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Abstract Recently an affine scaling, interior point algorithm ASL was developed
for box constrained optimization problems with a single linear constraint (Gonzalez-
Lima et al., SIAM J. Optim. 21:361–390, 2011). This note extends the algorithm
to handle more general polyhedral constraints. With a line search, the resulting al-
gorithm ASP maintains the global and R-linear convergence properties of ASL. In
addition, it is shown that the unit step version of the algorithm (without line search)
is locally R-linearly convergent at a nondegenerate local minimizer where the second-
order sufficient optimality conditions hold. For a quadratic objective function, a sub-
linear convergence property is obtained without assuming either nondegeneracy or
the second-order sufficient optimality conditions.
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1 Introduction

In this paper we develop an interior point algorithm for a polyhedral constrained
optimization problem:

min
{
f (x) : x ∈ P

}
, (1.1)

where f is a real-valued, continuously differentiable function and

P = {x ∈ R
n : Ax = b, l ≤ x ≤ u

}
. (1.2)

Here A ∈ R
m×n, b ∈ R

m, l < u and possibly, li = −∞ or ui = ∞. To simplify the
exposition, we will focus on the special case

min
{
f (x) : x ∈ Ω

}
, Ω = {x ∈ R

n : Ax = b, x ≥ 0
}
. (1.3)

We assume that there exists x ∈ Ω with x > 0, and, without loss of generality, the
rows of A are linearly independent.

Affine scaling methods were first introduced by Dikin [5] for linear programming:
min {cTx : x ∈ Ω}. In this context, given an iterate xk in the relative interior of the
feasible set, the search direction dk is the solution of

min

{
cTd + 1

2
dTX−2

k d : Ad = 0
}
, (1.4)

where Xk = diag(xk) is the diagonal matrix with xk on the diagonal. Hence, we have

dk = −X2
k

[
I − AT(AX2

kAT)−1AX2
k

]
c. (1.5)

Given β ∈ (0,1) near 1, the iterates are expressed

xk+1 = xk + βαkdk, αk = max{α : xk + αdk ≥ 0}.
Dikin’s LP affine scaling method was generalized and further analyzed by Saigal in
[12] by considering the scaling matrix X−2γ

k , where γ > 0 is a parameter, while the
extension to nonlinear objective functions is given in [3, 6, 10, 13, 15]. In [14] global
convergence is established for a general nonlinear objective f with scaling matrix
X−2γ

k . In this case, the search direction dk is the solution of

min

{
∇f (xk)d + 1

2
dTX−2γ

k d : Ad = 0
}
. (1.6)

Analogous to (1.5), dk is given by

dk = −X2γ

k

[
I − AT(AX2γ

k AT)−1AX2γ

k

]
gk, (1.7)

where gk = ∇f (xk)
T. In [14] the stepsize was determined by an Armijo line search

criterion. Under surprisingly weak conditions, more specialized global and local con-
vergence results were obtained in [14] when f was a quadratic objective function.
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In this paper, we extend the affine scaling interior point method of [7] from a single
linear constraint to a system of linear constraints. We call this algorithm ASP (affine
scaling for polyhedral constraints). Analogous to Dikin’s affine scaling method, the
search direction in ASP is the solution of a quadratic program with a diagonal scaling
matrix:

min

{
gT
kd + 1

2
dTΣ−1

k d : Ad = 0
}
. (1.8)

The scaling matrix Σk , given in the next section, is obtained from a quasi-Newton
approximation to the first order optimality conditions of (1.3). By the structure of
Σk , xk + dk lies in the interior of Ω . As in [7] or [9], the algorithm can be im-
plemented using a nonmonotone line search. We show that under a nondegeneracy
assumption, any cluster point of our method is a stationary point of (1.3), while tra-
ditional affine scaling methods based on Dikin’s method require additional assump-
tions such as convexity or concavity (for example, see [14, Theorem 1]). Similar to
Dikin-type affine scaling methods, we show that when f is a quadratic, the iterates
converge sublinearly, without either nondegeneracy or second-order sufficient opti-
mality assumptions, and the asymptotic convergence speed is on the order of k−σ ,
for arbitrary σ ∈ (0,∞), where k is the iteration number. For a general nonlinear ob-
jective function, it is shown that the unit step version of the algorithm (without line
search) is locally R-linearly convergent at a nondegenerate local minimizer where the
second-order sufficient optimality conditions are satisfied. Consequently, our method
performs locally like a Barzilai-Borwein gradient method in a “free” subspace of the
null space of A, while the traditional affine scaling method with an Armijo stepsize
may have more difficulty with ill-conditioned problems, similar to the slow conver-
gence of steepest descent with a Cauchy stepsize when the problem is ill conditioned.

Our paper is organized as follows: In Sect. 2 we present the algorithm and analyze
the existence of the iterate. Section 3 gives a global convergence result. Section 4
gives special sublinear convergence results for quadratic objective functions without
making assumptions regarding the local minimizer. Section 5 studies linear conver-
gence at a nondegenerate local minimizer satisfying the second-order sufficient opti-
mality conditions.

Notation Throughout the analysis, c denotes a generic constant which has different
values in different equations. We let ai ∈ R

m denote the i-th column of A and ei

be the i-th column of the n by n identity matrix. If F ⊂ {1, . . . , n}, then AF is the
submatrix formed by the columns ai , i ∈ F . For any scalar t , t+ = max{0, t}, while
for any vector v ∈ R

n, v+ is the vector whose i-th component is v+
i . The positive span

of a set S , denoted span+(S), is the set of linear combinations of vectors in S with
nonnegative coefficients. ∇f (x) denotes the gradient of f , a row vector. The gradient
of f (x), arranged as a column vector, is g(x). The subscript k often represents the
iteration number in an algorithm, and gk stands for g(xk). If x∗ is an optimal solution
of (1.3), then g∗ denotes g(x∗). We let xki denote the i-th component of the iterate
xk . The Hadamard (or component-wise) product x ◦ y of two vectors x,y ∈ R

n is the
vector in R

n defined by (x ◦ y)i = xiyi . Given x ∈ R
n, diag(x) is an n by n diagonal

matrix with i-th diagonal element xi . ‖ · ‖ is the Euclidean norm and ‖ · ‖p is the
p-norm. |S| is the number of elements in the set S , and S c is the complement of S .
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166 W.W. Hager, H. Zhang

