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Dynamic Supernodes in Sparse Cholesky
Update/Downdate and Triangular Solves
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The supernodal method for sparse Cholesky factorization represents the factor L as a set of
supernodes, each consisting of a contiguous set of columns of L with identical nonzero pattern. A
conventional supernode is stored as a dense submatrix. While this is suitable for sparse Cholesky
factorization where the nonzero pattern of L does not change, it is not suitable for methods
that modify a sparse Cholesky factorization after a low-rank change to A (an update/downdate,

A = A ± WWT ). Supernodes merge and split apart during an update/downdate. Dynamic su-
pernodes are introduced which allow a sparse Cholesky update/downdate to obtain performance
competitive with conventional supernodal methods. A dynamic supernodal solver is shown to
exceed the performance of the conventional (BLAS-based) supernodal method for solving trian-
gular systems. These methods are incorporated into CHOLMOD, a sparse Cholesky factorization
and update/downdate package which forms the basis of x=A\b in MATLAB when A is sparse and
symmetric positive definite.
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27: 2 · T. A. Davis and W. W. Hager

1. INTRODUCTION

Given a sparse, symmetric positive definite matrix A with a Cholesky factor-
ization A = LLT or A = LDLT and a low-rank modification A = A + WWT

(update) or A = A − WWT (downdate), we consider the problem of computing
the Cholesky factorization of A while exploiting the supernodal structure of its
Cholesky factor. Since an update operation changes the supernodal structure,
it is not easy to take advantage of the original supernodes. This leads us to
develop a new dynamic supernodal update algorithm. In the dynamic algo-
rithm, the supernodes are detected and exploited as the update progresses.
In a similar fashion, we obtain a dynamic supernodal solve in which the su-
pernodes are detected as the solve progresses. Update/downdate problems
such as these arise in optimization algorithms, sensitivity analysis, and many
other areas [Hager 1989]. The sparse rank-1 update when L is not a supern-
odal Cholesky factorization is discussed in Davis and Hager [1999], while the
multiple rank case is in Davis and Hager [2001]. It is assumed that A has
already been permuted by a fill-reducing ordering; this is a large and critical
topic in itself which is beyond the scope of this article [Davis 2006].

The supernodal Cholesky factorization method [Ashcraft and Grimes 1999;
Dobrian et al. 2000; Hénon et al. 2002; Ng and Peyton 1993; Rothberg and
Gupta 1991; Rotkin and Toledo 2004] exploits dense matrix kernels dur-
ing the factorization and solution of the resulting triangular systems. It is
based on supernodes, which are adjacent columns of L with identical nonzero
pattern stored as a single dense submatrix of L. In this article, the su-
pernodal structure of L is exploited in the initial factorization, the low-rank
update/downdate, and in the solution of the triangular systems required to
solve Ax = b after the Cholesky factorization A = LLT is computed. As
the matrix is updated or downdated, supernodes can merge and split apart.
Conventional supernodes cannot be adapted to this problem. In this article we
show how these dynamic supernodes can be effectively exploited to obtain high
performance.

Section 2 provides a brief overview of supernodes in sparse Cholesky
factorization and in the solution of triangular systems. Sections 3 and 4
present our update/downdate method and triangular solvers, both of which
exploit dynamic supernodes. The performance of our new methods is illus-
trated in Section 5.

A note regarding notation: When we need to make a distinction between the
original matrices A and L and their updated/downdated versions, we use A

and L for the modified versions. Our update/downdate methods modify L and
b in place. In those contexts when we refer to L changing, it should be clear
that we are dynamically changing L to obtain L. Thus, L can sometimes refer
to both the original and modified Cholesky factorization. The usage should be
clear in context.

2. THE SUPERNODAL METHOD

The primary purpose of the supernodal method is to obtain high performance
on modern computer architectures with memory hierarchy by exploiting dense
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submatrices in the sparse factorization. Improved locality also enables its use
on parallel computers, but only sequential algorithms are considered here.

The use of dense matrix kernels (the BLAS [Lawson et al. 1979; Dongarra
et al. 1990; 1988]) is a common technique for improving the performance
of sparse matrix factorization and the solution of the subsequent triangular
systems that are required to solve Ax = b for a general matrix A. Supernodal
and multifrontal methods both exploit the nearly-identical sparsity structure
often shared by adjacent columns of L (and rows of U in the unsymmetric
case), for either LU or Cholesky factorization (A = LU or A = LLT). These
methods are able to use the BLAS to obtain a level of performance that is a
significant fraction of the computer’s theoretical peak performance.

2.1 Finding Supernodes

Informally, a supernode is a set of adjacent columns of L that have an identical
nonzero pattern. They are typically stored in a way that exploits this structure,
such as a dense matrix of dimension s-by-z, where s is the number of nonzeros
in the leftmost column in the supernode and z is the number of columns in the
supernode. Dense matrix kernels are used to compute each supernode, and to
apply each supernode to the righthand side when solving a triangular system.

