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1 IntrodutionIn min-ut graph partitioning problems, we partition the verties of a graph intodisjoint sets satisfying spei�ed size onstraints, while minimizing the sum of theweights of (ut) edges onneting verties in di�erent sets. In their seminal paper [1℄,Kernighan and Lin propose an exhange algorithm for approximating the best parti-tion. This algorithm determines a pair of verties, one from eah set, whose exhangedereases the weights of the edges onneting the sets as muh as possible. Eventu-ally, the algorithm ahieves a partitioning of the verties for whih any exhange of apair of verties either inreases or leaves unhanged the sum of the weights of the utedges. Although this partition ould be a loally optimal, it may not be globally opti-mal sine the exhange of a olletion of verties ould redue the sum of the weightsof the ut edges. In this paper, we show that the optimal set of verties to exhangean be obtained from the solution to a quadrati programming problem, while in [2℄we show that the solution to the graph partitioning problem is itself the solution toa related quadrati program. Iterative algorithms applied to this NP-hard programoften onverge to loal minimizers that are not global minimizers. An approximatesolution to the quadrati program assoiated with the blok exhange problem yieldsa (nonloal) hange whih an be used as a starting point in an algorithm to solvethe quadrati programming formulation of the graph partitioning problem itself.2 Quadrati programming formulationLet G be a graph with n verties V :V = f1; 2; � � � ; ng;and let aij be a weight assoiated with the edge (i; j). For eah i and j, we assumethat aii = 0, aij = aji, and if there is no edge between i and j, then aij = 0. The signof the weights is not restrited. Given a positive integer m < n, we wish to partitionthe verties into two disjoints sets, one with m verties and the other with n � mverties, while minimizing the sum of the weights assoiated with edges onnetingverties in di�erent sets. This optimal partition is alled a min-ut.In [2℄ we show that for an appropriate hoie of the diagonal matrixD, the min-utan be obtained by solving the following quadrati programming problem:minimize f(x) := (1 � x)T(A+D)xsubjet to 0 � x � 1; 1Tx = m: (1)More preisely, for an appropriate hoie of D, (1) has a solution x� for whih eahomponent is either zero or one. The two sets V1 and V2 in an optimal partition aregiven by V1 = fi : x�i = 1g and V2 = fi : x�i = 0g: (2)2



When x is a 0/1 vetor, the ost funtion f in (1) redues to the sum of those elementsaij of A orresponding to rows i where xi vanishes and olumns j where xj is one.Hene, when x is a 0/1 vetor, f(x) is the sum of the weights of edges onneting thesets V1 and V2 in (2). The following theorem from [2℄ shows how to hoose D.Theorem 2.1 [2℄. If D is hosen so thatdii + djj � 2aijfor eah i and j, then (1) has a 0=1 solution x� and the partition given by (2) is amin-ut. Moreover, if for eah i and j,dii + djj > 2aij;then every loal minimizer of (1) is a 0=1 vetor.In the quadrati program (1), we emphasize that the variable x is ontinuous,with omponents taking values on the interval [0; 1℄. Theorem 2.1 laims that thisontinuous quadrati program has a 0/1 solution whih yields a min-ut. Whenontinuous solution algorithms, suh as the gradient projetion method, are appliedto (1), the iterates typially onverge to an extreme point (either a loal minimizeror a saddle point) that may not be the global optimum. In order to esape from thisloal optimum, we need to make a nonloal hange in x. Exhanging l verties in oneset with l verties in the other set is equivalent to replaing l ones in the x vetor byzeros and l zeros in the x vetor by ones. This hange represents a movement in xof length p2l. Suh a nonloal hange ould potentially yield a starting point for aniterative method that would desend a deeper valley than that ontaining the urrentbest approximation to a solution of (1).Suppose that the verties of V have been partitioned into two sets, V1 of size mand V2 of size n�m. We assume that the rows and olumns of A are symmetriallypermuted so that verties in V1 orrespond to the �rst m rows and olumns of A andthe verties of V2 orrespond to the last n�m rows and olumns of A. Let us blokpartition A in the following way:A =  A11 A12A21 A22 ! ;where A11 and A22 orresponds to leading m � m and trailing (n � m) � (n � m)submatries ofA. Given a positive integer l suh that l � maxfm;n�mg, we onsiderthe following quadrati programming problem:minimize F (y; z) :=  1� y1� z !T  A11 +D1 �A12�A21 A22 +D2 ! yz !subjet to 0 � y � 1; 1Ty = l; 0 � z � 1; 1Tz = l: (3)Here D1 and D2 are the ompatible diagonal bloks of D.3
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Figure 1: Interhange verties S1 in V1 with S2 in V2Suppose that y and z are 0/1 vetors with 1Ty = l and 1Tz = l, and de�ne thefollowing sets: S1 = fi : yi = 1g and S2 = fi+m : zi = 1g:We now observe that F (y; z) measures the hange in the sum of the weights of utedges orresponding to the exhange of verties S1 in V1 with the verties S2 in V2.In partiular, referring to Figure 1, the quantity (1 � y)TA11y is the sum of theweights of edges E1 onneting the set S1 with its omplement in V1; (1 � z)TA22zis the sum of the weights of edges E2 onneting the set S2 with its omplement inV2; (1 � z)TA21y is the sum of the weights of edges E3 onneting the set S1 withthe omplement of S2 in V2; (1 � y)TA12z is the sum of the weights of edges E4onneting the set S2 with the omplement of S1 in V1. When the verties S1 and S2are exhanged, the edges E3 and E4 hange from external edges onneting V1 andV2 to internal edges, while the internal edges E1 and E2 hange to external edgesonneting V1 and V2. Hene, the hange in the sum of the weights of ut edges is(1� y)TA11y + (1� z)TA22z� (1� z)TA21y� (1� y)TA12z;the di�erene between the weights of the newly reated external edges and the deletedexternal edges. This di�erene is preisely the ost funtion F (y; z) of (3) sine thediagonal terms (1� y)TD1y and (1� z)TD2z vanish when y and z are 0/1 vetors.4