2 The ASP method

Our ASP algorithm starts at a point x1 in the relative interior of the feasible set, and
generates a sequence xk , k ≥ 2, by the following rule:

xk+1 = xk + skdk (2.1)

where sk ∈ (0,1] is a positive stepsize and the i-th component of dk is given by

dki = −
(

1

λk + (gki − aT
i μk)

+/xki

)(
gki − aT

i μk

); (2.2)

here λk is a positive scalar and μk ∈ R
m is chosen so that Adk = 0. Equivalently,

dk = −Σk

(
gk − ATμk

)
, (2.3)

where Σk ∈ R
n×n is a diagonal matrix and the i-th diagonal element of Σk is given

by

Σk,ii = 1

λk + (gki − aT
i μk)

+/xki

= xki

λkxki + (gki − aT
i μk)

+ .

If xk > 0, then the denominator of Σk,ii cannot vanish since λk > 0; moreover, from
the formula for dk , we have xk+1 > 0. The condition Adk = 0 is equivalent to requir-
ing that μk is a root of the equation rk(μ) = 0 where

rk(μ) = Adk = −A Σ(xk,μ, λk) (gk − ATμ), (2.4)

and Σ is a diagonal matrix with i-th diagonal element

Σii(x,μ, λ) = xi

λxi + (gi(x) − aT
i μ
)+ . (2.5)

Throughout the paper, we assume that there exists a root μk of the equation rk(μ) = 0
at every iteration. When the root exists, it is unique as we show below. Theorem 2.2
below exhibits some cases where the existence of a root can be proved.

To guarantee global convergence for a general nonlinear objective function, the
ASP iteration must be combined with a line search. The same nonmonotone line
search scheme given in [7] can be used; for reference, we repeat the scheme here:

AFFINE SCALING INTERIOR POINT METHOD FOR POLYHEDRAL CONSTRAINTS (ASP)

Given λ0 > 0, δ and η ∈ (0,1), and an integer M ≥ 0.
Choose x1 > 0 with Ax1 = b and set k = 1.
Step 1. Choose λk ≥ λ0 and find μk such that Adk = 0, where dk

is defined in (2.2).
Step 2. If dk = 0, stop.
Step 3. Choose sk = ηj with j ≥ 0 the smallest integer such that

f (xk + skdk) ≤ f R
k

+ δsk∇f (xk)dk,

where f R
k

= max{f (xk−j ) : 0 ≤ j ≤ min(k − 1,M)}.
Step 4. Set xk+1 = xk + skdk.
Step 5. Set k = k + 1 and go to step 1.
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An affine scaling method for optimization problems with polyhedral 167

The parameter f R
k is the reference function value. For an Armijo line search,

M = 0 and f R
k = f (xk), while for a GLL line search [8], f R

k is the maximum func-
tion value occurring in the previous M + 1 iterations when k ≥ M + 1. In our nu-
merical experiments with the case m = 1, we took M = 8, η = 0.5, δ = 0.0001, and
λ0 = 10−30.

As explained in [7], this algorithm is an approximate Newton step applied to the
optimality conditions for (1.3). Let L : R

n × R
m → R be the Lagrangian defined by

L(x,μ) = f (x) + μT(b − Ax).

The first-order optimality conditions (KKT conditions) for (1.3) can be expressed:

X1(x,μ) ◦ ∇xL(x,μ) = 0, Ax = b, x ≥ 0, (2.6)

where

X1
i (x,μ) =

{
1 if gi(x) − aT

i μ ≤ 0,

xi otherwise.
(2.7)

If the first equation in the KKT conditions (2.6) is linearized around xk and the Hes-
sian ∇2f (xk) is approximated by λkI, then we obtain the ASP iteration (2.1)–(2.2).
In practice, λk is often given by a quasi-Newton condition introduced later in (5.2).

The ASP algorithm is defined when the equation rk(μ) = 0 has a solution. In the
case that A is 1 by n, we show in [7] that there is always a unique solution. We now
consider the existence and uniqueness of a solution to rk(μ) = 0 in the more general
case where A is m by n with m ≥ 1.

Lemma 2.1 If the equation rk(μ) = 0 has a solution, then it is unique.

Proof Let t be defined by

t = gk − ATμ.

Observe that
(
Σk

(
gk − ATμ

))
i
= (Σkt)i = xki ti

λkxki + t+i
. (2.8)

Although t+ is not differentiable at t = 0, the fraction (2.8) is differentiable since
the point of nondifferentiability in the denominator is precisely the point where the
numerator vanishes. It is easily seen that

d(Σkt)i
dti

= λkx
2
ki

(λkxki + t+i )2
.

By the chain rule, it follows that

∇rk(μ) = λkAΣ2
kAT. (2.9)
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168 W.W. Hager, H. Zhang

Since the rows of A are linearly independent, λk ≥ λ0 > 0, and Σk is a diagonal
matrix with positive diagonal when xk > 0, the Jacobian in (2.9) is positive definite.
Suppose that rk(μ1) = rk(μ2) = 0. By Taylor’s theorem, we have

0 = rk(μ1) − rk(μ2) =
(∫ 1

0
∇rk

(
(1 − s)μ2 + sμ1

)
ds

)
(μ1 − μ2).

Since the sum of positive definite matrices is positive definite, the integral above is
positive definite, which implies that μ1 = μ2. Hence, any solution of rk(μ) = 0 is
unique. �

If the function rk(μ)Trk(μ) attains a minimum at μ = ν, then by the first-order
optimality conditions, we have

∇rk(ν)rk(ν) = 0.

Since ∇rk(ν) is positive definite, it follows that rk(ν) = 0. Hence, any minimizer
of rk(μ)Trk(μ) yields the unique solution of rk(μ) = 0. However, showing that
rk(μ)Trk(μ) attains a minimum does not seem easy in general. We now give both
local and global results concerning the existence of a solution to rk(μ) = 0.