More precisely, a supernode is defined by a chain of nodes in the elimination
tree, and the sparsity pattern of the corresponding columns of L. The elimina-

tion tree of an n-by-n matrix A is a tree of n nodes [Liu 1990; 1986; Schreiber
1982]. The parent of node j in the tree is given by the first off-diagonal nonzero
entry lij in column j,

parent( j) = min{i | i > j and lij 6= 0}. (1)

If this set is empty, then node j is a root of the elimination tree. The tree may
actually be a forest with more than one root, but it is still conventionally called
an elimination tree. Numerical cancellation is ignored, so the term “lij 6= 0”
in (1) should be understood to be true for any entry lij that must be computed
during Cholesky factorization; it may occasionally be zero numerically. Other-
wise, the definition of the elimination tree breaks down, as do many theorems
regarding sparse Cholesky factorization.

Let L j denote the nonzero pattern of column j of L. In other words, L j =
{i | lij 6= 0}. A fundamental supernode is a maximal sequence of z columns f, f +
1, . . . , f + z − 1 such that for any successive pair of columns j − 1 and j in the
list, j − 1 is the only child of j, and L j = L j−1 \ { j}. In other words, columns in
a supernode form a chain in the elimination tree, and have identical nonzero
pattern (excluding entries in the upper triangular part). Column f is the first,
or leading, column in the supernode. It may have any number of children in
the elimination tree. For a relaxed supernode, some of the constraints of this
definition are loosened; two columns may be placed in the same supernode if
their nonzero patterns are similar but not identical, and j − 1 need not be the
only child of j, for example.

Supernodes can be found without constructing the nonzero pattern of L,
in time that is essentially linear in the number of nonzeros of A [Liu et al.
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1993]. First, the elimination tree of A is computed in nearly O(|A|) time [Liu
1990; 1986].1 More precisely, the time is O(|A|α(|A|, n)) where α is the inverse
Ackerman function, a function that grows extremely slowly. Thus in practical
terms the time is O(|A|).

Next, the elimination tree is typically reordered via a depth-first postorder-
ing, taking O(n) time. In a depth-first postordering, the d descendants of a
node j in the elimination tree are all numbered j − d through j − 1. The
postordering ensures that a node with only one child c is always numbered
c + 1. This maximizes the sizes of fundamental supernodes in the matrix
L. Postordering also improves memory locality during numerical factoriza-
tion. The postordering is a permutation of A, but has no effect on the the
number of nonzeros in L. It thus has no effect on the fill-reducing ordering. In
MATLAB, [parent,q]=etree(A) computes both the elimination tree (parent)
and its postordering (q).

Once the tree is found and postordered, the number of entries in each
column of L is found, using an algorithm that takes nearly O(|A|) time [Gilbert
et al. 1994]. In MATLAB, this is computed by the routine symbfact. If
count=symbfact(A), then count(j) = |L j|. The column counts and the elimi-
nation tree are then used to find the fundamental supernodes. Consider the
jth column of L. Its nonzero pattern is related to the nonzero patterns of the
children of node j in the elimination tree [George and Liu 1981],

L j = A j ∪ { j} ∪





⋃

j=parent(c)

Lc \ {c}



 , (2)

where A j is the nonzero pattern of the jth column of the strictly lower trian-
gular part of A. A lower bound on the column count of j is thus |L j| ≥ |Lc| − 1.
The following condition defines a fundamental supernode.

CONDITION 2.1. Columns j−1 and j are members of the same fundamental
supernode if and only if |L j| = |L j−1| − 1 and j − 1 is the only child of j in the
elimination tree.

Thus, supernodes can be found in nearly O(|A|) time without accessing or
computing the nonzero pattern of L. Only the elimination tree and the column
counts are required. This observation is essential to the dynamic supernodal
routines described in Sections 3 and 4. The restriction on j − 1 being the only
child of j can be relaxed, resulting in larger supernodes.

CONDITION 2.2. Columns j−1 and j can be members of the same supernode
if |L j| = |L j−1| − 1 and j− 1 is a child of j in the elimination tree.

2.2 Supernodal Factorization

In the nonsupernodal left-looking Cholesky factorization algorithm, the kth
step of factorization computes the kth column of L, accessing columns 1

1The number of nonzeros in matrix or vector x, or the size of a set x, is denoted as |x|.
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through k − 1 of L and column k of A. Each step consists of a sparse-matrix-
vector multiply (in MATLAB notation, A(k:n,k)-L(k:n,1:k-1)*L(k,1:k-1)’)
followed by a square root and scaling of the kth column of L.

Supernodal Cholesky factorization is a blocked version of the left-looking
method, where each block is a supernode. The method can be derived from the
expression





L11

L21 L22

L31 L32 L33









LT
11 LT

21 LT
31

LT
22 LT

32

LT
33



 =





A11 AT
21 AT

31

A21 A22 AT
32

A31 A32 A33



 , (3)

where the middle block row and column of each matrix are rows and columns
corresponding to the kth supernode. If the columns of L corresponding to the
first k − 1 supernodes are known (L11, L21, and L31), then the kth supernode
can be computed, using the following algorithm.

First, a sparse matrix product is performed to initialize the kth supernode.
[

S1

S2

]

=

[

A22

A32

]

−

[

L21

L31

]

LT
21 (4)

The L21 and L31 matrices split into a set of supernodes. The sparse matrix
multiplication is performed one supernode at a time, using a dense matrix
multiplication for each supernode. The subtraction in (4) does not use dense
matrix operations, since the nonzero patterns of each supernode are different.
Instead, a scatter operation is used. Fortunately, most of the floating-point
operations are performed in the dense matrix multiply.

