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1 IntrodutionThis doument provides a guide for using the Fortran 77 Version 1.3 of theg desent algorithm, an implementation of the onjugate gradient algo-rithm in whih the searh diretions are always desent diretions. The odealong with the papers [1, 2, 3℄, whih develop the algorithm and ompareits onvergene properties to that of other algorithms for unonstrained op-timization, are posted at the following web site:http://www.math.u.edu/�hager/papers/CGIn this manual, we explain the design of the software and how to use it. TheC version of the algorithm is also available at this web site. Comment state-ments in the C ode desribe the di�erenes with the F77 implementation.The onjugate gradient method is an approah for solving an unon-strained optimization problem of the following form:min ff(x) : x 2 <ng;where f : Rn 7! R is ontinuously di�erentiable. The iterates xk, k � 0, inonjugate gradient methods satisfy the reurrenexk+1 = xk + �kdk;where the stepsize �k is positive, and the diretions dk are generated by therule: dk+1 = �gk+1 + �kdk; d0 = �g0:In g desent, we make the following speial hoie for the parameter �k:�k = max fBk; �kg ; where�k = �1kdkkminf�; kgkkg ;Bk = 1dTkyk �yk � 2dk kykk2dTkyk �T gk+1:Here � > 0 is a user spei�ed onstant.The stepsize �k is omputed by a line searh routine that exploits aombination of seant and bisetion steps for fast onvergene. The line2



searh is terminated when the Wolfe onditions [4, 5℄ are satis�ed. De�ning�(�) = f(xk + �dk), these onditions are:Æ�0(0) � �(�k)� �(0)�k and �0(�k) � ��0(0); (1)where 0 < Æ � � < 1.In [1℄ we observe that the �rst ondition in (1) is diÆult to implementnumerially sine the subtration �(�k) � �(0) is relatively inaurate neara loal minimum. To ope with this numerial inauray, we introdue theapproximate Wolfe onditions in [1℄ and [2℄:(2Æ � 1)�0(0) � �0(�k) � ��0(0); (2)where 0 < Æ < 1=2 and Æ � � < 1. The �rst inequality in (2) is anapproximation to the �rst inequality in (1). In a neighborhood of a loalminimum, this approximation an often be evaluated more aurately thanthe original ondition. The approximate Wolfe onditions are employed onlywhen �(�k) � �(0) + �k; (3)where �k is an estimate for the error in the funtion value at iteration k. Weinorporate the following possible expressions for the error in the funtionvalue: �k = �Ck or �k = �; (4)where � is a small, user spei�ed parameter, and Ck is generated by thefollowing reurrene:Qk = 1 +Qk�1�; Q�1 = 0;Ck = Ck�1 + (jf(xk)j � Ck�1)=Qk; C�1 = 0: � (5)Here � 2 [0; 1℄ is a parameter used in the averaging of the previous absolutefuntion values. As � approahes 0, we give more weight to the most reentfuntion values. Sine there is no theory to guarantee onvergene whenusing the approximate Wolfe onditions, one of the ode's parameters allowsthe user to employ only the standard Wolfe onditions. But by default,the ode uses the approximate Wolfe onditions when (3) holds sine weobserve greater auray and eÆieny when these onditions are utilized.Alternatively, by setting the parameter AWolfe to false, the ode initially3



omputes points satisfying the usual Wolfe onditions until the followinginequality is satis�ed: jf(xk+1)� f(xk)j � !Ck: (6)Thereafter, the ode swithes to the approximate Wolfe onditions.2 Running the odeg desent requires a parameter �le g desent f.parm, whih shouldbe plaed in the same diretory where the ode is run, and subroutines toevaluate the funtion f(x) and the gradient rf(x). The arguments of thesubroutine are the following:1. grad tol (double) { spei�es the desired auray in the solution. IfStopRule in g desent f.parm is true, then the ode terminateswhen krf(x)kk1 � maxfgrad tol;StopFa � krf(x0)kg; (7)where k � k1 denotes the sup-norm (maximum absolute omponent ofthe vetor). If StopRule is false, then the ode terminates whenkrf(x)kk1 � grad tol(1 + jf(xk)j): (8)The ode also terminates when��k�0(0) � fepsjf(xk+1)j; (9)where the default value of feps in g desent f.parm is 0.d0.2. x (double) { array of length n ontaining the starting guess on inputand omputed minimizer on output.3. n (int) { problem dimension.4. g value (external) { name of the routine to evaluate the ost funtionf(x). g value (f, x, n) puts the value of the ost funtion inthe double preision variable f, where x is a double preision arrayontaining the vetor x. 4



