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t. In a seminal paper (An eÆ
ient heuristi
 pro
edure for partitioning graphs, BellSystem Te
hni
al Journal, 49 (1970), pp. 291{307), Kernighan and Lin propose a pair ex
hangealgorithm for approximating the solution to min-
ut graph partitioning problems. In their algorithm,a vertex from one set in the 
urrent partition is ex
hanged with a vertex in the other set when the sumof the weights of 
ut edges is redu
ed. This algorithm along with the related Fidu

ia/Mattheysess
heme are in
orporated in state-of-the-art graph partitioning software su
h as METIS. In this paperwe show that a quadrati
 programming-based blo
k ex
hange generalization of the Kernighan andLin algorithm 
an yield a signi�
ant improvement in partition quality.Key words. graph partitioning, min-
ut, quadrati
 programmingAMS subje
t 
lassi�
ations. 65K05, 65Y20, 90C201. Introdu
tion. The graph partitioning problem is to partition the verti
es of agraph into several disjoint sets satisfying spe
i�ed size 
onstraints, while minimizingthe sum of the weights of (
ut) edges 
onne
ting verti
es in di�erent sets. Graphpartitioning problems arise in 
ir
uit board and mi
ro
hip design, in other layoutproblems (see [21℄), and in sparse matrix pivoting strategies. In parallel 
omputing,graph partitioning problems arise when tasks are partitioned among pro
essors inorder to minimize the 
ommuni
ation between pro
essors and balan
e the pro
essorload. An appli
ation of graph partitioning to parallel mole
ular dynami
s simulationsis given in [26℄.In [11, 12℄ we show that the graph partitioning problem 
an be formulated asa 
ontinuous quadrati
 programming problem denoted QP1. Sin
e the graph parti-tioning problem is NP hard, 
omputing a global minimizer of QP1 is often not easy.When 
ontinuous solution algorithms, su
h as the gradient proje
tion method, areutilized, the iterates typi
ally 
onverge to a lo
al minimizer whi
h is not the globaloptimum. To es
ape from this lo
al optimum, we need to make a nonlo
al 
hangeto obtain a better iterate, whi
h might then be used as a new starting guess for thegradient proje
tion method.In their seminal paper [20℄, Kernighan and Lin propose an ex
hange algorithm,denoted KL, for trying to improve any given partition of the verti
es. A pair ofverti
es in the 
urrent partition is ex
hanged if the weights of the edges 
onne
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es for whi
h any ex
hange either in
reases or leaves un
hanged the sum of theweights of the 
ut edges.The KL ex
hange is an example of a nonlo
al 
hange; for our quadrati
 pro-gramming formulation of the graph partitioning problem, it amounts to movement ofdistan
e p2. In this paper, we present a generalization of the KL pairwise ex
hangein whi
h we allow an arbitrary blo
k of verti
es in one set of the partition to be movedto the other set. We show that the optimal ex
hange is the solution to a new QP,denoted QP2, whi
h is related to but di�erent from QP1. The blo
k ex
hange QP2is more robust than KL for es
aping from a lo
al minimizer in QP1 sin
e there is norestri
tion on the number of verti
es being ex
hanged.Approa
hes to the graph partitioning problem in the literature in
lude:(a) Spe
tral methods, su
h as those in [16℄ and [24℄, where an eigenve
tor 
or-responding to the se
ond smallest eigenvalue (Fiedler ve
tor) of the graph'sLapla
ian is used to approximate the best partition.(b) Geometri
 methods, su
h as those in [9, 14, 23℄, where geometri
 informationfor the graph is used to �nd a good partition.(
) Multilevel algorithms, su
h as those in [5, 6, 15, 17, 25, 27℄, that �rst 
oarsenthe graph, partition the smaller graph, then un
oarsen to obtain a partitionfor the original graph.(d) Optimization-based methods, su
h as those in [1, 2, 3, 7, 28℄, where approxi-mations to the best partitions are obtained by solving optimization problems.(e) Methods that employ randomization te