Next, the dense Cholesky factorization S1 = L22LT
22 is computed. This is

a dense submatrix factorization, since L22 is the diagonal block of a single
supernode. The nonzero patterns of these columns are all the same, and the
subdiagonal of L22 is all nonzero in these columns (the columns form a chain
in the elimination tree). Thus L22 is a dense matrix.

Finally, the triangular system L32LT
22 = S2 is solved for L32. The L32 matrix

is sparse, but each column has the same nonzero pattern, and thus a dense
triangular solver is used for this step, with multiple dense right-hand sides
(DTRSM when the matrix is real).

Since S1 and S2 have the same nonzero pattern that is a subset of the kth
supernode, they can be stored in the same place as L22 and L32, respectively.
The supernode

[

L22

L32

]

is stored in a s-by-z dense matrix, where s ≥ z is the number of nonzeros in the
first column of the supernode.

CHOLMOD is used by chol, symbfact, etree, x=A\b when A is sparse sym-
metric positive definite in MATLAB 7.2. The performance of CHOLMOD and
10 other sparse factorization packages is discussed by Gould et al. [2007]:

It appears that the newest code CHOLMOD offers the best balance
between the three solution phases and so gives the best overall
performance. . . . CHOLMOD generally requires the least memory.
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The three phases consist of: (1) ordering and analysis, (2) factorization, and
(3) forward and backsolve. Scott and Hu also discuss the design considera-
tions for a sparse direct code [Scott and Hu 2007], and give details on the user
interface and design of CHOLMOD.

2.3 Supernodal Solve

Consider the triangular system Lx = b ,




L11

L21 L22

L31 L32 L33









x1

x2

x3



 =





b1

b2

b3



 , (5)

where L is partitioned the same as in (3), and x is a dense vector. In the
forward solve, the kth step requires the solution of a dense lower triangular
system L22x2 = b2 − L21x1, where b2 − L21x1 is computed first. Next, L32x2 is
subtracted from the right-hand side, requiring a dense matrix-vector multipli-
cation and a sparse gather/scatter operation (since L32 is the subdiagonal part
of the k supernode). Most of the work is thus performed with dense matrix
kernels (the level-2 BLAS). Matrix-matrix operations are used if x is a dense
matrix rather than a vector.

This method is used in x=A\b in MATLAB 7.2 when A is sparse and sym-
metric positive definite, as implemented in CHOLMOD. It is not used in
x=L\b when L is lower triangular, since L is not stored in supernodal form
(even if L comes from a supernodal sparse Cholesky factorization, L=chol(A)).
Performance comparisons with other triangular solvers are given in Gould
et al. [2007].

3. UPDATING A SPARSE CHOLESKY FACTORIZATION

We first review our nonsupernodal update/downdate method in Section 3.1
from our prior work [Davis and Hager 2001; 1999]. Next, Section 3.2 discusses
the difficulties encountered in updating/downdating a conventional supern-
odal factorization, particularly when the nonzero pattern of L changes. These
difficulties are resolved in Section 3.3, which presents a dynamic supernodal
update/downdate that allows the nonzero pattern of L to change, while still
exploiting supernodes. Note that while MATLAB 7.2 includes CHOLMOD’s
supernodal factorization, it does not include the dynamic supernodal update/
downdate described next.

3.1 Nonsupernodal Update/Downdate

Consider the rank-1 update/downdate, A = A ± wwT where w is a sparse
column vector. If the Cholesky factorization LLT of A is known (or A = LDLT ,
where D is diagonal), the factorization of the modified matrix A can be found
in time proportional to the number of entries in L that change [Davis and
Hager 1999]. This includes the time required to modify the nonzero pat-
tern of L, if the pattern needs to change. For additional background on the
update/downdate problem, see (for example) Bischof et al. [1993], Carlson
[1973], Gill et al. [1974], Stewart [1998; 1979], Pan [1990]. A simple rank-1
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update/downdate of a sparse LLT factorization that does not change the
nonzero pattern of L is discussed in detail in Davis [2006]; that algorithm
is a mere 35 lines of C.

The rank-1 update/downdate that allows for changes in the nonzero pattern
of L is discussed in Davis and Hager [1999]. During an update, A = A + wwT ,
no entries are removed from L; entries are only added. During a downdate,
A = A − wwT , entries could be dropped (but not added) if A = CCT and w is
one of the columns of C.

The time taken for our rank-1 update is exactly proportional to the number
of entries in L that change, which can be very small (O(1) even). This time
includes the time to update/downdate the pattern and numerical values of L,
and the time to update/downdate the elimination tree. For a rank-k update,
the time is bounded by the time for k rank-1 updates/downdates, except that
we save time and reduce memory traffic by reading and writing just once each
column of L that changes. Thus, our update/downdate methods are asymptoti-
cally optimal, even when new entries get added in an update, or old entries are
removed in a downdate. However, we do not exploit supernodes in our prior
work [Davis and Hager 2001; 1999].

