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Abstract

In a seminal paper (An efficient heuristic procedure for partitioning graphs,
Bell System Technical Journal, 49 (1970), pp. 291-307), Kernighan and Lin
propose a pair exchange algorithm for approximating the solution to min-cut
graph partitioning problems. In their algorithm, a vertex from one set in the
current partition is exchanged with a vertex in the other set to reduce the sum
of the weights of cut edges. The exchanges continue until the total weight of
the cut edges is no longer reduced. In this paper, we consider a block exchange
algorithm in which a group of vertices from one set is exchanged with a group
of vertices from the other set in order to minimize the sum of the weights of
cut edges. An optimal choice for the exchanged vertices is the solution to a
quadratic programming problem.
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1 Introduction

In min-cut graph partitioning problems, we partition the vertices of a graph into
disjoint sets satisfying specified size constraints, while minimizing the sum of the
weights of (cut) edges connecting vertices in different sets. In their seminal paper [1],
Kernighan and Lin propose an exchange algorithm for approximating the best parti-
tion. This algorithm determines a pair of vertices, one from each set, whose exchange
decreases the weights of the edges connecting the sets as much as possible. Eventu-
ally, the algorithm achieves a partitioning of the vertices for which any exchange of a
pair of vertices either increases or leaves unchanged the sum of the weights of the cut
edges. Although this partition could be a locally optimal, it may not be globally opti-
mal since the exchange of a collection of vertices could reduce the sum of the weights
of the cut edges. In this paper, we show that the optimal set of vertices to exchange
can be obtained from the solution to a quadratic programming problem, while in [2]
we show that the solution to the graph partitioning problem is itself the solution to
a related quadratic program. Iterative algorithms applied to this NP-hard program
often converge to local minimizers that are not global minimizers. An approximate
solution to the quadratic program associated with the block exchange problem yields
a (nonlocal) change which can be used as a starting point in an algorithm to solve
the quadratic programming formulation of the graph partitioning problem itself.

2 Quadratic programming formulation

Let GG be a graph with n vertices V:
V= {1,2,"-,71},

and let a;; be a weight associated with the edge (¢,7). For each ¢ and j, we assume
that a;; =0, a;; = a;;, and if there is no edge between ¢ and j, then «¢;; = 0. The sign
of the weights is not restricted. Given a positive integer m < n, we wish to partition
the vertices into two disjoints sets, one with m vertices and the other with n —m
vertices, while minimizing the sum of the weights associated with edges connecting
vertices in different sets. This optimal partition is called a min-cut.

In [2] we show that for an appropriate choice of the diagonal matrix D, the min-cut
can be obtained by solving the following quadratic programming problem:

minimize f(x):= (1 —-x)T(A +D)x
subject to 0 <x <1, 1Tx=m.

(1)
More precisely, for an appropriate choice of D, (1) has a solution x* for which each
component is either zero or one. The two sets Vi and V5 in an optimal partition are
given by

Vi={i:a; =1} and Vo= {i:a] =0}. (2)



When x is a 0/1 vector, the cost function f in (1) reduces to the sum of those elements
a;; of A corresponding to rows 1 where z; vanishes and columns j where x; is one.
Hence, when x is a 0/1 vector, f(x) is the sum of the weights of edges connecting the
sets V; and V5 in (2). The following theorem from [2] shows how to choose D.

Theorem 2.1 [2]. If D is chosen so that
dii + djj > 2a;

for each ¢ and j, then (1) has a 0/1 solution x* and the partition given by (2) is a
min-cut. Moreover, if for each ¢ and j,

dii + dj; > 2a,,

then every local minimizer of (1) is a 0/1 vector.

In the quadratic program (1), we emphasize that the variable x is continuous,
with components taking values on the interval [0,1]. Theorem 2.1 claims that this
continuous quadratic program has a 0/1 solution which yields a min-cut. When
continuous solution algorithms, such as the gradient projection method, are applied
to (1), the iterates typically converge to an extreme point (either a local minimizer
or a saddle point) that may not be the global optimum. In order to escape from this
local optimum, we need to make a nonlocal change in x. Exchanging [ vertices in one
set with [ vertices in the other set is equivalent to replacing [ ones in the x vector by
zeros and [ zeros in the x vector by ones. This change represents a movement in x
of length v/2{. Such a nonlocal change could potentially yield a starting point for an
iterative method that would descend a deeper valley than that containing the current
best approximation to a solution of (1).

Suppose that the vertices of V' have been partitioned into two sets, V; of size m
and V5 of size n — m. We assume that the rows and columns of A are symmetrically
permuted so that vertices in V] correspond to the first m rows and columns of A and
the vertices of V; correspond to the last n — m rows and columns of A. Let us block
partition A in the following way:

Ay Ay
A =
( Ay Ay ) ’
where Aq; and Ay corresponds to leading m x m and trailing (n — m) X (n — m)

submatrices of A. Given a positive integer [ such that [ < max{m,n—m}, we consider
the following quadratic programming problem:

-
L _[1-Y AutDr o —Ap Y
minimize F(y,z):= ( 1_g¢ ) ( —Ay Ap+D; ) ( z ) (3)

subject to 0 <y <1, 1Ty =[, 0<z<1, 1Tz=1.