Theorem 2.2 For any xk > 0, rk(μ) = 0 has a unique solution in any of the following
situations:

(I) The matrix A has the following form:

A =

⎡

⎢⎢⎢
⎣

p1 0 . . . 0
0 p2 . . . 0
...

...
. . .

...

0 0 . . . pm

⎤

⎥⎥⎥
⎦

,

where the pi are nonzero row vectors.
(II) span+{ai : i = 1, . . . , n} = R

m.
(III) (1.3) has a local minimizer x∗ with properties (a) and (b) below and xk is suffi-

ciently close to x∗.
(a) AF has rank m where F = {i : x∗

i > 0}. Moreover, if μ∗ is the KKT multi-
plier associated with x∗, then

gi

(
x∗)− aT

i μ
∗ > 0 when x∗

i = 0. (2.10)

(b) f is twice continuously differentiable near x∗ and λk ∈ [λmin, λmax] ⊂
(0,∞).

Proof In case (I), the equation rk(μ) = 0 uncouples into m independent equations for
each of the components of μ. By the [7, Proposition 2.2], each of these m equations
has a unique (scalar) solution. These unique scalar solutions form the components of
the unique solution vector μk .
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In case (III), let us define the function r as follows:

r(x,μ, λ) = AΣ(x,μ, λ)
(
g(x) − ATμ

)
,

where the diagonal matrix Σ is given in (2.5). Since gi(x∗) − aT
i μ

∗ > 0 when
x∗
i = 0 and gi(x∗) − aT

i μ
∗ = 0 when x∗

i > 0, it follows from the KKT conditions
that r(x∗,μ∗, λ) = 0 for all λ > 0. The Jacobian of r(x∗,μ, λ) with respect to μ can
be computed in the same way that we computed the Jacobian of rk in (2.9), the only
difference is that Σii(x∗,μ, λ) = 0 if x∗

i = 0; the final result is

∇μr
(
x∗,μ, λ

)= λAF ΣFF

(
x∗,μ, λ

)2AT
F , (2.11)

where ΣFF is the submatrix of Σ corresponding to rows and columns associated
with i ∈ F . Since the rows of AF are linearly independent by (a), λ > 0, and ΣFF is a
diagonal matrix with positive diagonal, it follows that the Jacobian (2.11) is invertible.
The derivatives of r(x,μ∗, λ) with respect to x and λ are slightly more complex than
(2.11), but easily computed; the derivatives involve the derivative of g, or the second
derivative of f . Hence, these derivatives are continuous since f is twice continuously
differentiable near x∗. By the implicit function theorem, it follows that for xk near x∗
and for any λk ∈ [λmin, λmax], the equation

r(xk,μ, λk) = rk(μ) = 0

has a unique solution μk near μ∗.
Finally, let us consider case (II). In this case, we show that ‖rk(μ)‖ tends to in-

finity as ‖μ‖ tends to infinity. Hence, as noted before the theorem, the minimizer of
‖rk(μ)‖2 is the unique solution of rk(μ) = 0. The growth of ‖rk(μ)‖ is analyzed
as follows: First, consider any μ ∈ R

m with ‖μ‖ = 1. By assumption, there exists
θ ∈ R

n with θ ≥ 0 and μ = Aθ . Moreover, it can be arranged so that the columns of
A associated with θi > 0 are linearly independent. Let β be defined as follows:

β = max
{∥∥(AT

I AI

)−1AT
I

∥∥: rank AI = |I |, I ⊂ {1, . . . , n}}.
Here the rank condition basically means that the vectors ai , i ∈ I , are linearly inde-
pendent. Since Aθ = μ and the columns of A corresponding nonzero components of
θ are linearly independent, it follows that

‖θ‖1 ≤ n‖θ‖ ≤ nβ‖μ‖ = nβ.

Define j = arg max{μTai : 1 ≤ i ≤ n}. We have

1 = μTμ =
n∑

i=1

θi

(
μTai

)≤ (μTaj

)‖θ‖1 ≤ nβ
(
μTaj

)
. (2.12)

Let us define the sets

L−(t) = {i : gki − taT
i μ ≤ 0

}
and L+(t) = {i : gki − taT

i μ > 0
}
.
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170 W.W. Hager, H. Zhang

With these definitions,

rk(tμ) =
∑

i∈L−(t)

ai

(
gki − taT

i μ

λk

)
+
∑

i∈L+(t)

ai

(
xki(gki − taT

i μ)

λkxki + gki − taT
i μ

)
.

Since the coefficient of ai in the L+(t) sum is bounded by xki , it follows that

∥∥∥∥
∑

i∈L+(t)

ai

(
xki(gki − taT

i μ)

λkxki + gki − taT
i μ

)∥∥∥∥≤ ‖xk‖∞
n∑

i=1

‖ai‖. (2.13)

By (2.12), for any μ with ‖μ‖ = 1, there exists j such that μTaj ≥ 1/(nβ). Hence, if
t satisfies the inequality

t ≥ nβ‖gk‖∞
then j ∈ L−(t). Consequently, by (2.12) we have
∥∥∥∥
∑

i∈L−(t)

aiaT
i μ

∥∥∥∥≥ μT

( ∑

i∈L−(t)

aiaT
i μ

)
=
∑

i∈L−(t)

(
aT
i μ
)2 ≥ (aT

jμ
)2 ≥ 1/(nβ)2.

From this lower bound and (2.13), it follows that ‖rk(tμ)‖ tends to infinity, asymp-
totically at least as fast as t/[λk(nβ)2]. Equivalently, if μ ∈ R

m is an arbitrary vector,
not necessarily a unit vector, then ‖rk(μ)‖ tends to infinity, asymptotically at least as
fast as ‖μ‖/[λk(nβ)2]. �

In case (I) of Theorem 2.2, the equation rk(μ) uncouples into m independent
equations for the components of μk . Each of these independent equations can be
solved using the techniques developed in [7]. In general, since the Jacobian of rk(μ)

in (2.9) is positive definite, Newton’s method might be applied to compute the root
μk of rk(μ) = 0. When f is quadratic and A has the form given in case (I), the
resulting problem is called a multi-Standard quadratic optimization problem (multi-
StQP), which has important applications in computer imaging and pattern recognition
(see [2]).

