QUADRATIC PROGRAMMING TECHNIQUES FOR GRAPH
PARTITIONING *

SOONCHUL PARK', TIMOTHY A. DAVIS!, WILLIAM W. HAGER!, AND HONGCHAO
ZHANGT

Abstract. In a seminal paper (An efficient heuristic procedure for partitioning graphs, Bell
System Technical Journal, 49 (1970), pp. 291 307), Kernighan and Lin propose a pair exchange
algorithm for approximating the solution to min-cut graph partitioning problems. In their algorithm,
a vertex from one set in the current partition is exchanged with a vertex in the other set when the sum
of the weights of cut edges is reduced. This algorithm along with the related Fiduccia/Mattheyses
scheme are incorporated in state-of-the-art graph partitioning software such as METIS. In this paper
we show that a quadratic programming-based block exchange generalization of the Kernighan and
Lin algorithm can yield a significant improvement in partition quality.
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1. Introduction. The graph partitioning problem is to partition the vertices of a
graph into several disjoint sets satisfying specified size constraints, while minimizing
the sum of the weights of (cut) edges connecting vertices in different sets. Graph
partitioning problems arise in circuit board and microchip design, in other layout
problems (see [21]), and in sparse matrix pivoting strategies. In parallel computing,
graph partitioning problems arise when tasks are partitioned among processors in
order to minimize the communication between processors and balance the processor
load. An application of graph partitioning to parallel molecular dynamics simulations
is given in [26].

In [11, 12] we show that the graph partitioning problem can be formulated as
a continuous quadratic programming problem denoted QP;. Since the graph parti-
tioning problem is NP hard, computing a global minimizer of QP; is often not easy.
When continuous solution algorithms, such as the gradient projection method, are
utilized, the iterates typically converge to a local minimizer which is not the global
optimum. To escape from this local optimum, we need to make a nonlocal change
to obtain a better iterate, which might then be used as a new starting guess for the
gradient projection method.

In their seminal paper [20], Kernighan and Lin propose an exchange algorithm,
denoted KL, for trying to improve any given partition of the vertices. A pair of
vertices in the current partition is exchanged if the weights of the edges connecting
the partitioned sets is decreased. Eventually, the algorithm reaches a partition of the
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vertices for which any exchange either increases or leaves unchanged the sum of the
weights of the cut edges.

The KL exchange is an example of a nonlocal change; for our quadratic pro-
gramming formulation of the graph partitioning problem, it amounts to movement of
distance v/2. In this paper, we present a generalization of the KL pairwise exchange
in which we allow an arbitrary block of vertices in one set of the partition to be moved
to the other set. We show that the optimal exchange is the solution to a new QP,
denoted QP,. which is related to but different from QP;. The block exchange QP,
is more robust than KL for escaping from a local minimizer in QP since there is no
restriction on the number of vertices being exchanged.

Approaches to the graph partitioning problem in the literature include:

(a) Spectral methods, such as those in [16] and [24], where an eigenvector cor-
responding to the second smallest eigenvalue (Fiedler vector) of the graph’s
Laplacian is used to approximate the best partition.

(b) Geometric methods, such as those in [9, 14, 23], where geometric information
for the graph is used to find a good partition.

(c) Multilevel algorithms, such as those in [5, 6, 15, 17, 25, 27], that first coarsen
the graph, partition the smaller graph, then uncoarsen to obtain a partition
for the original graph.

(d) Optimization-based methods, such as those in [1, 2, 3, 7, 28], where approxi-
mations to the best partitions are obtained by solving optimization problems.

(e) Methods that employ randomization techniques such as genetic algorithms
([22] or [25]).

State-of-the-art algorithms for graph partitioning which achieve both relatively
high quality partitions and fast execution times include p- and h-METIS ([17], [18],
[19]). These are multilevel algorithms which use either KL or the related Fiduc-
cia/Mattheyses [8] (FM) schemes to improve the partition at each level. In this paper
we show that the final partitions generated by METIS can be further optimized by
exploiting QP; and QP,. In a separate paper, we are developing a multilevel imple-
mentation of our optimization-based algorithms where the role of the KL or FM are
either replaced or assisted by the QP-based optimization algorithms at each level.

