13 (2003), pp. 783–804.

[25] M. C. Ferris and T. S. Munson, Semismooth support vector machines, Math. Program., 101
(2004), pp. 185–204.

[26] S. Fine and K. Scheinberg, Efficient SVM training using low-rank kernel representations,
J. Mach. Learn. Res., 2 (2001), pp. 243–264.

[27] A. Friedlander, J. M. Mart́ınez, B. Molina, and M. Raydan,Gradient method with retards
and generalizations, SIAM J. Numer. Anal., 36 (1999), pp. 275–289.

[28] E. M. Gertz and J. D. Griffin,Using an iterative linear solver in an interior-point method for
generating support vector machines, Comput. Optim. Appl., (2008), DOI 10.1007/s10589-
008-9228-z.

[29] L. E. Gibbons, D. W. Hearn, P. M. Pardalos, and M. V. Ramana, Continuous character-
izations of the maximum clique problem, Math. Oper. Res., 22 (1997), pp. 754–768.

[30] T. Glasmachers and C. Igel, Maximum-gain working set selection for SVMs, J. Mach. Learn.
Res., 7 (2006), pp. 1437–1466.

[31] M. D. Gonzalez-Lima, W. W. Hager, and H. Zhang, An affine-scaling interior-point
method for continuous knapsack constraints, 2010. Software available at http://www.math.
-ufl.edu/∼hager/papers/SVM.

[32] L. Grippo, F. Lampariello, and S. Lucidi, A nonmonotone line search technique for New-
ton’s method, SIAM J. Numer. Anal., 23 (1986), pp. 707–716.

[33] W. W. Hager and Y. Krylyuk, Graph partitioning and continuous quadratic programming,
SIAM J. Discrete Math., 12 (1999), pp. 500–523.

[34] W. W. Hager, B. A. Mair, and H. Zhang, An affine-scaling interior-point CBB method for
box-constrained optimization, Math. Program., 119 (2009), pp. 1–32.

[35] W. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and
an efficient line search, SIAM J. Optim., 16 (2005), pp. 170–192.

[36] W. W. Hager and H. Zhang, A new active set algorithm for box constrained optimization,
SIAM J. Optim., 17 (2006), pp. 526–557.

[37] D. Hush, P. Kelly, C. Scovel, and I. Steinwart, QP algorithms with guaranteed accuracy
and run time for support vector machines, J. Mach. Learn. Res., 7 (2006), pp. 733–769.

[38] J. Joachims, Text Categorization with Support Vector Machine, Technical report LS VIII Num-
ber 23, ftp://ftp-ai.informatik.uni-dortmund.de/pub/Reports/report23.ps.Z, University of
Dortmund, 1997.

AFFINE-SCALING INTERIOR-POINT METHOD AND SVM 389

[39] T. Joachims, Making large-scale support vector machine learning practical, in Advances in
Kernel Methods—Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola, eds.,
MIT Press, Cambridge, MA, 1998, pp. 169–184.

[40] T. Joachims, Training linear SVMs in linear time, in Proceedings of the ACM Conference on
Knowledge Discovery and Data Mining, 2006.

[41] S. Keerthi, S. Shevade, C. Bhattacharyya, and K. Murthy, Improvements to Platts SMO,
Neural Comput., 13 (2001), pp. 637–649.

[42] S. S. Keerthi and E. G. Gilbert, Convergence of a generalized SMO algorithm for SVM
classifier design, Mach. Learn., 46 (2002), pp. 351–360.

[43] S. S. Keerthi and S. K. Shevade, SMO algorithm for least-squares SVM formulations, Neural
Comput., 15 (2003), pp. 487–507.

[44] C.-J. Lin, Linear Convergence of a Decomposition Method for Support Vector Machines, Tech-
nical report, Department of Computater Science and Information Engineering, National
Taiwan University, Taipei, Taiwan, 2001.

[45] C.-J. Lin, On the convergence of a decomposition method for support vector machines, IEEE
Trans. Neural Networks, 12 (2001), pp. 1288–1298.

[46] C.-J. Lin, Asymptotic convergence of an SMO algorithm without any assumptions, IEEE Trans.
Neural Networks, 13 (2002), pp. 248–250.