The linear independence condition in (IIIa) is often referred to as “primal nonde-
generacy” [14]. The condition (2.10) amounts to nondegeneracy for the dual multi-
plier associated with the bound constraint.

3 Global convergence

In this section, we give a global convergence result for ASP. Several properties estab-
lished in [7] for the search direction dk remain valid when m > 1, simply by changing
the scalar ai to the vector ai . Hence, we simply state these results that directly extend
to a system of linear constraints.

Proposition 3.1 If xk lies in the relative interior of the feasible set Ω for (1.3) and
ATdk = 0, then xk+1 = xk + skdk lies in the relative interior of Ω for all sk ∈ [0,1].
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Proposition 3.2 The search direction dk given by (2.2) satisfies

gT
kdk = −∥∥Σ−1/2

k dk

∥∥2 ≤ −λk‖dk‖2.

Proposition 3.3 If f is continuously differentiable, λk ∈ [λmin, λmax] ⊂ (0,∞) for
all k, and the iterates (xk,μk) are uniformly bounded with xk in the relative interior
of Ω , then

lim
k→∞ dk = 0 if and only if lim

k→∞ X1(xk,μk) ◦ ∇xL(xk,μk) = 0,

where X1 are defined in (2.7).

Theorem 3.4 If λk ∈ [λmin, λmax] ⊂ (0,∞) for all k, the level set of f is bounded
at x1, and f is Lipschitz continuously differentiable, then ASP either terminates in a
finite number of iterations at a KKT point, or

lim
k→∞ dk = 0.

We use Theorem 3.4 to show that every convergent subsequence of the ASP iter-
ates approaches a stationary point when a nondegeneracy condition holds.

Theorem 3.5 Suppose the hypotheses of Theorem 3.4 are satisfied and a subse-
quence of the iterates xk generated by ASP approaches a limit x∗. If AF has rank
m where F = {i : x∗

i > 0}, then there exists μ∗ ∈ R
m such that (x∗,μ∗) satisfy the

KKT conditions (2.6).

Proof For convenience and without loss of generality, we assume that the entire se-
quence xk converges to x∗. If lim infk→∞ gki −aT

i μk < 0, then there is a scalar α < 0
and a subsequence K ⊂ {1,2, . . .} such that gki − aT

i μk ≤ α < 0 for all k ∈ K. Hence,
by (2.2) and for all k ∈ K, we have

dki = −
(

gki − aT
i μk

λk

)
≥ α

λmax
> 0,

which contradicts Theorem 3.4. It follows that

lim inf
k→∞ gki − aT

i μk ≥ 0, for i = 1, . . . , n. (3.1)

Define the set

F =
{
i ∈ {1, . . . , n} : lim sup

k→∞
gki − aT

i μk < +∞
}
. (3.2)

If i /∈ F , then by the definition of dki , we see that dki converges to −x∗
i . Since

dki tends to zero by Theorem 3.4, it follows that x∗
i = 0 when i /∈ F . Hence,

F = {i : x∗
i > 0} ⊂ F . If i ∈ F , then from the boundedness of gki − aT

i μk , we con-
clude that aT

i μk is bounded. Hence, pk = AT
F μk is bounded and a subsequence ap-

proaches a limit p∗. Again, for convenience and without loss of generality, we assume
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172 W.W. Hager, H. Zhang

that the entire sequence pk approaches p∗. Since F ⊂ F , AF has rank m and

μk = (AF AT
F
)−1AF pk.

Since pk converges to p∗, it follows that μk converges to

μ∗ = (AF AT
F
)−1AF p∗.

By (3.1),

g∗ − ATμ∗ ≥ 0. (3.3)

Since x∗
i = 0 when i /∈ F , we conclude that i ∈ F when x∗

i > 0. Moreover, when
x∗
i > 0, we must have g∗

i − aT
i μ

∗ = 0 since dk tends to 0. Hence, the complementary
slackness condition (g∗ − ATμ∗)Tx∗ = 0 is satisfied. Since x∗ ≥ 0 and (3.3) holds,
the KKT conditions are satisfied by (x∗,μ∗). �

In this section, we have not introduced any convexity assumptions for f . In [7]
we establish a global convergence result for ASL when f is strongly convex over
the feasible set, and the global minimizer is unique. The same global convergence
property holds for ASP.

4 Convergence for quadratic programs

We now establish a sublinear convergence rate for ASP when f is quadratic. The
proof utilizes ideas found in Theorem 2 of [14] for the analysis of a different affine
scaling algorithm. The following result is used in the analysis:

Lemma 4.1 Suppose that x, t,w, ε ∈ R with x > 0, ε > 0, λ ∈ [λmin, λmax] ⊂
(0,∞), and

w := t

√
x

λx + t+
.

If

x

λx + t+
≤ |w|2ε and λmax|w|2ε ≤ 1/2, (4.1)

then

t > 0, w > 0, xt ≤ 2w2, and x ≤ 2w1+ε. (4.2)

Proof If t ≤ 0, then the first inequality in (4.1) implies that λmax|w|2ε ≥ λ|w|2ε ≥ 1,
which contradicts the second inequality in (4.1). Hence, t > 0 which implies that
w > 0. Also, by (4.1), we have

x
(
1 − λw2ε

)≤ tw2ε.
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Since λw2ε ≤ λmaxw
2ε ≤ 1/2, it follows that

x ≤ 2tw2ε. (4.3)

The definition of w can be rearranged to obtain

√
t = w

√
1 + λ(x/t)

x
. (4.4)

If λw2ε ≤ λmaxw
2ε ≤ 1/2, then (4.3) implies that λx/t ≤ 1, and (4.4) gives

√
t ≤ w

√
2

x
.