Here D; and D; are the compatible diagonal blocks of D.



Figure 1: Interchange vertices S; in V; with Sy in V3

Suppose that y and z are 0/1 vectors with 1Ty = [ and 1Tz = [, and define the
following sets:

Si={i:y;=1} and Sy ={i+m:z =1}

We now observe that F(y,z) measures the change in the sum of the weights of cut
edges corresponding to the exchange of vertices S7 in V] with the vertices Sy in V5.
In particular, referring to Figure 1, the quantity (1 — y)TA,y is the sum of the
weights of edges F; connecting the set S; with its complement in Vi; (1 — Z)TAQQZ
is the sum of the weights of edges Iy connecting the set Sy with its complement in
Vo (1 — Z)TAzly is the sum of the weights of edges F3 connecting the set S; with
the complement of Sy in Va; (1 — y)TA12Z is the sum of the weights of edges Fy
connecting the set Sy with the complement of 57 in V;. When the vertices S; and 5,
are exchanged, the edges F5 and F, change from external edges connecting V; and
V, to internal edges, while the internal edges F; and F; change to external edges
connecting V; and V,. Hence, the change in the sum of the weights of cut edges is

(1 - Y)TAHY + (1 - Z)TA22Z - (1 - Z)TAzly - (1 - Y)TA12Z7

the difference between the weights of the newly created external edges and the deleted
external edges. This difference is precisely the cost function F(y,z) of (3) since the
diagonal terms (1 —y)"D;y and (1 — z)"Dsyz vanish when y and z are 0/1 vectors.
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If the components of y and z are restricted to be integers, then the quadratic
program (3) is equivalent to minimizing the increase in the sum of the edge weights
associated with the exchange of the sets S; and 5;. If the increase is negative, then
the exchange of 57 with Sy will decrease the sum of the weights of the cuts edges.
Note though that in (3), we do not restrict the components of y and z to be integers,
and potentially, the minimum in this continuous problem is strictly smaller than the
minimum in the discrete analogue where the variables are restricted to be 0/1. The
following theorem, however, ensures that the continuous problem (3) has a (discrete)
0/1 solution.

Theorem 2.2. [f D is chosen so that
di; + dj; > 2a; (4)

for each i and j in [1,m] and for each i and j in [m—+1,n], then (3) has a 0/1 solution
(y*,z*). Let us define the sets Vi = {1,2,....m}, Vo ={m+1,m+2,...,n},

Si=Hi:yf =1} and Sy={i4+m:zf =1}

Exchanging the vertices Sy of Vi with the vertices Sy of Vs, leads to the smallest possible
increase in the sum of the weights of cut edges among all possible | element subsets of
Vi and Vy. Moreover, if for each i and j in [1,m] and for each i and j in [m + 1,n],
we have

di; + d]‘]‘ > 2612']‘, (5)
then every local minimizer of (3) is a 0/1 vector.

Proof. Our proof is basically the same as that given in [2] for Theorem 2.1. Given
a solution (y,z) to (3), we construct a piecewise linear path taking us from (y,z) to a
solution (y*,z*) of (3) whose components are either 0 or 1. Let F(y) be the inactive
(or free) components of the vector y:

Fly)={i:0<y; <1} (6)

Either F(y) is empty, and y* = y, or F(y) has two or more elements since the
constraint 1Ty = [ of (3), where [ is integer, cannot be satisfied when y has a single
noninteger component. If F(y) has two or more elements, we show that there exists
another minimizing point y with F(y) strictly contained in F(y), and F(x,z) =
F(y,z) for all x on the line segment connecting y and y. Utilizing this property in
an inductive fashion, we conclude that there exists a piecewise linear path taking us
from any given minimizer (y,z) to another minimizer (y*,z) with F(y*) = 0 (that
is, all the components of y* are either 0 or 1), and F(x,z) = F(y,z) for all x on this
path. The same argument applied to the z component of the solution (y*,z) shows
that there exists a z* that is feasible in (3) with F(z*) = () and (y*,z*) optimal in

(3).