hniques su
h as geneti
 algorithms([22℄ or [25℄).State-of-the-art algorithms for graph partitioning whi
h a
hieve both relativelyhigh quality partitions and fast exe
ution times in
lude p- and h-METIS ([17℄, [18℄,[19℄). These are multilevel algorithms whi
h use either KL or the related Fidu
-
ia/Mattheyses [8℄ (FM) s
hemes to improve the partition at ea
h level. In this paperwe show that the �nal partitions generated by METIS 
an be further optimized byexploiting QP1 and QP2. In a separate paper, we are developing a multilevel imple-mentation of our optimization-based algorithms where the role of the KL or FM areeither repla
ed or assisted by the QP-based optimization algorithms at ea
h level.The paper is organized as follows. In Se
tion 2 we present QP1, while Se
tion 3derives QP2. In Se
tion 4 we show how to in
orporate QP1 and QP2 into a generalalgorithm for graph partitioning. Se
tion 5 analyzes the potential improvement in apartition that 
an be a
hieved using the QP-based approa
h.2. Graph partitioning. Consider a graph with n verti
esV = f1; 2; � � � ; ng;and let aij be a weight asso
iated with the edge (i; j). We assume that aii = 0 andaij = aji for ea
h i and j. The sign of the weights is not restri
ted. Given lower andupper integer bounds l and u respe
tively, we wish to partition the verti
es into twodisjoint sets, where one of the sets has between l and u verti
es, while minimizingthe sum of the weights asso
iated with edges 
onne
ting verti
es in di�erent sets. Anoptimal partition is 
alled a min-
ut.Let us 
onsider the following quadrati
 programming problem whi
h we denoteQP1: minimize f(x) := (1� x)T(A+D)xsubje
t to 0 � x � 1; l � 1Tx � u;(2.1)



QUADRATIC PROGRAMMING AND GRAPH PARTITIONING 3where 1 is the ve
tor whose entries are all 1, A is the matrix with elements aij , andD is a diagonal matrix. When x is binary, the 
ost fun
tion f(x) in (2.1) is the sumof those aij for whi
h xi = 0 and xj = 1. Hen
e, when x is binary, f(x) is the sum ofthe weights of edges 
onne
ting the sets V1 and V2 de�ned byV1 = fi : xi = 1g and V2 = fi : xi = 0g:(2.2)In [11℄ we show that for an appropriate 
hoi
e of the diagonal matrix D, themin-
ut is obtained by solving (2.1); that is, (2.1) has a solution x for whi
h ea
h
omponent is either zero or one, and the two sets V1 and V2 in an optimal partitionare given by (2.2). The following result [11, Cor. 2.2℄ shows how to 
hoose D.Theorem 2.1. If D is 
hosen so thatdii + djj � 2aij(2.3)for ea
h i and j, then (2:1) has a 0=1 solution x and the partition given by (2:2) is amin-
ut. Moreover, if for ea
h i and j,dii + djj > 2aij ;then every lo
al minimizer of (2:1) is a 0=1 ve
tor.The 
ondition (2.3) holds if the diagonal of D is 
hosen in the following way:djj = maxfaij : 1 � i � ng(2.4)In the quadrati
 program (2.1), the variable x is 
ontinuous, with 
omponents takingvalues on the interval [0; 1℄. Theorem 2.1 
laims that this 
ontinuous quadrati
 pro-gram has a 0/1 solution whi
h yields a min-
ut. As we now show, any feasible pointfor (2.1) 
an be transformed to a binary feasible point while not in
reasing the valueof the 
ost fun
tion. Hen
e, any solution to (2.1) with fra
tional 
omponents 
an betransformed to a binary solution.Corollary 2.2. If D satis�es (2:3), then for any x whi
h is feasible in (2:1),there exist a binary y whi
h is feasible in (2:1) and f(y) � f(x).Proof. We �rst show how to �nd y with the property that y is feasible in (2.1),1Ty is integer, and f(y) � f(x). If 1Tx = u or 1Tx = l, then we are done sin
e land u are integers; hen
e, we assume that l < 1Tx < u. If all 
omponents of x arebinary, then we are done, so suppose that there exists a nonbinary 
omponent xi.Sin
e aii = 0, a Taylor expansion of f givesf(x+ �ei) = f(x) + �rxif(x)� �2dii;where ei is the i-th 
olumn of the identity matrix. The quadrati
 term in the expansionis nonpositive. If the �rst derivative term is negative, then in