For either an update or a downdate, the entries that change in L corre-
spond to a single path in the elimination tree of the modified matrix A. The
path starts from the node i corresponding to the smallest row index of nonzero
entries in w, and proceeds upwards, ending at the root of the tree. For a mul-
tiple rank update/downdate (A = A ± WWT, where W is n-by-k), the columns
that change correspond to a set of paths in the elimination tree of A, each
starting at the node corresponding to the smallest row index of nonzero entries
in each column of W [Davis and Hager 2001]. Paths that merge as they pro-
ceed upwards toward the root result in a rank-k update of the columns along
that path, where in this case k is the number of paths from columns of W that
have merged.

The driving motivation of our supernodal update/downdate method pre-
sented in this article is an active-set linear programming method (the LP Dual
Active Set Algorithm, LPDASA [Davis and Hager 2008a; 2008b]), where C is
the matrix comprised of the columns corresponding to the active variables.
Dropping entries requires the nonzero pattern of L to be held as a multiset,
with multiplicities for each entry in the set. Downdating the nonzero pattern
of L can be done in perfect asymptotic time, but it requires additional memory
to hold each column of L as a multiset. This extra information is costly for a
general application, and is not need in LPDASA. It is more memory-efficient to
retain all the nonzeros during a downdate rather than try to determine which
nonzero should be zero after the downdate.

Thus, in this article (and in CHOLMOD), the storage structure for L is
only modified to account for the creation of new nonzeros during the update/
downdate. We assume that either an update or downdate can add entries to
A and thus also to its updated/downdated Cholesky factor. Neither the update
nor the downdate are assumed to remove any entries. Entries which should
be numerically zero after a downdate are retained in storage. These entries
can be dropped later by redoing the symbolic factorization, if desired, in O(|L|)
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27: 8 · T. A. Davis and W. W. Hager

time (CHOLMOD provides a function to perform this operation, which we refer
to as symbolic refactorization).

3.2 Difficulties in a Static Supernodal Update/Downdate

If supernodes are exploited, better performance could be obtained, in much
the same way as supernodes can improve the performance of sparse Cholesky
factorization and solves. However, adding entries to a supernodal factorization
is problematic. A single update/downdate can cause some supernodes to merge
and others to split apart. If two adjacent columns j − 1 and j of L are not in
the same supernode, an update/downdate could add entries to j − 1 so that
now these two columns have the same nonzero pattern, causing them to merge
into one fundamental supernode. Similarly, if the two columns are identical,
an update/downdate could add entries to column j but not to j− 1, causing the
supernode to split apart.

Supernodes are conventionally stored in a dense s-by-z matrix. Modifying
this structure would lead to an algorithm whose time complexity could be far
from optimal. Suppose an update/downdate modifies only the last column of
the supernode, causing the supernode to split. The time required to modify the
numerical values in the supernode would be O(s − z), but O(sz) time would be
required for the data movement that splits the supernode in two. This is not
a viable solution. Thus, supernodes were not considered in Davis and Hager
[2001; 1999].

It would be simpler to assume, as in CSparse (a concise sparse matrix
package written for a textbook [Davis 2006]), that the nonzero pattern of
a supernodal factor L does not change. The matrix L could be kept in its
supernodal form, and the update/downdate could then exploit this structure to
obtain higher performance than a nonsupernodal update/downdate. The struc-
ture of L, and its supernodes, would be static. However, this requirement is
too limiting for many applications. In particular, it would not be suitable in
our motivating application, LPDASA.

3.3 Dynamic Supernodal Update/Downdate

Our goal is a rank-k update/downdate method that simultaneously exploits
supernodes and allows the nonzero pattern of L to change. The solution is to
not store supernodes in their conventional form.

Instead, the matrix L is stored in a conventional nonsupernodal compressed
sparse column form, where each column of L is stored as a list of numerical
values of the nonzero entries, and an integer list of the corresponding row in-
dices. MATLAB uses a similar data structure, except that to allow for columns
to grow and shrink, we allow for gaps between the columns of unused memory
space in our data structure. We also allow columns to appear in any order
in memory. Supernodes are detected dynamically as the update/downdate
progresses through the matrix.

The update/downdate is split into two phases: symbolic and numeric. The
symbolic update is identical to that in Davis and Hager [2001], except that
multiplicities are not kept. The runtime of the symbolic phase is always
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Fig. 1. Example elimination tree.

asymptotically dominated by the numeric update; it is much less if the pat-
tern does not change or changes only very little. The numeric update proceeds
along a series of disjoint subpaths, each of which computes an update of rank
anywhere from 1 to k. As it proceeds, it detects supernodes dynamically. If
columns j1 and j2 are adjacent columns on the same subpath, then j1 is a child
of j2. If in addition, the number of nonzeros in column j1 is one more than
the number of nonzeros in column j2, then j1 and j2 lie in the same dynamic
supernode. This test takes O(1) time, and can be done without examining the
nonzero patterns of the two columns. This is a relaxation of the restriction that
j − 1 and j be adjacent in the matrix. Consider the small elimination tree in
Figure 1. Suppose the update path starts at node 1, and that columns 3 and 4
are not updated. Columns 1, 2, 5, and 6 could all be part of the same dynamic
supernode.