The paper is organized as follows. In Section 2 we present QP,, while Section 3
derives QP,. In Section 4 we show how to incorporate QP; and QP, into a general
algorithm for graph partitioning. Section 5 analyzes the potential improvement in a
partition that can be achieved using the QP-based approach.

2. Graph partitioning. Consider a graph with n vertices
V= {1727"'7”’}7

and let a;; be a weight associated with the edge (i,j). We assume that a;; = 0 and
a;; = aj; for each ¢ and j. The sign of the weights is not restricted. Given lower and
upper integer bounds [ and u respectively, we wish to partition the vertices into two
disjoint sets, where one of the sets has between [ and u vertices, while minimizing
the sum of the weights associated with edges connecting vertices in different sets. An
optimal partition is called a min-cut.

Let us consider the following quadratic programming problem which we denote

QP;:
minimize f(x) := (1 —x)"(A + D)x

(2.1)
subject to 0 <x <1, I <1Tx < u,
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where 1 is the vector whose entries are all 1, A is the matrix with elements a;;, and
D is a diagonal matrix. When x is binary, the cost function f(x) in (2.1) is the sum
of those a;; for which z; = 0 and z; = 1. Hence, when x is binary, f(x) is the sum of
the weights of edges connecting the sets V; and Vs, defined by

(2.2) Vi={i:z;=1} and Vo= {i:z; =0}

In [11] we show that for an appropriate choice of the diagonal matrix D, the
min-cut is obtained by solving (2.1); that is, (2.1) has a solution x for which each
component is either zero or one, and the two sets V; and V, in an optimal partition
are given by (2.2). The following result [11, Cor. 2.2] shows how to choose D.

THEOREM 2.1. If D is chosen so that
(2.3) dii + dj; > 2aij

for each i and j, then (2.1) has a 0/1 solution x and the partition given by (2.2) is a
min-cut. Moreover, if for each i and j,

di; + djj > 2aij,

then every local minimizer of (2.1) is a 0/1 vector.

The condition (2.3) holds if the diagonal of D is chosen in the following way:
(2.4) d;; = max{a;; : 1 <i <n}

In the quadratic program (2.1), the variable x is continuous, with components taking
values on the interval [0,1]. Theorem 2.1 claims that this continuous quadratic pro-
gram has a 0/1 solution which yields a min-cut. As we now show, any feasible point
for (2.1) can be transformed to a binary feasible point while not increasing the value
of the cost function. Hence, any solution to (2.1) with fractional components can be
transformed to a binary solution.

COROLLARY 2.2. If D satisfies (2.3), then for any x which is feasible in (2.1),
there exist a binary y which is feasible in (2.1) and f(y) < f(x).

Proof. We first show how to find y with the property that y is feasible in (2.1),
1Ty is integer, and f(y) < f(x). If 1Tx = w or 17x = [, then we are done since [
and u are integers; hence, we assume that [ < 1Tx < u. If all components of x are
binary, then we are done, so suppose that there exists a nonbinary component ;.
Since a;; = 0, a Taylor expansion of f gives

f(x 4+ ae;) = f(x) + aV,, f(x) — o®dy;,

where e; is the i-th column of the identity matrix. The quadratic term in the expansion
is nonpositive. If the first derivative term is negative, then increase o above 0 until
either z; + a becomes 1 or 17x + « is an integer. Since the first derivative term
is negative and a > 0, f(x + ae;) < f(x). If 1"x + a becomes an integer, then
we are done. If z; + a becomes 1, then we reach a point x; with one more binary
component and with a smaller value for the cost function. If the first derivative term
is nonnegative, then decrease a below 0 until either z; + a becomes 0 or 1Tx + o is an
integer. Since the first derivative term is nonnegative and a < 0, f(x + ae;) < f(x).
If 1"x + o becomes an integer, then we are done. If z; + a becomes 0, then we
reach a point x; with one more binary component and with a smaller value for the
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cost function. In this latter case, we choose another nonbinary component of x; and
repeat the process. Hence, there is no loss of generality in assuming that 1Tx is an
integer.

Suppose that x is not binary. Since 1Tx is an integer, x must have at least two
nonbinary components, say z; and x;. Again, expanding f is a Taylor series gives

fx+alei —e)) = f(x) + a(Va, — Va,) f(x) + a® (2035 — dis — djj).