rease � above 0 untileither xi + � be
omes 1 or 1Tx + � is an integer. Sin
e the �rst derivative termis negative and � > 0, f(x + �ei) < f(x). If 1Tx + � be
omes an integer, thenwe are done. If xi + � be
omes 1, then we rea
h a point x1 with one more binary
omponent and with a smaller value for the 
ost fun
tion. If the �rst derivative termis nonnegative, then de
rease � below 0 until either xi+� be
omes 0 or 1Tx+� is aninteger. Sin
e the �rst derivative term is nonnegative and � < 0, f(x+ �ei) � f(x).If 1Tx + � be
omes an integer, then we are done. If xi + � be
omes 0, then werea
h a point x1 with one more binary 
omponent and with a smaller value for the
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ost fun
tion. In this latter 
ase, we 
hoose another nonbinary 
omponent of x1 andrepeat the pro
ess. Hen
e, there is no loss of generality in assuming that 1Tx is aninteger.Suppose that x is not binary. Sin
e 1Tx is an integer, x must have at least twononbinary 
omponents, say xi and xj . Again, expanding f is a Taylor series givesf(x+ �(ei � ej)) = f(x) + �(rxi �rxj )f(x) + �2(2aij � dii � djj):By (2.3), the quadrati
 term is nonpositive for any 
hoi
e of �. If the �rst derivativeterm is negative, then we in
rease � above 0 until either xi+� rea
hes 1 or xj�� rea
h0. Sin
e the �rst derivative term is negative and � > 0, f(x + �(ei � ej)) < f(x).If the �rst derivative term is nonnegative, then we de
rease � below 0 until eitherxi + � rea
hes 0 or xj � � rea
h 1. Sin
e the �rst derivative term is nonnegativeand � < 0, f(x + �(ei � ej)) � f(x). In either 
ase, the value of the 
ost fun
tiondoes not in
rease, and we rea
h a feasible point x1 with 1Tx1 integer and with atleast one more binary 
omponent. If x1 is not binary, then x1 must have at least twononbinary 
omponents; hen
e, the adjustment pro
ess 
an be 
ontinued until all the
omponents of x are binary. These adjustments to x do not in
rease the value of the
ost fun
tion.The 
ontinuous quadrati
 programming problem (2.1) is NP hard. Hen
e, when
ontinuous solution algorithms, su
h as the gradient proje
tion method, are appliedto (2.1), the iterates typi
ally 
onverge to a lo
al minimizer whi
h is not the globaloptimum. In order to es
ape from this lo
al optimum, we need to make a nonlo
al
hange in x to lo
ate a deeper valley than that 
ontaining the 
urrent best approx-imation to a solution of (2.1). The KL ex
hange is an example of su
h a nonlo
al
hange, the length of the movement is p2 sin
e a 0 be
omes 1 and a 1 be
omes zero inx. However, we have a
hieved mu
h better su

ess in es
aping from lo
al minimizersif we allow many 
omponents of x to 
hange. The next se
tion des
ribes our blo
kex
hange QP.3. Blo
k ex
hange. Let x be a 0/1 ve
tor satisfying the 
onstraints of (2.1)and let V1 and V2 be the sets de�ned in (2.2). In a blo
k ex
hange, the goal is tomove some of the verti
es of V1 to V2 and some of the verti
es of V2 to V1 whilesatisfying the 
onstraint that the number of verti
es in V1 should be between l and u.Let y and z be subve
tors of x whi
h 
orrespond to the 
omponents of x whi
h are 1and 0 respe
tively. In other words, the i-th 
omponent of y 
orresponds to the i-thvertex in V1, whi
h we now view as an ordered set. Similarly, the i-th 
omponent ofz 
orresponds to the i-th vertex in V2. We set yi = 1 if and only if the i-th elementof V1 is moved to V2. Similarly, let us set zj = 1 if and only if the j-th element ofV2 is moved to V1. The number of verti
es in V1 is initially 1Tx. The 
onstraintthat the total number of verti
es in V1 lies between l and u after the ex
hange 
an beexpressed l� 1Tx � 1Tz� 1Ty � u� 1Tx:(3.1)Let X1 and X2 be the support of y and z respe
tively:X1 = fi : yi = 1g and X2 = fj : zj = 1g:These sets 
orrespond to the verti
es whi
h are ex
hanged. The indi
es in X1 
orre-spond to verti
es in V1 whi
h are moved to V2; the indi
es in X2 
orrespond to verti
es
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hange verti