If F(y) has two or more elements, then choose two elements i and j € F(y), and
let v.€ R™ be the vector whose entries are all zero except that v; =1 and v; = —1.
For e sufficiently small, (y + ev, z) is feasible in (3). Expanding F' in a Taylor series
around (y,z), we have

Fly+ev,z) = F(y,z) — v (A + Dy)v. (7)

The O(¢) term in this expansion disappears since F(y + ev,z) achieves a minimum
at € = 0, and the first derivative with respect to € vanishes at ¢ = 0. In addition,
from the inequality

F(y +ev,z) > F(y,z) for all € near 0,
we conclude that the quadratic term in (7) is nonnegative, or equivalently,
VT(A11 + Dl)V = dﬁvf + djjv? + 2a;viv; = diy + dj; — 2a;; < 0. (8)

Since d;; + dj; — 2a;; > 0 by (4), it follows that d;; + d;; —2a,; = 0 and F(y +ev,z) =
F(y,z) for each choice of €. Let € be the largest value of € for which (y + ev,z) is
feasible in (3). Defining y =y + ev, F(y) is strictly contained in F(y) and (y,z)
achieves the minimum in (3) since F'(y + ev,z) = F(y,z) for all e. In summary, for
any given solution (y,z) to (3), we can find a point y with F(y) strictly contained
in F(y) and F(x,z) = F(y,z) for all x on the line segment connecting y and y.
Proceeding by induction, there exists a solution (y*,z) of (3) where y* is 0/1. The
same argument applied to z shows that there exists a solution (y*,z*) of (3) where
2" is 0/1.

Finally, suppose that (5) holds, that (y,z) is a local minimizer for (3), and y is
not a 0/1 vector. As noted above, F(y) has two or more elements, and the expansion
(7) holds where the quadratic term satisfies (8), contradicting (5). We conclude that
F(y) is empty and y is a 0/1 vector. By the same argument, z is 0/1 as well. m|

3 Numerical illustrations

As an application , let us consider the case where the edge weights are all one, m = n/2
(the bisection problem), and D = I, the identity matrix. Our first example is the
matrix msc01050 in the Boeing test problem library found on Tim Davis’ web page
at

www.cise.ufl.edu/"davis/sparse/Boeing.

This matrix is 1050 x 1050 with 29,156 nonzero entries. The pattern of the nonzero
entries appears in Figure 2. If the Kernighan/Lin exchange algorithm is applied,
starting from the initial partition

Vi ={1,2,...,525} and V, = {526,527,...,1050},
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Figure 2: Sparsity pattern for the test problem Boeing/msc01050, 29,156 nonzeros.

then it converges to a partition with 2202 cut edges.

On the other hand, when the gradient projection algorithm was applied to the
quadratic program (1), we converged to a local minimizer with 1493 cut edges. Now
consider the following choices for [ in (3): [ = 262, 183, 128, 89, 62, 43, 30, 21, 14,
9, 6, 4, 2. These values for [ are obtained by initializing [ = floor(m/4) and then
successively multiplying [ by .7. For each choice of [, we approximate the solution to
(3) using the gradient projection algorithm. After making the interchange, we treat
the resulting point as the intial guess in the gradient projection algorithm applied
to (1). We only retain the resulting local minimizer if it yields fewer cut edges.
The number of cut edges after the exchange (swap) of the sets of size [ and after the
subsequent gradient projection (GP) steps appears in Figure 3. Hence, by exchanging
blocks of size 183 and later of size 4, the number of cut edges is reduced from 1493
down to 1455. If A is permuted so that the first 525 columns correspond to the
vertices in one set in the best computed partition, then the sparsity pattern of the
resulting matrix appears in Figure 4. In this figure, the 1455 cut edges appear in the
lower left corner. For comparison, the pmetis code [4] of Karypis and Kumar generates
a partitioning with 1491 cut edges with a slightly unbalanced partitioning (524/526).
The Chaco package of Hendrickson and Rothberg gives the following number of cut
edges for the various implemented algorithms: 1578 (multi), 1565 (spectral), 1574
(linear), 1574 (random), and 1544 (scattered).

For another example, we consider the less structured test problem G38 in Ye's
test problem collection found at

ftp://dollar.biz.uiowa.edu/pub/yyye/Gset/.
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[ | Cut edges Cut edges [ | Cut edges Cut edges
after swap  after GP after swap  after GP
262 1562 1562 21 1465 1458
183 1458 1456 14 1459 1458
128 1512 1511 9 1464 1457
89 1520 1503 6 1457 1457
62 1493 1461 4 1455 1455
43 1481 1457 2 1455 1455
30 1467 1461

Figure 3: Block exchange for the matrix of Figure 2

The sparsity pattern of this matrix is in Figure 5, while the sparsity pattern of the
permuted matrix, associated with the best computed partition (containing 2690 cut
edges), obtained by the block exchange approach, appears in Figure 6. During the
computation of this partition, blocks of size 500, 350, 244, 170, and 118 were ex-
changed. In constrast, if pairs of vertices are exchanged rather than blocks of vertices,
then starting from the initial partition V4 = {1,...,1000} and V, = {1001,...,2000},
the iterates converge to a partition with 3063 cut edges. The number of cut edges
for other codes were the following: 2902 (pmetis), 2831 (chaco/multi), 2838 (chaco/-
spectral), 2941 (chaco/linear), 2990 (chaco/random), and 2896 (chaco/scattered).
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Figure 4: The pattern of the permuted matrix of Figure 2 associated with best
computed partition.
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Figure 5: Pattern of the 25,558 nonzero elements for matrix G38 in Ye’s test problem
set.
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Figure 6: The pattern of the permuted matrix of Figure 5 associated with the best
computed partition.
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