Squaring this inequality yields the second relation in (4.2), and combining with (4.3)
gives

x ≤ 2tw2ε ≤ 4w2+2ε/x.

Rearranging this gives the third inequality in (4.2). �

Theorem 4.2 Suppose f is quadratic:

f (x) = 1

2
xTQx + qTx

where Q ∈ R
n×n is symmetric and q ∈ R

n, and that the infimum of f over the
feasible set Ω is finite. If M = 0 in ASP (or equivalently, f R

k = f (xk)) and λk ∈
[λmin, λmax] ⊂ (0,∞), then either the algorithm terminates in a finite number of it-
erations at a stationary point, or the convergence has the following property:

(a) f (xk) approaches a limit f ∗ and for each η ∈ (0,∞), there exists a constant c

such that

0 ≤ f
(
xk
)− f ∗ ≤ ck−η. (4.5)

(b) The iterates xk approach a limit x∗ and for each η ∈ (0,∞), there exists a con-
stant c such that

∥
∥xk − x∗∥∥≤ ck−η.

In case (b), the KKT conditions hold at x∗ if the rank condition of Theorem 3.5 is
satisfied.

Proof We assume that ASP does not stop in finite number of iterations. By [7, Propo-
sition 3.4], the ASP stepsize sk is bounded from below, uniformly in k, by a positive
scalar. Hence, by the line search criterion in Step 3 of ASP and by Proposition 3.2,
we have

f (xk+1) ≤ f (xk) + δskgT
kdk = f (xk) − δsk

∥∥Σ−1/2
k dk

∥∥2

≤ f (xk) − c‖wk‖2, (4.6)
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where wk = Σ
−1/2
k dk ; throughout the proof (and the paper), c is a generic positive

constant (independent of k). Since the infimum of f over the feasible set Ω is finite,
(1.3) has a solution, the monotone decreasing sequence f (xk) approaches a limit f ∗
and wk approaches 0.

Let σ k denote the diagonal of Σk , define

tk = gk − ATμk = Qxk + q − ATμk, (4.7)

and choose any ε ∈ (0,1). The parameter ε ∈ (0,1) is related to the parameter η ∈
(0,∞) in (4.5) by η = ε−1 − 1. By the definition of the search direction dk , we have
dki = −σki tki and by the definition of wk , we have wki = dki/

√
σki . We combine

these relations to obtain

σki = w2
ki/t2

ki . (4.8)

For any J ⊂ {1, . . . , n}, we define the set

K J = {k ≥ 1 : σkj ≤ |wkj |2ε for all j ∈ J and σkj > |wkj |2ε for all j ∈ J c
}
.

Since there are a finite number of J ⊂ {1, . . . , n}, there exists a subset J (possibly
empty) for which K J has an infinite number of elements.

Now consider any J such that K J has an infinite number of elements. If j ∈ J c,
then by (4.8), we have w2

kj /t2
kj = σkj > |wkj |2ε or |tkj | < |wkj |1−ε . Consequently,

|tkj | < |wkj |1−ε for all j ∈ J c and k ∈ K J . (4.9)

For any j ∈ J and k ∈ K J , we have σkj ≤ |wkj |2ε , or equivalently,

xkj

λkxkj + t+kj
≤ |wkj |2ε, where wkj = tkj

√
σkj = tkj

√
xkj

λkxkj + t+kj
.

Since wk tends to 0, λmax‖wk‖2ε
1 ≤ 1/2 for k sufficiently large. It follows from

Lemma 4.1 that

tkj > 0, wkj > 0, xkj tkj ≤ 2w2
kj , and xkj ≤ 2w1+ε

kj < w1−ε
kj , (4.10)

for all j ∈ J and k ∈ K J . Hence, by (4.9) and (4.10), we have

xkj ≤ w1−ε
kj for all j ∈ J and 0 < tkj ≤ w1−ε

kj for all j ∈ J c. (4.11)

Since wk tends to 0, it follows form (4.11) that xkj for j ∈ J and tkj for j ∈ J c both
tend to 0 as k ∈ K J tends to infinity.

Consider the following linear system in (x,μ):

⎧
⎪⎨

⎪⎩

xj = xkj for j ∈ J ,

(Qx + q − ATμ)j = tkj for j ∈ J c,

x ≥ 0, Ax = b.

(4.12)
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By the definition of tk , (x,μ) = (xk,μk) is a solution of (4.12). We just showed
that xkj for j ∈ J and tkj for j ∈ J c both tend to 0 as k ∈ K J tends to infinity.
Hence, the terms xkj for j ∈ J and tkj for j ∈ J c in (4.12) can be considered small
perturbations in the system (4.12) which tend to 0. By Robinson’s continuity property
[11, Proposition 1] for polyhedral multifunctions, we know that the limiting system

⎧
⎪⎨

⎪⎩

xj = 0 for j ∈ J ,

(Qx + q − ATμ)j = 0 for j ∈ J c,

x ≥ 0, Ax = b,

(4.13)

is feasible, and there exists c such that for each k ∈ K J , we can find a solution
(x̄k, μ̄k) of (4.13) that is close to (xk,μk) in the following sense:

∥∥(xk − x̄k,μk − μ̄k)
∥∥≤ c‖wk‖1−ε

1 . (4.14)

Here ‖wk‖1−ε
1 is a bound for the perturbation terms obtained from (4.11). Since there

are a finite number of subsets J of {1, . . . , n}, we can choose c large enough so that
(4.14) holds for all J where K J has an infinite number of elements.