CONDITION 3.1. Columns c and j can be members of the same dynamic
supernode if |L j| = |Lc| − 1, c is a child of j in the elimination tree, and c and j

are adjacent nodes in a disjoint subpath of the subtree of columns modified by
the update/downdate.

Columns can be added to a dynamic supernode by looking ahead along the
path and stopping when Condition 3.1 is broken. For the triangular solve of
LTx = b and Lx = b , respectively, Condition 2.2 is used when b is dense,
because all columns of L take part in the solve.

To understand how the update/downdate algorithm operates on a super-
node, we first examine how the update/downdate algorithm operates on a
dense matrix.

Consider the method in Algorithm 1 for updating/downdating a dense
LDLT factorization (a modified version of Method C1 in Gill et al. [1974]).

It computes the new factorization LDL
T

= LDLT ± WWT, where W is n-by-k.
The σ term is equal to +1 for an update or −1 for a downdate. Many other
methods are possible (see Gill et al. [1974], for example). They all include an
innermost loop in which W and a column of L are used to modify each other.

An update of the LLT factorization is nearly identical. For example, the
cs updown function in CSparse [Davis 2006] is based on Bischof, Pan, and
Tang’s [Bischof et al. 1993] combination of Carlson’s update [Carlson 1973]
and Pan’s downdate [Pan 1990]. All of these methods modify the LLT factor-
ization instead, as does Stewart’s method in LINPACK [Dongarra et al. 1978;
Stewart 1998; 1979] (the method used by cholupdate in MATLAB). To update
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Algorithm 1. (Dense Rank-k Update/Downdate).

for r = 1 to k do

αr = 1
for j = 1 to n do

for r = 1 to k do

α = αr + σw2
jr/dj

dj = djα

γr = −σw jr/dj

dj = dj/αr

αr = α

for i = j + 1 to n do

for r = 1 to k do

wir = wir − w jrlij

lij = lij − γrwir

LLT factorization, the innermost loop requires 5 floating-point operations
instead of 4 for the LDLT case in Algorithm 1. The memory traffic is iden-
tical, however, since the extra term is a scalar which would be held in registers
or cache.

In the sparse update, the for j loop in Algorithm 1 is replaced by a loop
that iterates over a single disjoint subpath in the elimination tree [Davis and
Hager 2001]. Each column L∗ j along this path is modified by W , and likewise
modifies the matrix W . The row index i is restricted to the nonzeros in column
L∗ j, so that the for i = j + 1 to n loop is replaced with a loop in the form
for i ∈ L j.

It is important to note that the innermost loop accesses an entire row of
W ; it is thus most efficient to store W in row-major form, as a scattered (full)
matrix. This of course limits the maximum rank update by the available mem-
ory space. In CHOLMOD, the sparse W is scattered into a full workspace
matrix with n rows and at most 8 columns. We can thus perform up to rank-8
updates at a time; larger rank updates are done in groups of at most 8.

For a rank-1 update/downdate, there is just one path. Let t1 = minW be the
smallest row index of nonzero entries in the column w, where W denotes the
nonzero pattern of w. The columns modified by the rank-1 update consist of all
nodes in the path from node t1 to the root in the elimination tree of L.

For the rank-k case, each rank-1 update/downdate results in a single path.
Together, these paths form a subtree of the elimination tree, the leaves of which
are t1 through tk. We split this subtree into a set of disjoint subpaths.

Now consider the dynamic supernodal case. We wish to group together
adjacent columns along one of these disjoint subpaths, and thus we apply
Algorithm 1 to all columns j along each subpath of the subtree of columns
to update.

The dynamic supernodal algorithm exploits three cases: supernodes consist-
ing of one, two, or four columns of L. Our algorithm easily extends to supern-
odes of any size, but we limited the actual size of supernodes for performance
reasons. A “supernode” of size one is just a single column of L. We attempted
to exploit dynamic supernodes of size three, but found that we obtained better

ACM Transactions on Mathematical Software, Vol. 35, No. 4, Article 27, Pub. date: February 2009.



Dynamic Supernodes in Cholesky Up/Downdate and Triangular Solves · 27: 11

performance by treating a three-column supernode as one supernode of two
columns and one supernode of one column. Best performance is obtained in
a supernode of four columns. Supernodes of five columns or greater also did
not improve performance any further, and only led to lengthier code to exploit
them. Thus, a large supernode of five or more columns is handled as a sequence
of four-column supernodes, followed by a “cleanup” step with a supernode of
one and/or two columns.

Two critical factors impact the performance of any numerical method on
a high-performance computer: (1) the number of floating-point operations per
memory reference, and (2) how regular or irregular the memory references are.
Next we present each of the three different updates (1-column, 2-column, and
4-column), and analyze their flop count and memory access behavior.

For simplicity, this discussion assumes j, j + 1, j + 2, and j + 3 are the
successive columns along an update/downdate subpath. In general, they need
not be adjacent in L to be considered part of same dynamic supernode (see
Condition 3.1).

3.3.1 Nonsupernodal Rank-k Update. Suppose the algorithm is at column
j. If column j and j + 1 are not in the same dynamic supernode, the single
column j is updated. If columns j through j + 3 all lie within the same supern-
ode, then a dynamic supernode of four columns is updated. Otherwise, if j and
j + 1 reside in the same dynamic supernode, then a dynamic supernode of two
columns is updated.

