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tIn a seminal paper (An eÆ
ient heuristi
 pro
edure for partitioning graphs,Bell System Te
hni
al Journal, 49 (1970), pp. 291{307), Kernighan and Linpropose a pair ex
hange algorithm for approximating the solution to min-
utgraph partitioning problems. In their algorithm, a vertex from one set in the
urrent partition is ex
hanged with a vertex in the other set to redu
e the sumof the weights of 
ut edges. The ex
hanges 
ontinue until the total weight ofthe 
ut edges is no longer redu
ed. In this paper, we 
onsider a blo
k ex
hangealgorithm in whi
h a group of verti
es from one set is ex
hanged with a groupof verti
es from the other set in order to minimize the sum of the weights of
ut edges. An optimal 
hoi
e for the ex
hanged verti
es is the solution to aquadrati
 programming problem.Keywords: Graph partitioning, min-
ut, quadrati
 programming.1



1 Introdu
tionIn min-
ut graph partitioning problems, we partition the verti
es of a graph intodisjoint sets satisfying spe
i�ed size 
onstraints, while minimizing the sum of theweights of (
ut) edges 
onne
ting verti
es in di�erent sets. In their seminal paper [1℄,Kernighan and Lin propose an ex
hange algorithm for approximating the best parti-tion. This algorithm determines a pair of verti
es, one from ea
h set, whose ex
hangede
reases the weights of the edges 
onne
ting the sets as mu
h as possible. Eventu-ally, the algorithm a
hieves a partitioning of the verti
es for whi
h any ex
hange of apair of verti
es either in
reases or leaves un
hanged the sum of the weights of the 
utedges. Although this partition 
ould be a lo
ally optimal, it may not be globally opti-mal sin
e the ex
hange of a 
olle
tion of verti
es 
ould redu
e the sum of the weightsof the 
ut edges. In this paper, we show that the optimal set of verti
es to ex
hange
an be obtained from the solution to a quadrati
 programming problem, while in [2℄we show that the solution to the graph partitioning problem is itself the solution toa related quadrati
 program. Iterative algorithms applied to this NP-hard programoften 
onverge to lo
al minimizers that are not global minimizers. An approximatesolution to the quadrati
 program asso
iated with the blo
k ex
hange problem yieldsa (nonlo
al) 
hange whi
h 
an be used as a starting point in an algorithm to solvethe quadrati
 programming formulation of the graph partitioning problem itself.2 Quadrati
 programming formulationLet G be a graph with n verti
es V :V = f1; 2; � � � ; ng;and let aij be a weight asso
iated with the edge (i; j). For ea
h i and j, we assumethat aii = 0, aij = aji, and if there is no edge between i and j, then aij = 0. The signof the weights is not restri
ted. Given a positive integer m < n, we wish to partitionthe verti
es into two disjoints sets, one with m verti
es and the other with n � mverti
es, while minimizing the sum of the weights asso
iated with edges 
onne
tingverti
es in di�erent sets. This optimal partition is 
alled a min-
ut.In [2℄ we show that for an appropriate 
hoi
e of the diagonal matrixD, the min-
ut
an be obtained by solving the following quadrati
 programming problem:minimize f(x) := (1 � x)T(A+D)xsubje
t to 0 � x � 1; 1Tx = m: (1)More pre
isely, for an appropriate 
hoi
e of D, (1) has a solution x� for whi
h ea
h
omponent is either zero or one. The two sets V1 and V2 in an optimal partition aregiven by V1 = fi : x�i = 1g and V2 = fi : x�i = 0g: (2)2



When x is a 0/1 ve
tor, the 
ost fun
tion f in (1) redu
es to the sum of those elementsaij of A 
orresponding to rows i where xi vanishes and 
olumns j where xj is one.Hen
e, when x is a 0/1 ve
tor, f(x) is the sum of the weights of edges 
onne
ting thesets V1 and V2 in (2). The following theorem from [2℄ shows how to 
hoose D.Theorem 2.1 [2℄. If D is 
hosen so thatdii + djj � 2aijfor ea