By (2.3), the quadratic term is nonpositive for any choice of a. If the first derivative
term is negative, then we increase o above 0 until either z; 4+« reaches 1 or z; —a reach
0. Since the first derivative term is negative and o > 0, f(x + a(e; —e;)) < f(x).
If the first derivative term is nonnegative, then we decrease a below 0 until either
x; + a reaches 0 or z; — a reach 1. Since the first derivative term is nonnegative
and a < 0, f(x + ale; —e;)) < f(x). In either case, the value of the cost function
does not increase, and we reach a feasible point x; with 17x; integer and with at
least one more binary component. If x; is not binary, then x; must have at least two
nonbinary components; hence, the adjustment process can be continued until all the
components of x are binary. These adjustments to x do not increase the value of the
cost function. O

The continuous quadratic programming problem (2.1) is NP hard. Hence, when
continuous solution algorithms, such as the gradient projection method, are applied
to (2.1), the iterates typically converge to a local minimizer which is not the global
optimum. In order to escape from this local optimum, we need to make a nonlocal
change in x to locate a deeper valley than that containing the current best approx-
imation to a solution of (2.1). The KL exchange is an example of such a nonlocal
change, the length of the movement is v/2 since a 0 becomes 1 and a 1 becomes zero in
x. However, we have achieved much better success in escaping from local minimizers
if we allow many components of x to change. The next section describes our block
exchange QP.

3. Block exchange. Let x be a 0/1 vector satisfying the constraints of (2.1)
and let V; and V, be the sets defined in (2.2). In a block exchange, the goal is to
move some of the vertices of V; to Vs and some of the vertices of Vs to Vi while
satisfying the constraint that the number of vertices in V; should be between [ and u.
Let y and z be subvectors of x which correspond to the components of x which are 1
and 0 respectively. In other words, the i-th component of y corresponds to the i-th
vertex in )V, which we now view as an ordered set. Similarly, the i-th component of
z corresponds to the i-th vertex in V,. We set y; = 1 if and only if the i-th element
of V; is moved to V,. Similarly, let us set z; = 1 if and only if the j-th element of
Y, is moved to V;. The number of vertices in V; is initially 1Tx. The constraint
that the total number of vertices in V; lies between [ and u after the exchange can be
expressed

(3.1) I-1"x<1Tz-1Ty<u—-1Tx.
Let X7 and A5 be the support of y and z respectively:
Xi={i:yy=1} and Ao ={j:z; =1}

These sets correspond to the vertices which are exchanged. The indices in &) corre-
spond to vertices in V; which are moved to Vs; the indices in X5 correspond to vertices
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Fi1Gg. 3.1. Ezchange vertices X1 in V1 with Xo in Vo

in Vo which are moved to V;. The edges which participate in the exchange are the
following (see Figure 3.1):

&1 = Edges between X; and V; \ &)
&y = Edges between Xy and Vs \ Ay
&3 = Edges between X} and Vs \ Ay
&, = Edges between Xy and V; \ &)

Edges connecting X} and A5 and edges connecting V; \ X and V, \ X5 are not effected
by the exchange so they are ignored.

The change in the number of cut edges due to the exchange of vertices associated
with X7 and A} is given by the expression:

(3.2) &) + [E2] = 5] = |€4]

where |&;| denotes the number of elements in the set &. Before the exchange, the
edges & and &, are internal edges, while after the exchange, they become external
edges that are included in the collection of cut edges. Before the exchange, the edges
&3 and &, are external edges, included in the set of cut edges; after the exchange,
these edges are internal edges.

Suppose that the rows and columns of A are symmetrically permuted so that the
leading rows and columns correspond to Vi, the support of x, and the trailing rows
and columns correspond to V,. We block partition the resulting A in the form

A Ayp
3.3 A= ,
(3:3) < Ay A
where Ay; correspond to V;, i = 1,2. Similar to (3.2), the change in the weight of the
cut edges associated with the exchange is given by
(34) (1 — y)TAl]y + (1 - Z)TAQQZ - (]. — Z)TAgly — (]. — y)TA]QZ.