In [14] it is shown that all solutions (x,μ) of (4.13) for a given choice of J yield
precisely the same objective function value f (x). Let f (J ) denote the objective func-
tion value associated with any solution of (4.13). We expand the quadratic objective
function in a Taylor series around x̄k and use the identity A(xk − x̄k) = 0 and the
bound (4.14) to obtain

∣∣f (xk) − f (J )
∣∣ =
∣∣∣∣
1

2
(xk − x̄k)Q(xk − x̄k) + (Qx̄k + q)T(xk − x̄k)

∣∣∣∣

≤ c‖wk‖2(1−ε)
1 + ∣∣(Qx̄k + q − ATμ̄k)

T(xk − x̄k)
∣∣ (4.15)

By (4.13), (Qx̄k + q − ATμ̄k)j = 0 for j ∈ J c and x̄kj = 0 for j ∈ J ; it follows that

∣∣(Qx̄k + q − ATμ̄k

)T
(xk − x̄k)

∣∣ =
∣∣∣∣
∑

j∈J

(
Qx̄k + q − ATμ̄k

)
j
(xkj − x̄kj )

∣∣∣∣

=
∣∣∣∣
∑

j∈J

(
Q(x̄k − xk) − AT(μ̄k − μk)

)
j
xkj + xkj tkj

∣∣∣∣

≤ c‖wk‖2(1−ε)
1 + 2‖wk‖2

1 ≤ c‖wk‖2(1−ε)
1 . (4.16)

Here the second equality uses the definition of tk in (4.7) and the first inequality
is from (4.11), (4.14), and (4.10). Since f (xk) approaches f ∗ monotonically and
wk tends to 0, it follows that f (J ) = f ∗ whenever K J has an infinite number of
elements. It follows from (4.15), (4.16), and (4.6) that

f (xk) − f ∗ ≤ c‖wk‖2(1−ε)
1 ≤ β

(
f (xk) − f (xk+1)

)(1−ε)
, (4.17)

where β is a specific generic constant that will be used below.
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The inequality (4.17) is rearranged to give

k+1 ≤ k − (k/β)τ ,

where k = f (xk) − f ∗ and τ = 1/(1 − ε) > 1 since ε ∈ (0,1). Since k > 0, this
is equivalent to

1 ≤ βτ

τ
k

(k − k+1). (4.18)

Since the k decrease monotonically, it follows that

k − k+1

τ
k

≤
∫ k

k+1

s−τ ds = 1

1 − τ

(
1−τ

k − 1−τ
k+1

)
. (4.19)

Combine (4.18) and (4.19) to obtain

1 ≤ βτ

1 − τ

(
1−τ

k − 1−τ
k+1

)
. (4.20)

Let k1 be chosen large enough that for any k ≥ k1, the associated set K J containing
k has an infinite number of elements. We sum (4.20) from k1 up to k − 1 to obtain

k − k1 ≤ βτ

1 − τ

(
1−τ

k1
− 1−τ

k

)
,

which is rearranged into

τ−1
k ≤ γ1

k + γ2
, γ1 = βτ

τ − 1
, γ2 = 1−τ

k1
βτ /(τ − 1) − k1. (4.21)

Since τ > 1, 1−τ
k1

tends to infinity as k1 grows. Choose k1 large enough that γ2 > 0.
In this case, 1/(k + γ2) ≤ 1/k, and (4.21) implies that

k ≤ c

k1/(τ−1)
= ck−ε−1+1 = ck−η where η = ε−1 − 1,

which establishes (a).
Now consider (b) and suppose that ε ∈ (0, .5). Since Σk is diagonal, we have

‖Σk‖ ≤ 1/λmin. It follows that

‖xk+1 − xk‖ = sk‖dk‖ = sk
∥∥Σ1/2

k wk

∥∥≤ sk‖wk‖/
√

λmin. (4.22)

By Proposition 3.2,

‖wk‖ = ‖wk‖2

‖wk‖ ≤
√

n‖wk‖2

‖wk‖1
=

√
n|gT

kdk|
‖wk‖1

. (4.23)

By (4.6),

sk
∣∣gT

kdk

∣∣≤ (f (xk) − f (xk+1)
)
/δ = (k − k+1)/δ, (4.24)
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and by (4.17),

‖wk‖1 ≥ (k/c)
τ/2 or 1/‖wk‖1 ≤ (k/c)

−τ/2. (4.25)

Combining relations (4.22)–(4.25) gives

‖xk+1 − xk‖ ≤ c(k − k+1)
−τ/2
k ≤ c

∫ k

k+1

s−τ/2ds

= c

1 − τ/2

(


1−τ/2
k − 

1−τ/2
k+1

)
.

Recall that ε ∈ (0, .5) which implies that 1 < τ = 1/(1−ε) < 2 and 0 < 1−τ/2 < .5.
We sum from k = k1 to k2 to obtain

k2∑

k=k1

‖xk+1 − xk‖ ≤ c

1 − τ/2

(


1−τ/2
k1

− 
1−τ/2
k2+1

)≤ c

1 − τ/2


1−τ/2
k1

.

Since k1 tends to 0 as k1 tends to ∞ and 1 − τ/2 > 0, {xk} is a Cauchy’s sequence
with limit denoted x∗. By the triangle inequality,

‖xk2+1 − xk1‖ ≤
k2∑

k=k1

‖xk+1 − xk‖ ≤ c

1 − τ/2


1−τ/2
k1

.

Let k2 → ∞ and use (4.5) to establish (b). �

5 Local linear convergence

In our earlier work [7], we proved an R-linear convergence result for ASL with a line
search. The same convergence result applies to ASP with suitable adjustments in the
proof such as replacing scalars like a2

i by matrices aiaT
i . In this section, we study the

convergence rate of ASP with a unit step (without a line search):

xk+1 = xk + dk, dki = −
(

1

λk + (gki − aT
i μk)

+/xki

)(
gki − aT

i μk

)
, (5.1)

where μk is chosen so that Adk = 0 and where λk is given by the BB formula [1]:

λk = λBB
k := arg min

λ≥λ0
‖λsk−1 − yk−1‖2 = max

{
λ0,

sT
k−1yk−1

sT
k−1sk−1

}
, (5.2)

for k ≥ 2 where λ0 > 0, sk−1 = xk − xk−1, and yk−1 = gk − gk−1. In this case, the
iterates are locally R-linearly convergent in a neighborhood of a local minimizer x∗
where both assumption (III) of Theorem 2.2 and the second-order sufficient optimal-
ity conditions hold: There exists σ > 0 such that

dT∇2f
(
x∗)d > σ‖d‖2, (5.3)

for all d satisfying Ad = 0 and di = 0 when i ∈ A = {i : x∗
i = 0}.
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The proof of R-linear convergence has two parts: In the first part, we show that
the components of xki for i ∈ A approach 0 quadratically fast. In the second part, we
compare the components of xk associated with F = {i : x∗

i > 0} to the iterates of the
BB method applied to an unconstrained optimization problem. In [4] we give a linear
convergence result for the BB method applied to an unconstrained optimization prob-
lem. By showing that the ASP iterates are sufficiently close to the unconstrained BB
iterates, we are able to deduce R-linear convergence for ASP. This also implies that
the ASP method with a unit step behaves locally like an unconstrained BB method.
This second part of the analysis is somewhat tedious, and closely parallels the anal-
ysis given in [4] and [9]; hence, the second part of the analysis will be summarized.
Here we focus on the first part of the analysis, the quadratic convergence of the com-
ponents of xki for i ∈ A. Finally, we remark that although we focus on the BB formula
(5.2), the results and analysis also apply to the cyclic BB formula given in [4].

Lemma 5.1 If condition (IIIa) of Theorem 2.2 is satisfied, then the matrix Ā obtained
by augmenting A with additional rows eT

i , i ∈ A, has linearly independent rows.

Proof By assumption (IIIa), AF has linearly independent rows. Since the vectors eT
i ,

i ∈ A, are linearly independent and their nonzeros are in the columns of A associated
with the complement of F , it follows that the rows of Ā are linearly independent. �

Proposition 5.2 If (1.3) has a solution x∗ and conditions (IIIa) and (IIIb) of Theo-
rem 2.2 are satisfied, then there exists a neighborhood N of x∗ and a constant c with
the property that for each xk ∈ N ∩ Ω , the equation rk(μ) = 0 has a unique solution
μk and

∥∥μk − μ∗∥∥≤ c
∥∥xk − x∗∥∥. (5.4)

Proof This follows from the implicit function theorem as applied in the proof of
Theorem 2.2, part III. In Theorem 2.2 we only claimed the existence of the solu-
tion μk . Since f is twice continuously differentiable near x∗, it follows that μk is a
continuously differentiable function of xk and λk . This implies the Lipschitz prop-
erty (5.4). �

We now analyze the components of xk corresponding to the active set A. Given
any x ∈ R

n, let x̂ denote the vector obtained by replacing with 0 the components
associated with active indicates. That is,

x̂i =
{

xi if i ∈ Ac,

0 if i ∈ A.

Thus x − x̂ is the vector with components

xi − x̂i =
{

0 if i ∈ Ac,

xi if i ∈ A.
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Proposition 5.3 If (1.3) has a solution x∗ and conditions (IIIa) and (IIIb) of Theo-
rem 2.2 are satisfied, then there exists a neighborhood N of x∗ and a constant c with
the property that for all xk ∈ N ∩ Ω , we have

‖dk‖ ≤ c
∥
∥xk − x∗∥∥, (5.5)

‖xk+1 − x̂k+1‖ ≤ c‖xk − x̂k‖2, (5.6)
∥∥P
(
xk+1 − x∗)∥∥ ≤ c

∥∥P
(
xk − x∗)∥∥2

, (5.7)

where P = ĀT(ĀĀT)−1Ā.

Proof Define hk = g(xk) − ATμk and h∗ = g(x∗) − ATμ∗. By (IIIa), h∗
i > 0 for

i ∈ A. Hence, by (5.4) it follows that for xk near x∗, we have hki > 0 for i ∈ A. By
(5.1), it follows that 0 ≤ |dki | ≤ xki for i ∈ A and

∑

i∈A
d2
ki ≤

∑

i∈A
x2
ki ≤ ∥∥xk − x∗∥∥2

. (5.8)

By complementary slackness, h∗
i = 0 for i ∈ F . Therefore, for i ∈ F ,

|dki | ≤ |hki |/λmin = ∣∣hki − h∗
i

∣
∣/λmin

≤ (∣∣gi(xk) − gi

(
x∗)∣∣+ ∣∣aT

i

(
μk − μ∗)∣∣)/λmin

≤ c
∥∥xk − x∗∥∥, (5.9)

since f is twice continuously differentiable and (5.4) holds. Combine (5.8) and (5.9)
to obtain ‖dk‖2 ≤ c‖xk − x∗‖2 which establishes (5.5).

Choose ε > 0 and N small enough that hki > ε for all i ∈ A. Again, by (5.1), we
have

‖xk+1 − x̂k+1‖2 =
∑

i∈A
x2
(k+1)i =

∑

i∈A

(
xki − xki

1 + λkxki/hki

)2

≤
∑

i∈A

(
λkx

2
ki

hki

)2

≤ (λmax/ε)
2
∑

i∈A
x4
ki

≤ (λmax/ε)
2
(∑

i∈A
x2
ki

)2

= (λmax/ε)
2‖xk − x̂k‖4.

This establishes (5.6).
Now, by Lemma 5.1, we know that ĀĀT is invertible. Hence, by the definition of

P, we have

∥∥P
(
xk − x∗)∥∥2 = ∥∥ĀT(ĀĀT)−1Ā

(
xk − x∗)∥∥2

= [Ā(xk − x∗)]T(ĀĀT)−1[Ā
(
xk − x∗)] (5.10)
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≥ ‖Ā(xk − x∗)‖2

‖ĀĀT‖ ,

which implies that

‖xk − x̂k‖ = ∥∥Ā
(
xk − x∗)∥∥≤

√∥
∥ĀĀT

∥
∥
∥
∥P
(
xk − x∗)∥∥. (5.11)

The first equality here is due to the fact that the top submatrix in Ā is A where
A(xk −x∗) = 0, while the bottom submatrix in Ā contains ei , i ∈ A, and x∗

i = x̂ki = 0
for i ∈ A. By (5.10), we have

∥∥P
(
xk+1 − x∗)∥∥ ≤

√∥∥(ĀĀT
)−1∥∥ ∥∥Ā

(
xk+1 − x∗)∥∥

=
√∥∥(ĀĀT

)−1∥∥ ∥∥xk+1 − x̂k+1‖
≤ c‖xk − x̂k‖2.