5. g grad (external) { name of the routine to evaluate the gradientrf(x). g grad (g, x, n) puts the gradient of the ost funtionin the double preision array g, where x is a double preision arrayontaining the vetor x.6. status (int) { the value indiates how the ode terminates. As ex-plained below, a nonzero value for status indiates abnormal termina-tion.7. gnorm (double) { if Step in g desent f.parm is .true., thengnorm ontains a guess for the line searh minimizer at k = 0; inother words, gnorm is the user's approximation to a value of � > 0that minimizes f(x0��g0). If Step is .false., then gnorm is ignored atstartup, and the ode generates its own starting guess. On termination,gnorm ontains krf(xk)k1.8. f (double) { value of f(xk) at the �nal iteration.9. iter (int) { number of iterations that were performed.10. nfun (int) { number of times the funtion was evaluated.11. ngrad (int) { number of times the gradient was evaluated.12. d (double) { work array of length n ontaining the searh diretion.13. g (double) { work array of length n ontaining the gradient.14. xtemp (double) { work array of length n ontaining xk + �dk.15. gtemp (double) { work array of length n ontaining rf(xk + �dk).The values of status and their meaning are list below:0 { The onvergene tolerane spei�ed by grad tol was satis�ed.1 { Terminated with ��k�0(0) � fepsjf(xk+1)j.2 { The maximum number of iterations exeeded the limit maxit spei�edthrough g desent f.parm.3 { The slope �0(�) is always negative for a sequene of values of � beom-ing very large. 5



4 { The number of seant iterations during the line searh exeeds the valueof nseant (default 50) given in g desent f.parm.5 { The urrent searh diretion is not a diretion of desent. Aordingto the theory in [1, 2℄, the searh diretion should be a diretion ofdesent for f .6 { The line searh has failed in the initialization part of the line searh.7 { The line searh has failed in the bisetion step.8 { The line searh has failed in the interval update routine.We illustrate the use of g desent with the problem:min nXi=1 exi � xipi;and the starting guess xi = 1 for eah i. The following ode shows how toset up the problem and invoke the subroutine:integer mparameter (m = 100000)double preision x (m), d (m), g (m), xtemp (m), gtemp (m),& gnorm, finteger i, n, status, iter, nfun, ngradexternal myvalue, mygradn = 100do i = 1, nx (i) = 1.d0enddoall g desent (1.d�8, x, n, myvalue, mygrad, status,& gnorm, f, iter, nfun, ngrad, d, g, xtemp, gtemp)endsubroutine myvalue (f, x, n)double preision x (1), f, tf = 0.d0do i = 1, nt = i 6



t = dsqrt (t)f = f + dexp (x (i)) � t*x (i)enddoreturnendsubroutine mygrad (g, x, n)double preision g (1), x (1), tdo i = 1, nt = it = dsqrt (t)g (i) = dexp (x (i)) � tenddoreturnendThe following output is generated when the ode is run:Termination status: 0Convergene tolerane for gradient satisfiedabsolute largest omponent of gradient: 0.7200D�08funtion value: �653.07867273306g iterations: 31funtion evaluations: 54gradient evaluations: 43The algorithm parameters are spei�ed in the �le g desent f.parm,whih the ode reads at the start of exeution. Hene, this �le should beplaed in the diretory where the ode is run. A list of the parameters andtheir default values appears in Table 1. We now give an overview of theseparameters:� The maximum number maxit of iterations allowed by the ode ismaxit fa*n, where n is the problem dimension. By default, maxitis 500*n. We also impose limits in the line searh. The maximumnumber of seant steps is nseant and the maximum number of ex-pansions when we try to �nd an initial braketing interval in the linesearh is nexpand. 7