The first two terms are the weights of external edges created by the exchange, while
the last two terms are the weight of the prior external edges which became internal
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after the exchange. Observe that the quadratic (3.4) can be written

-
(3.5) 1-y A —Ap Yy
’ 11z *Agl A22 VA ’
Motivated by (3.1) and (3.5), we consider the following quadratic programming
problem which we denote QP,:

-
subject to 0<y <1, 0<z<1, [—-1"x<1"z—1Ty<u—-1Tx.
Here D; and D, are diagonal matrices. If y and z are binary, then the terms
(1-y)'Dyy and (1-2) Dz
have no effect on the cost F' since
(1-y)Djy=0=(1-12)D;z.

As with the quadratic formulation (2.1) of the graph partitioning problem, we show
that that for a suitable choice of D; and Dy, the quadratic formulation (3.6) of the
exchange problem has a 0/1 solution. Moreover, the proof reveals how to convert
a fractional solution to a 0/1 solution without increasing the cost. In the following
theorem, we assume that the original matrix of weights A has been symmetrically
permuted into the form (3.3) so that the leading rows and columns correspond to the
support of a 0/1 vector x feasible in (2.1).

THEOREM 3.1. If x is a 0/1 vector which is feasible for (2.1), and the diagonal
matriz D satisfies the condition

(37) di; + djj — 2(11']' >0 fOT‘ all © and j,

then (3.6) has a 0/1 solution.

Again, (3.7) is satisfied for the choice of D given in (2.4).

Proof. Since I and u are integers and since x is 0/1, it follows that both [ — 1Tx
and u — 17x are integers. Let y and z be feasible in (3.6). We first show that there
exists a feasible point (y,z) for (3.6) with 17z — 17y integer and F(y,z) < F(y,z).
If 1Tz — 1Ty is not an integer, then at least one component of either y or z is not
an integer. Suppose that y; is not an integer and let e; denote the i-th column of the
identity matrix. Expanding F' in a Taylor series gives

F(y + aei,z) = F(y‘Z) + avyiF(y7z) - a2dii

since a; = 0. The last term —a?d;; is nonpositive due to (3.7). If the first derivative
V,, F(y,z) is negative, then increase a above 0 until either y;+a =1 or 1"z—-1Ty—a
becomes an integer, whichever occurs first. This leads us to a new point with strictly
smaller cost than the original (y,z) since the first derivative term is negative and the
cost decreases as a increases. If the increase in o causes 17z — 1Ty — & to become an
integer, then we are done. If y; + a becomes 1, then we reach a feasible point y + ae;
which has one more binary component.
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If the first derivative V,, F(y,z) is nonnegative, then decrease a below 0 until
either y; + @ =0o0r 1Tz — 1Ty — a becomes an integer, whichever occurs first. Since
V., F(y,z) is nonnegative, this decrease in o will not increase the value of the cost
function. Again, if 17z — 1Ty — a becomes an integer, we are done. Otherwise, y; +
becomes zero and we reach a point y + ae; which has one more binary component.
By inductively applying these adjustments to the fractional components of y and z,
we eventually reach a feasible point (y,z) with a better value for the cost function
and with 17z — 1Ty integer. Thus, without loss of generality, we assume that (y,z)
is feasible in (3.6) and 1Tz — 1Ty is integer.

Suppose that y has at least two nonbinary components; let y; and y; denote
nonbinary components of y. Expanding in a Taylor series gives

F(y + ale; —e;),z) = F(y,z) + a(Vy, — V,,)F(y,z) + o*(2a;; — di; — dj;).

By (3.7) the a? term is nonnegative for any choice of a. If the first derivative term
(Vy; — Vy,)F(y,z) is negative, then we increase a above 0 to decrease the cost. We
continue to increase a until some component of y + a(e; — e;) reaches either 0 or 1.
Since 17 (e; — e;) = 0, we have

1"z -1T(y + ale; —ej)) =1z 1"y.

Hence, this adjustment to components y; and y; of y leads us to a new point with at
least one more binary component and with 17z — 1Ty integer. The same adjustment
process can be applied to the components of z. Hence, when we are done, 17z — 1Ty
is an integer and y and z have at most one nonbinary component.