es X1 in V1 with X2 in V2in V2 whi
h are moved to V1. The edges whi
h parti
ipate in the ex
hange are thefollowing (see Figure 3.1):E1 = Edges between X1 and V1 n X1E2 = Edges between X2 and V2 n X2E3 = Edges between X1 and V2 n X2E4 = Edges between X2 and V1 n X1Edges 
onne
ting X1 and X2 and edges 
onne
ting V1 nX1 and V2 nX2 are not e�e
tedby the ex
hange so they are ignored.The 
hange in the number of 
ut edges due to the ex
hange of verti
es asso
iatedwith X1 and X2 is given by the expression:jE1j+ jE2j � jE3j � jE4j(3.2)where jEij denotes the number of elements in the set Ei. Before the ex
hange, theedges E1 and E2 are internal edges, while after the ex
hange, they be
ome externaledges that are in
luded in the 
olle
tion of 
ut edges. Before the ex
hange, the edgesE3 and E4 are external edges, in
luded in the set of 
ut edges; after the ex
hange,these edges are internal edges.Suppose that the rows and 
olumns of A are symmetri
ally permuted so that theleading rows and 
olumns 
orrespond to V1, the support of x, and the trailing rowsand 
olumns 
orrespond to V2. We blo
k partition the resulting A in the formA = � A11 A12A21 A22 � ;(3.3)where Aii 
orrespond to Vi, i = 1; 2. Similar to (3.2), the 
hange in the weight of the
ut edges asso
iated with the ex
hange is given by(1� y)TA11y + (1� z)TA22z� (1� z)TA21y � (1� y)TA12z:(3.4)The �rst two terms are the weights of external edges 
reated by the ex
hange, whilethe last two terms are the weight of the prior external edges whi
h be
ame internal
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hange. Observe that the quadrati
 (3.4) 
an be written� 1� y1� z �T � A11 �A12�A21 A22 �� yz � :(3.5)Motivated by (3.1) and (3.5), we 
onsider the following quadrati
 programmingproblem whi
h we denote QP2:8>><>>: minimize F (y; z) := � 1� y1� z �T � A11 +D1 �A12�A21 A22 +D2 �� yz �subje
t to 0 � y � 1; 0 � z � 1; l� 1Tx � 1Tz� 1Ty � u� 1Tx:(3.6)Here D1 and D2 are diagonal matri
es. If y and z are binary, then the terms(1� y)TD1y and (1� z)TD2zhave no e�e
t on the 
ost F sin
e(1� y)DT1y = 0 = (1� z)DT2 z:As with the quadrati
 formulation (2.1) of the graph partitioning problem, we showthat that for a suitable 
hoi
e of D1 and D2, the quadrati
 formulation (3.6) of theex
hange problem has a 0/1 solution. Moreover, the proof reveals how to 
onverta fra
tional solution to a 0/1 solution without in
reasing the 
ost. In the followingtheorem, we assume that the original matrix of weights A has been symmetri
allypermuted into the form (3.3) so that the leading rows and 
olumns 
orrespond to thesupport of a 0/1 ve
tor x feasible in (2.1).Theorem 3.1. If x is a 0=1 ve
tor whi
h is feasible for (2:1), and the diagonalmatrix D satis�es the 
onditiondii + djj � 2aij � 0 for all i and j;(3.7)then (3:6) has a 0=1 solution.Again, (3.7) is satis�ed for the 
hoi
e of D given in (2.4).Proof. Sin
e l and u are integers and sin
e x is 0/1, it follows that both l � 1Txand u� 1Tx are integers. Let y and z be feasible in (3.6). We �rst show that thereexists a feasible point (�y; �z) for (3.6) with 1T�z � 1T�y integer and F (�y; �z) � F (y; z).If 1Tz � 1Ty is not an integer, then at least one 
omponent of either y or z is notan integer. Suppose that yi is not an integer and let ei denote the i-th 
olumn of theidentity matrix. Expanding F in a Taylor series givesF (y + �ei; z) = F (y; z) + �ryiF (y; z) � �2diisin
e aii = 0. The last term ��2dii is nonpositive due to (3.7). If the �rst derivativeryiF (y; z) is negative, then in
rease � above 0 until either yi+� = 1 or 1Tz�1Ty��be
omes an integer, whi
hever o

urs �rst. This leads us to a new point with stri
tlysmaller 
ost than the original (y; z) sin
e the �rst derivative term is negative and the
ost de
reases as � in
reases. If the in
rease in � 
auses 1Tz�1Ty�� to be
ome aninteger, then we are done. If yi+� be
omes 1, then we rea
h a feasible point y+�eiwhi
h has one more binary 
omponent.