If the omponents of y and z are restrited to be integers, then the quadratiprogram (3) is equivalent to minimizing the inrease in the sum of the edge weightsassoiated with the exhange of the sets S1 and S2. If the inrease is negative, thenthe exhange of S1 with S2 will derease the sum of the weights of the uts edges.Note though that in (3), we do not restrit the omponents of y and z to be integers,and potentially, the minimum in this ontinuous problem is stritly smaller than theminimum in the disrete analogue where the variables are restrited to be 0/1. Thefollowing theorem, however, ensures that the ontinuous problem (3) has a (disrete)0/1 solution.Theorem 2.2. If D is hosen so thatdii + djj � 2aij (4)for eah i and j in [1;m℄ and for eah i and j in [m+1; n℄, then (3) has a 0=1 solution(y�; z�). Let us de�ne the sets V1 = f1; 2; : : : ;mg, V2 = fm+ 1;m+ 2; : : : ; ng,S1 = fi : y�i = 1g and S2 = fi+m : z�i = 1g:Exhanging the verties S1 of V1 with the verties S2 of V2 leads to the smallest possibleinrease in the sum of the weights of ut edges among all possible l element subsets ofV1 and V2. Moreover, if for eah i and j in [1;m℄ and for eah i and j in [m+ 1; n℄,we have dii + djj > 2aij; (5)then every loal minimizer of (3) is a 0=1 vetor.Proof. Our proof is basially the same as that given in [2℄ for Theorem 2.1. Givena solution (y; z) to (3), we onstrut a pieewise linear path taking us from (y; z) to asolution (y�; z�) of (3) whose omponents are either 0 or 1. Let F(y) be the inative(or free) omponents of the vetor y:F(y) = fi : 0 < yi < 1g: (6)Either F(y) is empty, and y� = y, or F(y) has two or more elements sine theonstraint 1Ty = l of (3), where l is integer, annot be satis�ed when y has a singlenoninteger omponent. If F(y) has two or more elements, we show that there existsanother minimizing point �y with F(�y) stritly ontained in F(y), and F (x; z) =F (y; z) for all x on the line segment onneting y and �y. Utilizing this property inan indutive fashion, we onlude that there exists a pieewise linear path taking usfrom any given minimizer (y; z) to another minimizer (y�; z) with F(y�) = ; (thatis, all the omponents of y� are either 0 or 1), and F (x; z) = F (y; z) for all x on thispath. The same argument applied to the z omponent of the solution (y�; z) showsthat there exists a z� that is feasible in (3) with F(z�) = ; and (y�; z�) optimal in(3). 5