The last inequality here is due to (5.6). Combining this with (5.11) completes the
proof. �

In (5.7), Proposition 5.3 basically gives the quadratic convergence of the ASP
iterates in the range space of Ā. The second phase of the analysis involves showing
linear convergence in the null space of Ā when the second-order sufficient optimality
condition holds. This can be established using a comparison technique along the lines
developed in [4] for unconstrained optimization and in [9] for bound constrained
optimization. In particular, we compare the ASP iterate to an unconstrained BB iterate
defined as follows: Let N denote a matrix whose columns are an orthonormal basis
for the null space of Ā, and define yk = NTxk , y∗ = NTx∗, and

zk,0 = yk − y∗,

zk,j+1 = zk,j − λ−1
k,j NTg

(
Nzk,j + x∗), j ≥ 0,

(5.12)

where

λk,j = vT
k,j wk,j

vT
k,j vk,j

, vk,j = N(zk,j − zk,j−1), and

wk,j = g
(
Nzk,j + x∗)− g

(
Nzk,j−1 + x∗).

We compare xk+j to Nzk,j + x∗.
Note that zk,j given by (5.12) represents a BB iterate associated with the uncon-

strained optimization problem

min
z∈Rl

f
(
Nz + x∗), (5.13)

where l is the number of columns of N. The Hessian matrix at z = 0 is ZT∇2f (x∗)Z
which is positive definite by the second-order sufficient optimality condition (5.3).
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Hence, z = 0 is a local minimizer for (5.13). By [4, Theorem 2.3], the zk,j converge
to 0 linearly, which yields the following lemma. For more details, see the proof of
Proposition 5.3 in [9].

Lemma 5.4 If f is twice continuously differentiable in a neighborhood of x∗ and
the second-order sufficient optimality condition (5.3) is satisfied, then there exist
δ > 0 and an integer J > 0 such that for all starting points yk = NTxk with xk ∈
Bδ(x∗) ∩ Ω , the BB iterates generated by (5.12) satisfy

zk,j ∈ Bρ(0) and Nzk,j + x∗ ≥ 0 for j ≥ 0 and (5.14)

‖zk,j‖ ≤ 1

2
‖zk,0‖ for all j ≥ J. (5.15)

The following lemma compares the null space iterates to the ASP iterates:

Lemma 5.5 Suppose that the assumptions of Lemma (5.4) are satisfied and λ0 > σ/2
where σ is given in the second-order sufficient optimality condition. Then for any
Λ ≥ λ0 and for any positive integer J , there exist positive constants δ and c with the
following property: For any xk ∈ Bδ(x∗) satisfying

∥∥P
(
xk − x∗)∥∥≤ ∥∥NNT(xk − x∗)∥∥3/2

and λk ≤ Λ, (5.16)

and for any � ∈ [0, J ], if

‖zk,j‖ ≥ 1

2
‖zk,0‖ for all j ∈ [0,max{0, � − 1}], (5.17)

then we have
∥∥xk+j − (Nzk,j + x∗)∥∥≤ c

∥∥xk − x∗∥∥3/2 (5.18)

for all j ∈ [0, �].

This lemma is analogous to Lemma 2.2 in [4], and the proof is essentially a line-
by-line transcription of the proof of Lemma 6.1 in [9]. Since [9] has only bound
constraints, not the linear constraint Ax = b, the projection operations appearing in
[9] need to be replaced by the projection P on the range of Ā and the projection
PN = NNT on the null space of Ā. More precisely, a vector with components xki −x∗

i

for i ∈ A appearing in [9] should be replaced by P(xk −x∗) in this paper. And a vector
such as x̂k −x∗ appearing in [9] is replaced by PN(xk −x∗) in this paper. For example,
the following inequality (6.3) in [9]:

max
{|xki | : i ∈ A

}≤ ∥∥x̂k − x∗∥∥3/2 and λk ≤ Λ,

is transcribed into (5.16) in this paper. As another illustration, the analogue of the
comparison result appearing in equation (6.9) of [9] is
∥∥xk − (Nzk,0 + x∗)∥∥ = ∥∥xk − x∗ − N

(
yk − y∗)∥∥= ∥∥xk − x∗ − NNT(xk − x∗)∥∥
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= ∥∥(I − NNT)(xk − x∗)∥∥= ∥∥P
(
xk − x∗)∥∥

≤ ∥∥PN

(
xk − x∗)∥∥3/2 ≤ ∥∥xk − x∗∥∥3/2

,

where the next-to-last inequality is (5.16).
Finally, the quadratic convergence of the active constraint components established

in Proposition 5.3 together with the comparison result Lemma 5.5 yield the following
R-linear convergence result. This result is a line-by-line transcription of Theorem 7.1
in [9].

Theorem 5.6 Suppose that (1.3) has a solution x∗, conditions (IIIa) and (IIIb) of
Theorem 2.2 are satisfied, and the second-order sufficient optimality condition (5.3)
holds. If λ0 is chosen in accordance with Lemma 5.5, then there exist positive scalars
δ and η, and a positive scalar γ < 1 with the property that for all starting points
x0,x1 ∈ Bδ(x∗), x0 �= x1, the ASP iterates generated by (5.1) satisfy

∥∥xk − x∗∥∥≤ ηγ k
∥∥x1 − x∗∥∥. (5.19)

6 Conclusions

The affine scaling interior point method ASL developed in [7] in the context of bound
constraints and a single linear constraint was extended to handle a general system of
linear constraints. The new algorithm ASP applies to general polyhedral constraints.
There is convergence to a stationary point when a nondegeneracy condition holds.
Moreover, if a second-order sufficient optimality condition holds, then the conver-
gence is R-linear. When the objective function is quadratic, we obtained convergence
on the order of k−σ for any σ ∈ (0,∞) without either the nondegeneracy or second-
order sufficient optimality conditions. In [7] it is seen that the affine scaling interior
point algorithm can be quite efficient in large-scale ill-posed problems associated
with support vector machines.
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