Consider the update of a single column of L. This method corresponds to
the rank-k update given in Davis and Hager [2001], and a single iteration of
the for j loop in Algorithm 1. The loop across the rows i of the column iterates
instead over the rows i corresponding to nonzero entries in column j. This loop
is blocked, so that every iteration updates four nonzeros in column j at a time.
The r loops are unchanged.

Let s = |L j| be the number of entries in the jth column of L. The single-
column rank-k update performs 4sk floating-point operations, and 2sk + 3s

memory references. For the matrix W , sk entries are read, modified, and
written back, accounting for 2sk memory references. The numerical values
and nonzero pattern of L∗ j are read (2s references). The numerical values of
L∗ j are then written back (another s references).

3.3.2 2-Column Supernodal Rank-k Update. Consider an update of
columns j and j + 1. In this case, the nonzero pattern of column j + 1 need
not be accessed. First, the r loop computes the α and γ terms for the jth
column, and modifies the diagonal dj. Next, the single subdiagonal entry L j+1, j

is updated. The r loop can now proceed for column j + 1, computing the α and
γ terms for that column, and updating the j + 1st diagonal entry.

The 2-column update is given in Algorithm 2, which is the 2-column
supernodal version of the last four statements of Algorithm 1. Let s = |L j|.
Algorithm 2 is used when the condition |L j+1| = s − 1 is true, and either
|L j+2| = s − 2 or |L j+3| = s− 3 are false (if all four conditions are true, columns j

through j + 3 form a 4-column dynamic supernode). Algorithm 2 as presented
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Algorithm 2. (Supernodal Rank-k Update/Downdate of Columns j and j + 1 of L).

for each adjacent pair i1, i2 in L j \ { j, j + 1} do

copy entries of L into a 2-by-2 dense matrix:
x11 = li1, j

x21 = li2, j

x12 = li1, j+1

x22 = li2, j+1

rank-k update of x:
for r = 1 to k do

gather two entries of W into a 2-by-1 vector t:
t1 = wi1,r

t2 = wi2,r

update two entries in column j:
t1 = t1 − w jrx11

t2 = t2 − w jrx21

x11 = x11 − γr1t1
x21 = x21 − γr1t2
update two entries in column j + 1:
t1 = t1 − w j+1,rx12

t2 = t2 − w j+1,rx22

x12 = x12 − γr2t1
x22 = x22 − γr2t2
scatter t back into W:
wi1,r = t1
wi2,r = t2

copy x back into L:
li1, j = x11

li2, j = x21

li1, j+1 = x22

li2, j+1 = x22

assumes that there are an even number of nonzero entries below the diagonal
in column j + 1. If there are an odd number, the outermost for loop is proceed
by an iteration that handles the first off-diagonal entry i in column j + 1 of L,
which is not shown.

Assume W is stored in row-major order, in scattered form. Specifically, it
is stored as a dense row-major n-by-k matrix. This limits the algorithm to
handling updates with a modest number of columns k. Since W is stored in
row-major order, the access of w jr and w j+1,r as r varies is very efficient. These
entries will be cached, since there are only 2r of them. The arrays t and x can
be held in registers. The access of the 2-by-2 block of L is efficient, for two
reasons. First, the terms are accessed only once, regardless of k. Second, since
the columns of L are kept sorted (with row indices in strictly ascending order),
entries in rows i1 and i2 of L∗ j are adjacent in memory.

The two columns j and j+ 1 of L are not stored in a single dense submatrix,
as they would be in a true supernodal factor. However, in both the nonsuper-
nodal data structure for L and in the supernodal L, the two entries li, j and
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li, j+1 would not be adjacent anyway. In the former case, it is likely that they
will be nearby. In the latter case, they will reside a distance of exactly s = |L f |

entries away, in the same dense submatrix, where f is the first column in
the supernode. The impact on performance of using a nonsupernodal data
structure instead of a conventional supernodal data structure is thus slight.
The nonzero pattern of L j needs to be read only once, not twice, and its access
is also independent of k.

Performing a rank-k update of two columns of L requires about 8sk floating-
point operations (s/2 outer iterations, with 16k operations each), excluding
the 16k flops to compute the α and γ coefficients. Excluding cached variables
(t, x, γ , w jr, and w j+1,r), four entries of L are read and written for each s/2 outer
iteration, and two entries of W are read and written for each k × s/2 inner
iteration. The integer pattern of L is read in just once. The total number of
memory reads is s(k + 3), and there are s(k + 2) writes.

Most memory traffic is regular, since W is stored in row-major order and
since L is stored by column. The only irregular access is the gather of the
first wi1,1 and wi2,1 entries; for subsequent r, the memory traffic is regular.
Likewise, only the access to the first entry in each column of L is irregular;
the subsequent ones are all stride-1 accesses. This is essentially the same as
accessing two columns of a dense matrix, which would be the case if L is stored
in supernodal form.

The number of floating-point operations per memory reference in
Algorithm 2 is thus 8sk/(2sk + 5s). Our code handles the case for k = 1 to
k = 8; larger rank updates are split into updates where W has 8 columns or
less. Since k is limited to a small constant, the r loop is completely unrolled,
and eight different versions of the function are created by the compiler.