h i and j, then (1) has a 0=1 solution x� and the partition given by (2) is amin-
ut. Moreover, if for ea
h i and j,dii + djj > 2aij;then every lo
al minimizer of (1) is a 0=1 ve
tor.In the quadrati
 program (1), we emphasize that the variable x is 
ontinuous,with 
omponents taking values on the interval [0; 1℄. Theorem 2.1 
laims that this
ontinuous quadrati
 program has a 0/1 solution whi
h yields a min-
ut. When
ontinuous solution algorithms, su
h as the gradient proje
tion method, are appliedto (1), the iterates typi
ally 
onverge to an extreme point (either a lo
al minimizeror a saddle point) that may not be the global optimum. In order to es
ape from thislo
al optimum, we need to make a nonlo
al 
hange in x. Ex
hanging l verti
es in oneset with l verti
es in the other set is equivalent to repla
ing l ones in the x ve
tor byzeros and l zeros in the x ve
tor by ones. This 
hange represents a movement in xof length p2l. Su
h a nonlo
al 
hange 
ould potentially yield a starting point for aniterative method that would des
end a deeper valley than that 
ontaining the 
urrentbest approximation to a solution of (1).Suppose that the verti
es of V have been partitioned into two sets, V1 of size mand V2 of size n�m. We assume that the rows and 
olumns of A are symmetri
allypermuted so that verti
es in V1 
orrespond to the �rst m rows and 
olumns of A andthe verti
es of V2 
orrespond to the last n�m rows and 
olumns of A. Let us blo
kpartition A in the following way:A =  A11 A12A21 A22 ! ;where A11 and A22 
orresponds to leading m � m and trailing (n � m) � (n � m)submatri
es ofA. Given a positive integer l su
h that l � maxfm;n�mg, we 
onsiderthe following quadrati
 programming problem:minimize F (y; z) :=  1� y1� z !T  A11 +D1 �A12�A21 A22 +D2 ! yz !subje
t to 0 � y � 1; 1Ty = l; 0 � z � 1; 1Tz = l: (3)Here D1 and D2 are the 
ompatible diagonal blo
ks of D.3
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Figure 1: Inter
hange verti
es S1 in V1 with S2 in V2Suppose that y and z are 0/1 ve
tors with 1Ty = l and 1Tz = l, and de�ne thefollowing sets: S1 = fi : yi = 1g and S2 = fi+m : zi = 1g:We now observe that F (y; z) measures the 
hange in the sum of the weights of 
utedges 
orresponding to the ex
hange of verti
es S1 in V1 with the verti
es S2 in V2.In parti
ular, referring to Figure 1, the quantity (1 � y)TA11y is the sum of theweights of edges E1 
onne
ting the set S1 with its 
omplement in V1; (1 � z)TA22zis the sum of the weights of edges E2 
onne
ting the set S2 with its 
omplement inV2; (1 � z)TA21y is the sum of the weights of edges E3 
onne
ting the set S1 withthe 
omplement of S2 in V2; (1 � y)TA12z is the sum of the weights of edges E4
onne
ting the set S2 with the 
omplement of S1 in V1. When the verti
es S1 and S2are ex
hanged, the edges E3 and E4 
hange from external edges 
onne
ting V1 andV2 to internal edges, while the internal edges E1 and E2 
hange to external edges
onne
ting V1 and V2. Hen
e, the 
hange in the sum of the weights of 
ut edges is(1� y)TA11y + (1� z)TA22z� (1� z)TA21y� (1� y)TA12z;the di�eren
e between the weights of the newly 
reated external edges and the deletedexternal edges. This di�eren
e is pre
isely the 
ost fun
tion F (y; z) of (3) sin
e thediagonal terms (1� y)TD1y and (1� z)TD2z vanish when y and z are 0/1 ve
tors.4



If the 
omponents of y and z are restri
ted to be integers, then the quadrati
program (3) is equivalent to minimizing the in
rease in the sum of the edge weightsasso
iated with the ex
hange of the sets S1 and S2. If the in
rease is negative, thenthe ex
hange of S1 with S2 will de
rease the sum of the weights of the 
uts edges.Note though that in (3), we do not restri
t the 
omponents of y and z to be integers,and potentially, the minimum in this 
ontinuous problem is stri
tly smaller than theminimum in the dis
rete analogue where the variables are restri