If F(y) has two or more elements, then hoose two elements i and j 2 F(y), andlet v 2 Rm be the vetor whose entries are all zero exept that vi = 1 and vj = �1.For � suÆiently small, (y+ �v; z) is feasible in (3). Expanding F in a Taylor seriesaround (y; z), we haveF (y+ �v; z) = F (y; z)� �2vT(A11 +D1)v: (7)The O(�) term in this expansion disappears sine F (y+ �v; z) ahieves a minimumat � = 0, and the �rst derivative with respet to � vanishes at � = 0. In addition,from the inequality F (y+ �v; z) � F (y; z) for all � near 0;we onlude that the quadrati term in (7) is nonnegative, or equivalently,vT(A11 +D1)v = diiv2i + djjv2j + 2aijvivj = dii + djj � 2aij � 0: (8)Sine dii+ djj� 2aij � 0 by (4), it follows that dii+ djj� 2aij = 0 and F (y+ �v; z) =F (y; z) for eah hoie of �. Let �� be the largest value of � for whih (y + �v; z) isfeasible in (3). De�ning �y = y + ��v, F(�y) is stritly ontained in F(y) and (�y; z)ahieves the minimum in (3) sine F (y + �v; z) = F (y; z) for all �. In summary, forany given solution (y; z) to (3), we an �nd a point �y with F(�y) stritly ontainedin F(y) and F (x; z) = F (y; z) for all x on the line segment onneting y and �y.Proeeding by indution, there exists a solution (y�; z) of (3) where y� is 0/1. Thesame argument applied to z shows that there exists a solution (y�; z�) of (3) wherez� is 0/1.Finally, suppose that (5) holds, that (y; z) is a loal minimizer for (3), and y isnot a 0/1 vetor. As noted above, F(y) has two or more elements, and the expansion(7) holds where the quadrati term satis�es (8), ontraditing (5). We onlude thatF(y) is empty and y is a 0/1 vetor. By the same argument, z is 0/1 as well.3 Numerial illustrationsAs an appliation , let us onsider the ase where the edge weights are all one,m = n=2(the bisetion problem), and D = I, the identity matrix. Our �rst example is thematrix ms01050 in the Boeing test problem library found on Tim Davis' web pageat www.ise.u.edu/~davis/sparse/Boeing:This matrix is 1050 � 1050 with 29,156 nonzero entries. The pattern of the nonzeroentries appears in Figure 2. If the Kernighan/Lin exhange algorithm is applied,starting from the initial partitionV1 = f1; 2; : : : ; 525g and V2 = f526; 527; : : : ; 1050g;6
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nz = 29156Figure 2: Sparsity pattern for the test problem Boeing/ms01050, 29,156 nonzeros.then it onverges to a partition with 2202 ut edges.On the other hand, when the gradient projetion algorithm was applied to thequadrati program (1), we onverged to a loal minimizer with 1493 ut edges. Nowonsider the following hoies for l in (3): l = 262, 183, 128, 89, 62, 43, 30, 21, 14,9, 6, 4, 2. These values for l are obtained by initializing l = oor(m=4) and thensuessively multiplying l by .7. For eah hoie of l, we approximate the solution to(3) using the gradient projetion algorithm. After making the interhange, we treatthe resulting point as the intial guess in the gradient projetion algorithm appliedto (1). We only retain the resulting loal minimizer if it yields fewer ut edges.The number of ut edges after the exhange (swap) of the sets of size l and after thesubsequent gradient projetion (GP) steps appears in Figure 3. Hene, by exhangingbloks of size 183 and later of size 4, the number of ut edges is redued from 1493down to 1455. If A is permuted so that the �rst 525 olumns orrespond to theverties in one set in the best omputed partition, then the sparsity pattern of theresulting matrix appears in Figure 4. In this �gure, the 1455 ut edges appear in thelower left orner. For omparison, the pmetis ode [4℄ of Karypis and Kumar generatesa partitioning with 1491 ut edges with a slightly unbalaned partitioning (524/526).The Chao pakage of Hendrikson and Rothberg gives the following number of utedges for the various implemented algorithms: 1578 (multi), 1565 (spetral), 1574(linear), 1574 (random), and 1544 (sattered).For another example, we onsider the less strutured test problem G38 in Ye'stest problem olletion found atftp://dollar.biz.uiowa.edu/pub/yyye/Gset/:7



l Cut edges Cut edgesafter swap after GP262 1562 1562183 1458 1456128 1512 151189 1520 150362 1493 146143 1481 145730 1467 1461 l Cut edges Cut edgesafter swap after GP21 1465 145814 1459 14589 1464 14576 1457 14574 1455 14552 1455 1455Figure 3: Blok exhange for the matrix of Figure 2The sparsity pattern of this matrix is in Figure 5, while the sparsity pattern of thepermuted matrix, assoiated with the best omputed partition (ontaining 2690 utedges), obtained by the blok exhange approah, appears in Figure 6. During theomputation of this partition, bloks of size 500, 350, 244, 170, and 118 were ex-hanged. In onstrast, if pairs of verties are exhanged rather than bloks of verties,then starting from the initial partition V1 = f1; : : : ; 1000g and V2 = f1001; : : : ; 2000g,the iterates onverge to a partition with 3063 ut edges. The number of ut edgesfor other odes were the following: 2902 (pmetis), 2831 (hao/multi), 2838 (hao/-spetral), 2941 (hao/linear), 2990 (hao/random), and 2896 (hao/sattered).
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nz = 29156Figure 4: The pattern of the permuted matrix of Figure 2 assoiated with bestomputed partition. 8
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nz = 25558Figure 5: Pattern of the 25,558 nonzero elements for matrix G38 in Ye's test problemset.
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

nz = 25558Figure 6: The pattern of the permuted matrix of Figure 5 assoiated with the bestomputed partition. 9



Referenes[1℄ B. W. Kernighan and S. Lin (1970), \An eÆient heuristi proedure forpartitioning graphs," Bell System Tehnial Journal, vol. 49, pp. 291{307.[2℄ W. W. Hager and Y. Krylyuk (to appear), \Graph partitioning and on-tinuous quadrati programming," SIAM J. Disrete Math.[3℄ B. Hendrikson and E. Rothberg (1997), \Improving the runtime andquality of nested dissetion ordering," Tehnial report, Sandia National Labo-ratories, Albuquerque, NM.[4℄ G. Karypis and V. Kumar (1995), \METIS: Unstrutured graph partition-ing and sparse matrix ordering system," Tehnial report, Dept. of ComputerSiene, Univ. of Minnesota.

10