Suppose that y has one nonbinary component y;. Since 17z — 1Ty is an integer,
z must have a nonbinary component denoted z; and y; = 2. Define j = k + V4.
Expanding in a Taylor series gives

F(y + ae;,z + aey) = F(y,z) + a(Vy, + V., )F(y,z) + *(2a;; — di; — dj;).

By (3.7) the last term is nonpositive for all choices of a. If the first derivative term is
negative, then we increase a above 0 until y; + a = 1 = z + a. If the first derivative
term is nonnegative, then we decrease a below 0 until y; + a = 0 = 2z + a. In either
case, after these adjustments in the i-th component of y and the k-th component of z,
the cost value does not increase and the difference 17z — 1Ty does not change; hence,
the new point is binary and feasible in QP,. This completes the proof. O

COROLLARY 3.2. If D is chosen so that the inequality (3.7) is strict, then every
local minimizer of (3.6) is binary.

Proof. By the analysis given in the proof of Theorem 3.1, any nonbinary local
minimizer can be pushed to the boundary while improving the value of the cost
function. If the inequality (3.7) is strict, then when we push to the boundary, the
value of the cost function is strictly decreased. Hence, any local minimizer must be
binary. O

4. The algorithm. We now explain how to incorporate the theory developed in
Sections 2 and 3 in an optimization algorithm for the graph partitioning problem. The
overall strategy is to apply an optimization algorithm, such as the gradient projection
method, to QP; until we reach a local minimizer; next, we apply an optimization algo-
rithm to the exchange quadratic program QP, in an effort to escape from the current
local minimum. If we are unable to find a better point, then we stop. Otherwise, use
the x obtained from QP, as a starting guess in QP; and repeat the process.
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We use two different optimization algorithms to approximate a solution to QP;
and QP,. In the first optimization algorithm, we approximate the feasible set by
a sphere and we utilize the algorithm in [10, 13] to efficiently compute the global
minimum. Typically, a global minimizer for this sphere constrained problem lies
outside the feasible set. Hence, we project a global minimizing point onto the feasible
set. Such a projection is easily computed in O(n) time. In the second optimization
algorithm, we apply the gradient projection algorithm to either QP; or QP,. We used
a version of the gradient projection algorithm based on an Armijo line search along
the projection arc (see [4, p. 226]).

In more detail, the steps of the algorithm are as follows:

Al

A2.

A3.

A4.

A5.

A6.

AT.

AS8.

A9.

Define x. = a1, a = (I+u)/(2n). Let x; be a solution to the following sphere
constrained problem

min f(x) subject to 17x = (I + u)/2 and ||x — x.||* < r}.

Since QP has a solution with between | and u ones and with the remaining
entries zero, we choose 71 to include all points x with (I 4+ u)/2 ones and with
the remaining entries zero. In other words,

! l
rf:(la)2< -;u) +a? <n -;u>.

Let x4 be the projection of x; onto the feasible set for QP,. If f(x2) > f(x.)
then reduce r; and repeat Al.

Starting from xo, we apply the gradient projection method to QP; until we
reach a stationary point denoted x3.

Using the method developed in Corollary 2.2, we transform x3 to a binary
vector x4 with a better value for the cost function.

Based on the binary structure of x4, we partition A as indicated in (3.5). Let
d, and d, denote the dimensions of y and z. With a permutation of A, it
can be arranged so that d. < d,. We define z. = .5 and y. = .5d./d, (hence,
17z, — 1Ty, = 0). Let x5 = (y,z) be any solution of the problem

(4.1) min F(y,z) subject to 17z = 1Ty, |ly — y.||> + |1z — z||” < r3,
where
r: = —.75d, + d, + .25d> /d,.

The radius r5 of the sphere in (4.1) is chosen large enough to ensure that
all possible solutions to the problem of minimizing F(y,z), subject to the
constraint that 17z = 1Ty and y and z are binary, are contained in the
sphere.

Let xg be the projection of x5 into the feasible set of QP,. If F(xg) >
F(y.,z.), then reduce r5 and repeat A5.

Starting from xg, we apply the gradient projection method to QP, until we
reach a stationary point denoted x7.

Using the method developed in Theorem 3.1, we transform x7; to a binary
vector Xg.