Value Parameter Value Parameter.1d0 Æ 500.d0 maxit fa.9d0 � 0.d0 feps1.d�6 � .7d0 Qdeay.66d0  50 nexpand5.0d0 � 50 nseant.01d0 � .true. PertRule.01d0  0 .true. QuadStep.1d0  1 .false PrintLevel2.d0  2 .true. PrintFinal1.d�12 QuadCutOff .true. StopRule.0d0 StopFa .false. AWolfe1.d�3 AWolfeFa .false. Step1.0d0 restart fa .false. debugTable 1: Parameters in �le g desent f.parm and their default values.� The ode automatially omputes an initial step for the very �rst on-jugate gradient iteration. This automated guess an be rude. If theuser wishes to provide the starting guess for a minimizer of f(x0��g0)over � > 0, then set the parameter Step to .true., and in this ase,the value of the gnorm argument of g desent should be the initialguess.� If AWolfe is true, then the odes terminates the line searh when-ever either the ordinary Wolfe onditions (1) or the approximate Wolfeonditions (2) are satis�ed along with (3). If AWolfe is false, thenthe ode initially omputes points satisfying the usual Wolfe ondi-tions until the the inequality (6) is satis�ed. Thereafter, AWolfe isset to true. By default, the ode tests the approximate Wolfe on-ditions when (3) holds. The parameter ! in (6) is the same as theparameter AWolfeFa in the parameter �le. To ompletely by-passthe approximate Wolfe onditions, the value of AWolfe is set to falseand AWolfeFa is set to 0.� The parameter � is used in (3) to obtain an estimate �k for the error inthe funtion value. This estimate for the error governs when we use theapproximate Wolfe onditions, and it enters into the update rules in8



the line searh. The parameter � in (5) is the same as the parameterQdeay in the parameter �le.� If PertRule is true, then we take �k = �Ck in (4). Otherwise, we take�k = �� If debug is true, then in eah iteration, we hek whether f(xk+1) �f(xk)+ 10�10Ck, where Ck is generated in (5). When this inequality isviolated, exeution stops.� By default, exeution is terminated when (7) holds. By setting theparameter StopRule to false, exeution terminates when (8) holds.The ode also terminates when (9) holds. By default feps is 0.d0,and the ondition (9) has no e�et. The user may wish to terminateexeution when the hange in funtion value beomes negligible, inwhih ase feps should be set to a small positive value, typially muhsmaller than the mahine epsilon.� By default, the ode prints the results of the run, exluding the valueof x. To by-pass this printout, set PrintFinal to false. By default,the ode delays all printing until the end of the run. To obtain de-tailed information onerning the line searh and the onvergene, setPrintLevel to true.� As explained in [2℄, onjugate gradient methods preserve their n-steponvergene property when the line searh involves a \quadrati step."By default, the ode attempts to make suh a quadrati step. Todeativate this step, set QuadStep to .false. . The quadrati stepis only attempted when the relative hange in the funtion value foronseutive iterations is larger than QuadCutOff. If the relativehange is tiny, then the quadrati step an be inaurate, and it isskipped.� The number nrestart of onjugate gradient iterations before perform-ing the restart dk = �gk is restart fa*n. By default, restart fais 1 and nrestart is n.� In omputing an initial braketing interval in the line searh, we eval-uate �(�) for a series of �'s, eah new value of � is � times its prede-essor. The default value for � is 5. In some ases, however, it ouldbe neessary to derease �, while preserving the relation � > 1.9