By comparison, a level-2 BLAS operation (n-by-n dense matrix times dense
vector) has a flops-per-memory-access ratio of about 2, or about the same as a
rank-3 2-column update.

The memory traffic to update column j and j+1 separately is almost double,
since sk entries of W must be accessed twice. These entries are accessed only
once in a 2-column update in Algorithm 2.

3.3.3 4-Column Supernodal Rank-k Update. This idea can be extended to
more than two columns of L since supernodes are usually much larger. With
four columns, an analogous algorithm that updates a 1-by-4 block of L in the
innermost loop performs 16sk floating-point operations, s(k + 5) memory reads,
and s(k + 4) memory writes.

Just as in the two-column rank-k update/downdate, the first step is to
update the triangular part of the four-column supernode. This step computes
the four α coefficients and the k-by-4 γ coefficients for the rank-k update of the
4-by-4 triangular part of the supernode, using Algorithm 1. It then performs
the following update for all rows i > j + 3 in each of the four columns, using
Algorithm 3.

Assuming again that the α and γ coefficients are always kept in cache, the
flops-per-memory-access ratio becomes 16sk/(2sk + 9s). The flop-per-memory
ratios for nonsupernodal, 2-column supernodal, and 4-column supernodal
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Algorithm 3. (Supernodal Rank-k Update/Downdate of Four Columns j to j + 3 of L).

for i in L j \ { j : j + 3} do

copy entries of L into a 1-by-4 dense matrix x:
x = li, j: j+3

copy entries of W into a 4-by-k dense matrix z:
z = w j: j+3,1:k

rank-k update of x:
for r = 1 to k do

update one entry in column j:
wir = wir − z1rx1

x1 = x1 − γr1wir

update one entry in column j + 1:
wir = wir − z2rx2

x2 = x2 − γr2wir

update one entry in column j + 2:
wir = wir − z3rx3

x3 = x3 − γr3wir

update one entry in column j + 3:
wir = wir − z4rx4

x4 = x4 − γr4wir

copy x back into L:
li, j: j+3 = x

Table I. Flops per Memory Access for Rank-k Update

rank-k update: k = 1 2 3 4 5 6 7 8

nonsupernodal 4/5 8/7 12/9 16/11 20/13 24/15 28/17 32/19
(4sk/(2sk + 3s)) 0.80 1.14 1.33 1.45 1.53 1.60 1.65 1.68

2-column supernode 8/7 16/9 24/11 32/13 40/15 48/17 56/19 64/21
(8sk/(2sk + 5s)) 1.14 1.78 2.18 2.46 2.67 2.82 2.95 3.05

4-column supernode 16/11 32/13 48/15 64/17 80/19 96/21 112/23 128/25
(16sk/(2sk + 9s)) 1.45 2.46 3.20 3.76 4.21 4.57 4.87 5.12

updates are shown in Table I for each value of k. Each is listed as both a
ratio and a decimal value.

The peak ratio for a 4-column rank-8 update is 128/25, or 5.12. In a matrix
with many large supernodes, most of the work will be done in updates of
rank-k to dynamic supernodes of size 4. Our method thus uses one of three
updates: single-column with 4-by-1 updates in the innermost loop, 2-column
with 2-by-2 updates of L, and 4-column with 1-by-4 updates of L. We can
thus expect a rank-8 update of a matrix with many large supernodes to rival
or exceed the performance of a BLAS matrix-vector multiply (which has a
flops/memory reference ratio of 2).

3.3.4 Gap Strategy. During an update, the number of entries in a column
can increase. In a MATLAB-style compressed column data structure, there are
no gaps between the columns to allow for this growth. In our data structure,
we allow for gaps to appear. It would be possible to use the C memory allocator

ACM Transactions on Mathematical Software, Vol. 35, No. 4, Article 27, Pub. date: February 2009.



Dynamic Supernodes in Cholesky Up/Downdate and Triangular Solves · 27: 15

(malloc) to allocate and realllocte (realloc) each column, but this would be
slow and memory-inefficient. Instead, we allocate one block of memory for all
the columns and manage the gaps ourselves.

These gaps arise naturally when a supernodal factorization is converted into
a “simplicial” one (where the nonzero pattern of each column of L is stored
separately), because we do not move the numerical values. A supernode of size
s-by-z is a lower triangular dense matrix. The upper triangular part is not
used. Thus, when converted into a simplicial L, the first column in the su-
pernode is followed by a gap of one entry. The second has a gap of two. The
next-to-last column has a gap of z − 1. The last column has no gap, since
the next entry in L is the first entry of the next supernode.

These gaps are used by our dynamic update to hold new entries that appear.
If additional entries appear, then a column is removed from its place and stored
at the tail end of the memory space used for L. If the new column j requires c

entries after the update, space of min(⌊1.2c⌋ + 5, n − j) entries is given to it to
allow for potential future growth.