ted to be 0/1. Thefollowing theorem, however, ensures that the 
ontinuous problem (3) has a (dis
rete)0/1 solution.Theorem 2.2. If D is 
hosen so thatdii + djj � 2aij (4)for ea
h i and j in [1;m℄ and for ea
h i and j in [m+1; n℄, then (3) has a 0=1 solution(y�; z�). Let us de�ne the sets V1 = f1; 2; : : : ;mg, V2 = fm+ 1;m+ 2; : : : ; ng,S1 = fi : y�i = 1g and S2 = fi+m : z�i = 1g:Ex
hanging the verti
es S1 of V1 with the verti
es S2 of V2 leads to the smallest possiblein
rease in the sum of the weights of 
ut edges among all possible l element subsets ofV1 and V2. Moreover, if for ea
h i and j in [1;m℄ and for ea
h i and j in [m+ 1; n℄,we have dii + djj > 2aij; (5)then every lo
al minimizer of (3) is a 0=1 ve
tor.Proof. Our proof is basi
ally the same as that given in [2℄ for Theorem 2.1. Givena solution (y; z) to (3), we 
onstru
t a pie
ewise linear path taking us from (y; z) to asolution (y�; z�) of (3) whose 
omponents are either 0 or 1. Let F(y) be the ina
tive(or free) 
omponents of the ve
tor y:F(y) = fi : 0 < yi < 1g: (6)Either F(y) is empty, and y� = y, or F(y) has two or more elements sin
e the
onstraint 1Ty = l of (3), where l is integer, 
annot be satis�ed when y has a singlenoninteger 
omponent. If F(y) has two or more elements, we show that there existsanother minimizing point �y with F(�y) stri
tly 
ontained in F(y), and F (x; z) =F (y; z) for all x on the line segment 
onne
ting y and �y. Utilizing this property inan indu
tive fashion, we 
on
lude that there exists a pie
ewise linear path taking usfrom any given minimizer (y; z) to another minimizer (y�; z) with F(y�) = ; (thatis, all the 
omponents of y� are either 0 or 1), and F (x; z) = F (y; z) for all x on thispath. The same argument applied to the z 
omponent of the solution (y�; z) showsthat there exists a z� that is feasible in (3) with F(z�) = ; and (y�; z�) optimal in(3). 5



If F(y) has two or more elements, then 
hoose two elements i and j 2 F(y), andlet v 2 Rm be the ve
tor whose entries are all zero ex
ept that vi = 1 and vj = �1.For � suÆ
iently small, (y+ �v; z) is feasible in (3). Expanding F in a Taylor seriesaround (y; z), we haveF (y+ �v; z) = F (y; z)� �2vT(A11 +D1)v: (7)The O(�) term in this expansion disappears sin
e F (y+ �v; z) a
hieves a minimumat � = 0, and the �rst derivative with respe
t to � vanishes at � = 0. In addition,from the inequality F (y+ �v; z) � F (y; z) for all � near 0;we 
on
lude that the quadrati
 term in (7) is nonnegative, or equivalently,vT(A11 +D1)v = diiv2i + djjv2j + 2aijvivj = dii + djj � 2aij � 0: (8)Sin
e dii+ djj� 2aij � 0 by (4), it follows that dii+ djj� 2aij = 0 and F (y+ �v; z) =F (y; z) for ea
h 
hoi
e of �. Let �� be the largest value of � for whi
h (y + �v; z) isfeasible in (3). De�ning �y = y + ��v, F(�y) is stri
tly 
ontained in F(y) and (�y; z)a
hieves the minimum in (3) sin
e F (y + �v; z) = F (y; z) for all �. In summary, forany given solution (y; z) to (3), we 
an �nd a point �y with F(�y) stri
tly 
ontainedin F(y) and F (x; z) = F (y; z) for all x on the line segment 
onne
ting y and �y.Pro
eeding by indu
tion, there exists a solution (y�; z) of (3) where y� is 0/1. Thesame argument applied to z shows that there exists a solution (y�; z�) of (3) wherez� is 0/1.Finally, suppose that (5) holds, that (y; z) is a lo
al minimizer for (3), and y isnot a 0/1 ve
tor. As noted above, F(y) has two or more elements, and the expansion(7) holds where the quadrati
 term satis�es (8), 
ontradi
ting (5). We 
on
lude thatF(y) is empty and y is a 0/1 ve
tor. By the same argument, z is 0/1 as well.3 Numeri
al illustrationsAs an appli
ation , let us 
onsider the 
ase where the edge weights are all one,m = n=2(the bise
tion problem), and D = I, the identity matrix. Our �rst example is thematrix ms
01050 in the Boeing test problem library found on Tim Davis' web pageat www.