� The parameters Æ, �, , and � are onneted with the line searh, termi-nation onditions, and the formula for �k. These parameters ould be�ne tuned to improve performane in some appliations. The followinginequalities should be maintained: 0 < Æ < :5, Æ � � < 1, � > 0, � � 0,and 0 <  < 1.� The parameters  0,  1 and  2 are all used in generating the initialstepsize in the line searh, as explained in [2℄.3 Trouble shootingWe now disuss the error messages and their possible ause. If the argumentgrad tol of g desent is so small that the tolerane annot be ahieved(due to rounding errors in the evaluation of the funtion and its gradient),then the ode an terminate in several abnormal ways. For example, theiterations ould ontinue until the iteration limit maxit is reahed; also,numerial errors in the line searh might lead to termination. In the examplegiven above, when we hange the argument 1.d�8 to 1.d�20, we generatethe following output:Termination status: 4Line searh fails, too many seant steps- your tolerane (grad tol = 0.1000D�19) is too stritabsolute largest omponent of gradient: 0.1776D�14funtion value: �653.07867273306g iterations: 217funtion evaluations: 532gradient evaluations: 707Observe that the gradient is relatively small, however, we did not reah therequested tolerane 1.d�20.The parameter feps in g desent f.parm provides another meha-nism to terminate exeution when the ode has essentially attained the high-est possible auray. If we set grad tol to 1.d�20 and we hange the valueof feps in g desent f.parm to 1.d�25, then the the following output isgenerated:Termination status: 1Terminating sine hange in funtion value � feps*jfj10



Figure 1: Rounding errors near a loal minimum leading to an arti�ial humpin the numerial fabsolute largest omponent of gradient: 0.1910D�13funtion value: �653.07867273306g iterations: 52funtion evaluations: 75gradient evaluations: 85The default value for feps is 0.d0, in whih ase this termination onditionhas no e�et.The parameter � in g desent f.parm is used to obtain an estimate�k in (3) for the error in the funtion value. This estimate is used in theapproximate Wolfe onditions and in the update rules for a braket intervalin the line searh. If �k is too small, then an error an arise in the line searhnear a loal minimizer; numerially, we an have �(�) > �(0)+�k, while withexat arithmeti, �(�) < �(0). Hene, the ode thinks the funtion lookslike the graph depited in Figure 1, when the atual funtion is monotonedereasing on the interval [0; �℄. In other words, the hump seen in Figure 1may be due to rounding errors. This disrepany between numerial funtionand true funtion leads to an error in the line searh. For example, settingthe parameter � in g desent f.parm to 0.d0 yields the following output:11



Termination status: 8Line searh failsPossible auses of this error message:- your tolerane (grad tol = 0.1000D�07) is too strit- your gradient routine has an error- the parameter epsilon in g.part is too smallabsolute largest omponent of gradient: 0.8624D�07funtion value: �653.07867273306g iterations: 29funtion evaluations: 103gradient evaluations: 90The default value 10�6 of � in g desent f.parm is usually large enoughto prevent this type of failure, exept in ases where the funtion vanishesat the omputed loal minimum. When the funtion vanishes, the �rst formof �k in (3) approahes zero as the iterations onvergene, while the atualerror typially does not approah zero. In this ase, where the funtionvanishes at the loal minimum, you may need to use the seond form forthe error, whih is ativated by setting to .true. the parameter ERule ing desent f.parm. This problem onneted with the estimation of theerror in funtion value arises only when a high auray solution is omputed.In the example just given, where we set � = 0.d0, we still omputed a solutionfor whih the absolute largest omponent of the gradient is less than 10�7and the omputed ost is orret to 14 signi�ant digits.If the ode to evaluate the gradient of the ost funtion has an error, thenthe line searh an fail. For our previous example, hanging the minus signto a plus sign in the ode to evaluate the gradient yields:Termination status: 6Line searh failsPossible auses of this error message:- your tolerane (grad tol = 0.1000D�07) is too strit- your gradient routine has an error- the parameter epsilon in g.part is too smallabsolute largest omponent of gradient: 0.1272D+02funtion value: �399.63436462248g iterations: 1funtion evaluations: 53gradient evaluations: 52 12