If the exchange associated with xg improves the partitioning associated with
x4, then we apply the exchange to x4 to obtain the new point xg; set xo =
xg and branch to A3. If the exchange associated with xg does not strictly
improve the partitioning associated with x4, then we are done.
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For the numerical experiments reported in this paper, we did not reduce the
radius of the spheres, as suggested in A2 and A6, when the solution of the sphere
constrained problem yielded a poorer objective function value than the centroid of
the sphere. This enhancement will be incorporated in a multilevel version of our
algorithms.

5. Numerical results. The optimization-based algorithm developed in Section
4 should require much more CPU time than the multilevel technology of METIS since
the optimization algorithms operate on the entire matrix. We are in the process of
developing compiled code and multilevel technology where the optimization method-
ology of Section 4 is applied to the compressed graphs generated in the multilevel
approach. As a preliminary assessment of the merits of the optimization-based strat-
egy for graph partitioning, we applied both p- and h-METIS to a series of graph
bisection problems. In other words, if n is even, then | = v = n/2, and if n is odd,
then I = u = (n + 1)/2. The partitions generated by p- or h-METIS were used as
starting points for the optimization algorithm in step A3 to determine whether the
METIS generated partitions could be further improved using the optimization algo-
rithms. All the algorithms were implemented in MATLAB, and the test problems
were obtained from the UF Sparse Matrix Library maintained by Timothy Davis:

http://www.cise.ufl.edu/research/sparse/matrices/

In our numerical experiments, the diagonal of A is always zero. The off-diagonal
elements are constructed as follows: If S is a symmetric matrix in the library, then
then a;; = 0 if s;; = 0 and a;; = 1 otherwise. If S is a m by n nonsymmetric matrix
with m > n, then a;; = 0 if (STS);; = 0 and a;; = 1 otherwise. If m < n, then
Ajj = 0 if (SST)” =0 and Ajj = 1 otherwise.

Since our codes are in MATLAB, we could not apply them to all the test matrices
(without expending a huge amount of CPU time). Altogether, we tried 701 test
problems; the mean dimension for A was 1157 and the mean number of edges in
the test problems was 57,057. There were 287 problems with dimension greater than
1,000, and there were 307 problems with more than 10,000 edges in the graph.

To quantitatively evaluate the improvement provided by the optimization rou-
tines, we evaluated the quantity:

reduction in number of cut edges due to optimization algorithms
the number of cut edges obtained by METIS

This expression gives the percent improvement in the number of cut edges obtained
by applying the optimization algorithms to the final partition generated by METIS.
In Table 5 we show the percentage of the matrices for which we could improve the
partition using the optimization algorithms. A detailed tabulation of our results is
posted at the following web site:

http://www.math.ufl.edu/~hager/papers/GP/

For each of the matrices where the cut edges were improved, we also compute the
average percentage of improvement. Overall, we could improve the partitions gener-
ated by p-METIS in about 50% of the problems, and the average improvement was
about 10%. We could improve the partitions generated by h-METIS in about 31%
of the problems, and the average improvement was about 5.7%. For both versions
of METIS, the greatest improvement occurred in matrices of the largest dimension.
In particular, for matrices of dimensions between 4001 and 5000, the average im-
provement for p-METIS was 11.8% while the average improvement for h-METIS was
9.2%.

x 100.
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(1]
(2]

[10]
(11]

[12]
(13]

[14]
(15]
[16]
(17]
(18]

[19]
20]

Dimension Number of Problems with Average
of problem problems | Method cut edge reduction improvement
11y | PVETTS 103 (44%) 10.02%
1to1

to 1000 h-METIS 118 (27%) 5.48%
p-METIS 111 (71%) 11.37%

1001 to 2 1
001 to 2000 56 | METTS 50 (32%) 5.52%
o 1 | PMETTS 35 (73%) 7.31%
001 to 3000 | hMETTS 18 (38%) 4.09%
p-METIS 18 (55%) 9.64%
3001 to 4000 3| METIS 16 (49%) 7.42%
p-METIS 14 (70%) 11.82%
4001 to 5000 20| | METIS 12 (60%) 9.21%

TABLE 5.1

Improvement in p- and h-METIS due to the optimization algorithms
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