ise.u
.edu/~davis/sparse/Boeing:This matrix is 1050 � 1050 with 29,156 nonzero entries. The pattern of the nonzeroentries appears in Figure 2. If the Kernighan/Lin ex
hange algorithm is applied,starting from the initial partitionV1 = f1; 2; : : : ; 525g and V2 = f526; 527; : : : ; 1050g;6
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nz = 29156Figure 2: Sparsity pattern for the test problem Boeing/ms
01050, 29,156 nonzeros.then it 
onverges to a partition with 2202 
ut edges.On the other hand, when the gradient proje
tion algorithm was applied to thequadrati
 program (1), we 
onverged to a lo
al minimizer with 1493 
ut edges. Now
onsider the following 
hoi
es for l in (3): l = 262, 183, 128, 89, 62, 43, 30, 21, 14,9, 6, 4, 2. These values for l are obtained by initializing l = 
oor(m=4) and thensu

essively multiplying l by .7. For ea
h 
hoi
e of l, we approximate the solution to(3) using the gradient proje
tion algorithm. After making the inter
hange, we treatthe resulting point as the intial guess in the gradient proje
tion algorithm appliedto (1). We only retain the resulting lo
al minimizer if it yields fewer 
ut edges.The number of 
ut edges after the ex
hange (swap) of the sets of size l and after thesubsequent gradient proje
tion (GP) steps appears in Figure 3. Hen
e, by ex
hangingblo
ks of size 183 and later of size 4, the number of 
ut edges is redu
ed from 1493down to 1455. If A is permuted so that the �rst 525 
olumns 
orrespond to theverti
es in one set in the best 
omputed partition, then the sparsity pattern of theresulting matrix appears in Figure 4. In this �gure, the 1455 
ut edges appear in thelower left 
orner. For 
omparison, the pmetis 
ode [4℄ of Karypis and Kumar generatesa partitioning with 1491 
ut edges with a slightly unbalan
ed partitioning (524/526).The Cha
o pa
kage of Hendri
kson and Rothberg gives the following number of 
utedges for the various implemented algorithms: 1578 (multi), 1565 (spe
tral), 1574(linear), 1574 (random), and 1544 (s
attered).For another example, we 
onsider the less stru
tured test problem G38 in Ye'stest problem 
olle
tion found atftp://dollar.biz.uiowa.edu/pub/yyye/Gset/:7



l Cut edges Cut edgesafter swap after GP262 1562 1562183 1458 1456128 1512 151189 1520 150362 1493 146143 1481 145730 1467 1461 l Cut edges Cut edgesafter swap after GP21 1465 145814 1459 14589 1464 14576 1457 14574 1455 14552 1455 1455Figure 3: Blo
k ex
hange for the matrix of Figure 2The sparsity pattern of this matrix is in Figure 5, while the sparsity pattern of thepermuted matrix, asso
iated with the best 
omputed partition (
ontaining 2690 
utedges), obtained by the blo
k ex
hange approa
h, appears in Figure 6. During the
omputation of this partition, blo
ks of size 500, 350, 244, 170, and 118 were ex-
hanged. In 
onstrast, if pairs of verti
es are ex
hanged rather than blo
ks of verti
es,then starting from the initial partition V1 = f1; : : : ; 1000g and V2 = f1001; : : : ; 2000g,the iterates 
onverge to a partition with 3063 
ut edges. The number of 
ut edgesfor other 
odes were the following: 2902 (pmetis), 2831 (
ha
o/multi), 2838 (
ha
o/-spe
tral), 2941 (
ha
o/linear), 2990 (
ha
o/random), and 2896 (
ha
o/s
attered).
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