One way to ensure that the gradient routine is orret is to use the ADI-FOR software to automatially transform the routine for evaluating the ostfuntion into a routine for evaluating the gradient. Alternatively, if yourgradient routine is hand-oded, you an use �nite di�erene approximationsto hek whether the ode is orret. That is,(rf(x))i = f(x+ sei)� f(x)s +O(s); (10)where ei is the i-th olumn of the identity matrix. By taking a sequene of s'sapproahing zero, the �nite di�erene approximation should �rst approahthe true gradient omponent, then diverge due to numerial errors onnetedwith the evaluation of the numerator of (10). In the following ode, we hekthe �rst omponent of the gradient in our model problem:parameter (m = 100000)double preision x (m), g (m), f, newf,& t, rel, delta, approxinteger i, nexternal myvalue, mygradn = 100do i = 1, nx (i) = 1.d0enddoall myvalue (f, x, n)all mygrad (g, x, n)delta = 1.e�1t = x (1)do i = 1, 12x (1) = t + deltaall myvalue (newf, x, n)approx = (newf � f)/deltarel = dabs ((approx � g (1)) / g (1))write (6, *) delta, rel, approx, g(1)delta = delta/10enddox (1) = tendThe output generated by this ode appears in Table 2. Observe that fors between 10�1 and 10�7, the relative error in the �nite di�erene approxi-13



s Relative Error Approximation g (1)0.100E+00 0.818E�01 0.18588419549E+01 0.17182818285E+010.100E�01 0.794E�02 0.17319186558E+01 0.17182818285E+010.100E�02 0.791E�03 0.17196414225E+01 0.17182818285E+010.100E�03 0.791E�04 0.17184177472E+01 0.17182818285E+010.100E�04 0.791E�05 0.17182954196E+01 0.17182818285E+010.100E�05 0.807E�06 0.17182832153E+01 0.17182818285E+010.100E�06 0.212E�06 0.17182821921E+01 0.17182818285E+010.100E�07 0.220E�05 0.17182856027E+01 0.17182818285E+010.100E�08 0.220E�04 0.17183197087E+01 0.17182818285E+010.100E�09 0.551E�04 0.17183765522E+01 0.17182818285E+010.100E�10 0.237E�02 0.17223555915E+01 0.17182818285E+010.100E�11 0.255E�01 0.17621459847E+01 0.17182818285E+01Table 2: Output generated by orret gradient routinemation dereases as it approahes the value of g (1), while for smaller s, theerror inreases. On the other hand, for the erroneous gradient ode, obtainedby replaing the minus sign in the gradient ode by a plus sign, we obtainthe results given in Table 3. Of ourse, you should hek all omponents ofthe gradient, not just the �rst omponent.Referenes[1℄ W. W. Hager and H. Zhang, A New Conjugate Gradient Methodwith Guaranteed Desent and an EÆient Line Searh, SIAM Journalon Optimization, 16 (2005), 170{192.[2℄ W. W. Hager and H. Zhang, CG DESCENT, a Conjugate Gradi-ent Method with Guaranteed Desent, January 12, 2004 (to appear inTransations of the ACM).[3℄ W. W. Hager and H. Zhang, A survey of nonlinear onjugate gra-dient methods, February 7, 2005 (to appear in Pai� Journal of Opti-mization).[4℄ P. Wolfe, Convergene onditions for asent methods, SIAM Rev., 11(1969), pp. 226{235. 14



s Relative Error Approximation g (1)0.100E+00 0.500E+00 0.18588419549E+01 0.37182818285E+010.100E�01 0.534E+00 0.17319186558E+01 0.37182818285E+010.100E�02 0.538E+00 0.17196414225E+01 0.37182818285E+010.100E�03 0.538E+00 0.17184177472E+01 0.37182818285E+010.100E�04 0.538E+00 0.17182954196E+01 0.37182818285E+010.100E�05 0.538E+00 0.17182832153E+01 0.37182818285E+010.100E�06 0.538E+00 0.17182821921E+01 0.37182818285E+010.100E�07 0.538E+00 0.17182856027E+01 0.37182818285E+010.100E�08 0.538E+00 0.17183197087E+01 0.37182818285E+010.100E�09 0.538E+00 0.17183765522E+01 0.37182818285E+010.100E�10 0.537E+00 0.17223555915E+01 0.37182818285E+010.100E�11 0.526E+00 0.17621459847E+01 0.37182818285E+01Table 3: Output generated by erroneous gradient routine[5℄ P. Wolfe, Convergene onditions for asent methods II: some orre-tions, SIAM Rev., 13 (1971), pp. 185{188.
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