QUADRATIC PROGRAMMING AND GRAPH PARTITIONING 7If the �rst derivative ryiF (y; z) is nonnegative, then de
rease � below 0 untileither yi + � = 0 or 1Tz� 1Ty � � be
omes an integer, whi
hever o

urs �rst. Sin
eryiF (y; z) is nonnegative, this de
rease in � will not in
rease the value of the 
ostfun
tion. Again, if 1Tz�1Ty�� be
omes an integer, we are done. Otherwise, yi+�be
omes zero and we rea
h a point y + �ei whi
h has one more binary 
omponent.By indu
tively applying these adjustments to the fra
tional 
omponents of y and z,we eventually rea
h a feasible point (�y; �z) with a better value for the 
ost fun
tionand with 1T�z � 1T�y integer. Thus, without loss of generality, we assume that (y; z)is feasible in (3.6) and 1Tz� 1Ty is integer.Suppose that y has at least two nonbinary 
omponents; let yi and yj denotenonbinary 
omponents of y. Expanding in a Taylor series givesF (y + �(ei � ej); z) = F (y; z) + �(ryi �ryj )F (y; z) + �2(2aij � dii � djj):By (3.7) the �2 term is nonnegative for any 
hoi
e of �. If the �rst derivative term(ryi �ryj )F (y; z) is negative, then we in
rease � above 0 to de
rease the 
ost. We
ontinue to in
rease � until some 
omponent of y + �(ei � ej) rea
hes either 0 or 1.Sin
e 1T(ei � ej) = 0, we have1Tz� 1T(y + �(ei � ej)) = 1Tz� 1Ty:Hen
e, this adjustment to 
omponents yi and yj of y leads us to a new point with atleast one more binary 
omponent and with 1Tz� 1Ty integer. The same adjustmentpro
ess 
an be applied to the 
omponents of z. Hen
e, when we are done, 1Tz� 1Tyis an integer and y and z have at most one nonbinary 
omponent.Suppose that y has one nonbinary 
omponent yi. Sin
e 1Tz� 1Ty is an integer,z must have a nonbinary 
omponent denoted zk and yi = zk. De�ne j = k + jV1j.Expanding in a Taylor series givesF (y + �ei; z+ �ek) = F (y; z) + �(ryi +rzk )F (y; z) + �2(2aij � dii � djj):By (3.7) the last term is nonpositive for all 
hoi
es of �. If the �rst derivative term isnegative, then we in
rease � above 0 until yi + � = 1 = zk + �. If the �rst derivativeterm is nonnegative, then we de
rease � below 0 until yi + � = 0 = zk + �. In either
ase, after these adjustments in the i-th 
omponent of y and the k-th 
omponent of z,the 
ost value does not in
rease and the di�eren
e 1Tz�1Ty does not 
hange; hen
e,the new point is binary and feasible in QP2. This 
ompletes the proof.Corollary 3.2. If D is 
hosen so that the inequality (3:7) is stri
t, then everylo
al minimizer of (3:6) is binary.Proof. By the analysis given in the proof of Theorem 3.1, any nonbinary lo
alminimizer 
an be pushed to the boundary while improving the value of the 
ostfun
tion. If the inequality (3.7) is stri
t, then when we push to the boundary, thevalue of the 
ost fun
tion is stri
tly de
reased. Hen
e, any lo
al minimizer must bebinary.4. The algorithm. We now explain how to in
orporate the theory developed inSe
tions 2 and 3 in an optimization algorithm for the graph partitioning problem. Theoverall strategy is to apply an optimization algorithm, su
h as the gradient proje
tionmethod, to QP1 until we rea
h a lo
al minimizer; next, we apply an optimization algo-rithm to the ex
hange quadrati
 program QP2 in an e�ort to es
ape from the 
urrentlo
al minimum. If we are unable to �nd a better point, then we stop. Otherwise, usethe x obtained from QP2 as a starting guess in QP1 and repeat the pro
ess.