[47] O. L. Mangasarian and D. R. Musicant, Lagrangian support vector machines, J. Mach.
Learn. Res., 1 (2001), pp. 161–177.

[48] T. S. Motzkin and E. G. Strauss, Maxima for graphs and a new proof of a theorem of Turan,
Canad. J. Math., 17 (1965), pp. 533–540.

[49] E. Osuna, R. Freund, and F. Girosi, Improved training algorithm for support vector ma-
chines, in Proceedings of the IEEE Workshop on Neural Networks for Signal Processing,
1997, pp. 276–285.

[50] E. Osuna, R. Freund, and F. Girosi, Support Vector Machines: Training and Applications,
Technical report AIM-1602, C.B.C.L. Paper No. 144, MIT, Cambridge, MA, 1997.

[51] E. Osuna, R. Freund, and F. Girosi, Training support vector machines: An application to
face detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 1997, pp. 130–136.

[52] L. Palagi and M. Sciandrone, On the Convergence of a Modified Version of SVMlight Al-
gorithm, Technical report, Istituto di Analisi dei Sistemi ed Informatica, Rome, 2002.

[53] J. Platt, Fast training of support vector machines using sequential minimal optimization,
in Advances in Kernel Methods—Support Vector Learning, B. Schölkopf, C. Burges, and
A. Smola, eds., MIT Press, Cambridge, MA, 1998, pp. 41–65.

[54] M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained min-
imization problem, SIAM J. Optim., 7 (1997), pp. 26–33.

[55] M. Raydan and B. F. Svaiter,Relaxed steepest descent and Cauchy-Barzilai-Borwein method,
Comput. Optim. Appl., 21 (2002), pp. 155–167.

[56] K. Scheinberg,An efficient implementation of an active set method for SVMs, J. Mach. Learn.
Res., 7 (2006), pp. 2237–2257.

[57] M. Schmidt, Identifying speaker with support vector networks, in Proceedings of the 28th
Symposium on the Interface, Sydney, Australia, 1996.

[58] B. Schölkopf, C. Burges, and V. N. Vapnik, Extracting support data for a given task,
in Proceedings of the First International Conference on Knowledge Discovery and Data
Mining, U. M. Fayyad and R. Uthurusamy, eds., AAAI Press, Menlo Park, CA, 1995.

[59] B. Schölkopf, Incorporating invariances in support vector learning machines, in Artificial
Neural Networks, J. V. C. von der Malsburg, W. von Seelen, and B. Sendhoff, eds., Springer,
Berlin, 1996, pp. 47–52.

[60] T. Serafini, G. Zanghirati, and L. Zanni, Gradient projection methods for quadratic pro-
grams and applications in training support vector machines, Optim. Methods Softw., 20
(2005), pp. 353–378.

[61] T. Serafini and L. Zanni, On the working set selection in gradient-based decomposition
techniques for support vector machines, Optim. Methods Softw., 20 (2005), pp. 583–
596.

[62] T. Serafini, L. Zanni, and G. Zanghirati, GPDT: Gradient projection-based decomposition
technique, 2004. Software available at http://dm.unife.it/gpdt.

[63] P. Tseng and S. Yun, A coordinate gradient descent method for linearly constrained smooth
optimization and support vector machines training, Comput. Optim. Appl., (2008), DOI
10.1007/s10589-008-9215-4.

[64] V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 1995.

390 M. D. GONZALEZ-LIMA, W. W. HAGER, AND H. ZHANG

[65] J. Weston, A. Gammerman, M. Stitson, V. Vapnik, V. Vork, and C. Watkins, Density
estimation using support vector machines, Technical report CSD-TR-97-23, Royal Holloway
College, 1997.

[66] K. Woodsend and J. Gondzio, Exploiting separability in large-scale linear support vector
machine training, Comput. Optim. Appl., (2009), DOI 10.1007/s10589-009-9296-8.

[67] L. Zanni, An improved gradient projection-based decomposition technique for support vector
machines, Comput. Manag. Sci., 3 (2006), pp. 131–145.

[68] L. Zanni, T. Serafini, and G. Zanghirati, Parallel software for training large scale support
vector machines on multiprocessor systems, J. Mach. Learn. Res., 7 (2006), pp. 1467–1492.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