8 S. C. PARK, T. A. DAVIS, W. W. HAGER, and H. ZHANGWe use two di�erent optimization algorithms to approximate a solution to QP1and QP2. In the �rst optimization algorithm, we approximate the feasible set bya sphere and we utilize the algorithm in [10, 13℄ to eÆ
iently 
ompute the globalminimum. Typi
ally, a global minimizer for this sphere 
onstrained problem liesoutside the feasible set. Hen
e, we proje
t a global minimizing point onto the feasibleset. Su
h a proje
tion is easily 
omputed in O(n) time. In the se
ond optimizationalgorithm, we apply the gradient proje
tion algorithm to either QP1 or QP2. We useda version of the gradient proje
tion algorithm based on an Armijo line sear
h alongthe proje
tion ar
 (see [4, p. 226℄).In more detail, the steps of the algorithm are as follows:A1. De�ne x
 = �1, � = (l+u)=(2n). Let x1 be a solution to the following sphere
onstrained problemmin f(x) subje
t to 1Tx = (l + u)=2 and kx� x
k2 � r21 :Sin
e QP1 has a solution with between l and u ones and with the remainingentries zero, we 
hoose r1 to in
lude all points x with (l+u)=2 ones and withthe remaining entries zero. In other words,r21 = (1� �)2 � l + u2 �+ �2�n� l+ u2 � :A2. Let x2 be the proje
tion of x1 onto the feasible set for QP1. If f(x2) � f(x
),then redu
e r1 and repeat A1.A3. Starting from x2, we apply the gradient proje
tion method to QP1 until werea
h a stationary point denoted x3.A4. Using the method developed in Corollary 2.2, we transform x3 to a binaryve
tor x4 with a better value for the 
ost fun
tion.A5. Based on the binary stru
ture of x4, we partition A as indi
ated in (3.5). Letdy and dz denote the dimensions of y and z. With a permutation of A, it
an be arranged so that dz � dy. We de�ne z
 = :5 and y
 = :5dz=dy (hen
e,1Tz
 � 1Ty
 = 0). Let x5 = (y; z) be any solution of the problemminF (y; z) subje
t to 1Tz = 1Ty; ky � y
k2 + kz� z
k2 � r25 ;(4.1)where r25 = �:75dz + dy + :25d2z=dy:The radius r5 of the sphere in (4.1) is 
hosen large enough to ensure thatall possible solutions to the problem of minimizing F (y; z), subje
t to the
onstraint that 1Tz = 1Ty and y and z are binary, are 
ontained in thesphere.A6. Let x6 be the proje
tion of x5 into the feasible set of QP2. If F (x6) �F (y
; z
), then redu
e r5 and repeat A5.A7. Starting from x6, we apply the gradient proje
tion method to QP2 until werea
h a stationary point denoted x7.A8. Using the method developed in Theorem 3.1, we transform x7 to a binaryve
tor x8.A9. If the ex
hange asso
iated with x8 improves the partitioning asso
iated withx4, then we apply the ex
hange to x4 to obtain the new point x9; set x2 =x9 and bran
h to A3. If the ex
hange asso
iated with x8 does not stri
tlyimprove the partitioning asso
iated with x4, then we are done.
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al experiments reported in this paper, we did not redu
e theradius of the spheres, as suggested in A2 and A6, when the solution of the sphere
onstrained problem yielded a poorer obje
tive fun
tion value than the 
entroid ofthe sphere. This enhan
ement will be in
orporated in a multilevel version of ouralgorithms.5. Numeri
al results. The optimization-based algorithm developed in Se
tion4 should require mu
h more CPU time than the multilevel te
hnology of METIS sin
ethe optimization algorithms operate on the entire matrix. We are in the pro
ess ofdeveloping 
ompiled 
ode and multilevel te
hnology where the optimization method-ology of Se
tion 4 is applied to the 
ompressed graphs generated in the multilevelapproa
h. As a preliminary assessment of the merits of the optimization-based strat-egy for graph partitioning, we applied both p- and h-METIS to a series of graphbise
tion problems. In other words, if n is even, then l = u = n=2, and if n is odd,then l = u = (n + 1)=2. The partitions generated by p- or h-METIS were used asstarting points for the optimization algorithm in step A3 to determine whether theMETIS generated partitions 
ould be further improved using the optimization algo-rithms. All the algorithms were implemented in MATLAB, and the test problemswere obtained from the UF Sparse Matrix Library maintained by Timothy Davis:http://www.
ise.u
.edu/resear
h/sparse/matri
es/In our numeri
al experiments, the diagonal of A is always zero. The o�-diagonalelements are 
onstru
ted as follows: If S is a symmetri
 matrix in the library, thenthen aij = 0 if sij = 0 and aij = 1 otherwise. If S is a m by n nonsymmetri
 matrixwith m � n, then aij = 0 if (STS)ij = 0 and aij = 1 otherwise. If m < n, thenaij = 0 if (SST)ij = 0 and aij = 1 otherwise.Sin
e our 
odes are in MATLAB, we 
ould not apply them to all the test matri
es(without expending a huge amount of CPU time). Altogether, we tried 701 testproblems; the mean dimension for A was 1157 and the mean number of edges inthe test problems was 57,057. There were 287 problems with dimension greater than1,000, and there were 307 problems with more than 10,000 edges in the graph.To quantitatively evaluate the improvement provided by the optimization rou-tines, we evaluated the quantity:redu
tion in number of 
ut edges due to optimization algorithmsthe number of 
ut edges obtained by METIS � 100:This expression gives the per
ent improvement in the number of 
ut edges obtainedby applying the optimization algorithms to the �nal partition generated by METIS.In Table 5 we show the per
entage of the matri
es for whi
h we 
ould improve thepartition using the optimization algorithms. A detailed tabulation of our results isposted at the following web site:http://www.math.u
.edu/�hager/papers/GP/For ea
h of the matri
es where the 
ut edges were improved, we also 
ompute theaverage per
entage of improvement. Overall, we 
ould improve the partitions gener-ated by p-METIS in about 50% of the problems, and the average improvement wasabout 10%. We 
ould improve the partitions generated by h-METIS in about 31%of the problems, and the average improvement was about 5.7%. For both versionsof METIS, the greatest improvement o

urred in matri
es of the largest dimension.In parti
ular, for matri
es of dimensions between 4001 and 5000, the average im-provement for p-METIS was 11.8% while the average improvement for h-METIS was9.2%.
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ut edge redu
tion improvementp-METIS 193 (44%) 10.02%1 to 1000 444 h-METIS 118 (27%) 5.48%p-METIS 111 (71%) 11.37%1001 to 2000 156 h-METIS 50 (32%) 5.52%p-METIS 35 (73%) 7.31%2001 to 3000 48 h-METIS 18 (38%) 4.09%p-METIS 18 (55%) 9.64%3001 to 4000 33 h-METIS 16 (49%) 7.42%p-METIS 14 (70%) 11.82%4001 to 5000 20 h-METIS 12 (60%) 9.21%Table 5.1Improvement in p- and h-METIS due to the optimization algorithmsREFERENCES[1℄ E. R. Barnes, An algorithm for partitioning the nodes of a graph, SIAM J. Alg. Dis
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