4. DYNAMIC SUPERNODAL SOLVE

The dynamic supernodal update/downdate has a similar structure as the
algorithm for solving a sparse lower triangular system Lx = b . The latter
is simpler, since we only consider the case where b is a dense vector or matrix.
It accesses columns 1 through n, and can exploit the same dynamic supern-
ode strategy. Our method looks for dynamic supernodes of size one to three
columns, and can handle one to four righthand sides (b can be an n-by-4 dense
matrix). The solution x is stored in row-major form.

We limit the size of the dynamic supernode to three columns for performance
reasons. We found that attempting to exploit supernodes of size four columns
or larger resulted in lower performance in our dynamic supernodal triangular
solve. This is analogous to the innermost blocking used in the BLAS, which
typically relies on completely unrolled loops that operate on 2-by-2, 2-by-4, or
other small submatrices of similar sizes.

With four right-hand sides, and a dynamic supernode of three columns of
L, the triangular solve for these three columns is given in Algorithm 4. Each
inner iteration multiplies a dense 1-by-3 vector with a 3-by-4 matrix.

Just as in the dynamic supernodal update/downdate, the nonzero patterns
of columns j + 1 and j + 2 are not accessed. The access of the first entry xij

is irregular, but access to entries in subsequent columns is regular, since we
store X in row-major form. The matrix y is only of size 3-by-4 and can be
stored in cache or registers. Thus, each inner iteration performs 24 floating-
point operations, reads 3 entries of L, one entry of L, and reads/writes 4 entries
of X . The flops-per-memory-access ratio is thus 24/12, or 2. A conventional
supernodal solve has a similar ratio.

With a single righthand side and 3 columns in a dynamic supernode, each
inner iteration performs 6 floating-point operations, reads 3 entries of L, one
entry of L, and reads/writes one entry of x. In this case the ratio is 1 (6 flops
and 6 memory references).
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Algorithm 4. (Supernodal Solve (3 Columns of L and 4 Righthand Sides).

solve L j: j+2, j: j+2 y = X j: j+2,∗ for y

X j: j+2,∗ = y

for each i in L j \ { j, j + 1, j + 2}

X i,∗ = X i,∗ − Li, j: j+2 y

By comparison, a simple lower triangular solver for a dense matrix (one
righthand side, and no supernodes) performs 2 floating-point operations in its
innermost loop, reads one entry of L, and reads/writes one entry of x. The
flops-per-memory ratio is 2/3. In the sparse case, the ratio drops to 2/4 because
L must also be read.

For a dense L and a single right-hand side, most of the work can be done
in a matrix-vector multiplication, which has a flops-per-memory-access ratio of
about 2.

5. RESULTS

To test our methods, we compared the nonsupernodal multiple-rank update
in Davis and Hager [2001] with our new dynamic supernodal update in
CHOLMOD. The nonsupernodal multiple-rank update/downdate was done in a
modified version of CHOLMOD in which the dynamic detection of supernodes
was disabled. The CSparse package [Davis 2006] includes a simple rank-1
update/downdate method that does not check for, nor allow, any changes in the
nonzero pattern of L.

We also compared our dynamic supernodal triangular solvers with a simple
sparse triangular solver and a conventional supernodal triangular solver.

These results were obtained on a Intel Pentium 4 (3.2GHz clock frequency,
4GB RAM (DDR 333 Mhz), 512KB cache, an 800 MHz memory bus, and run-
ning Linux). The theoretical peak performance of the computer is 6.4GFlops.
The gcc compiler was used (version 3.3.5, with -O3 optimization). All timings
are in seconds of elapsed time.

5.1 Dynamic Supernodal Update/Downdate

Four matrices were used for the tests presented next.

5.1.1 The ND/ND3k Matrix. For this matrix, the update LDLT + WWT

was selected so that the nonzero pattern of L did not change, to allow com-
parisons with CSparse. The update was computed in 17 different ways. We
used CHOLMOD in steps of 1 to 8 columns of W at a time, and both with and
without dynamic supernodes. We also used CSparse, but with only one column
of W at a time since CSparse can only perform rank-1 updates/downdates. The
matrix statistics and results are shown in Table II.

The rank-1 Cholesky update/downdate method in CSparse uses a sparse
LLT factorization and thus performs about 25% more floating-point work as
an LDLT update. It requires the same memory traffic. Since it only applies
to problems where the nonzero pattern of L does not change, it does not need
to check for possible changes in the pattern. Thus, for a rank-1 update, its
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Table II. The ND/ND3k Matrix, Statistics and Results

Matrix name: ND/ND3K

source: 3D discretization of a PDE
n: 9000

|A|, lower triangular part: 1.6 × 106

ordering method: CHOLMOD nested dissection
ordering time: 2.0 seconds

CHOLMOD symbolic Cholesky factorization: 0.14 seconds
CHOLMOD numeric Cholesky factorization: 6.75 seconds
time to convert to nonsupernodal LDLT : 0.25 seconds

|L|: 12.6 × 106

Cholesky factorization flop count: 22.15 × 109

CHOLMOD Cholesky factorization Mflops: 3281

update/downdate rank: 128

# of entries modified in L: 12.1 × 106

CSparse update time: 3.29 seconds

CSparse update flop count: 2.2 × 109

CSparse update Mflops: 667

CHOLMOD update flop count: 1.81 × 109

Table III. ND/nd3k: CSparse and CHOLMOD Results (fixed nonzero pattern)

CSparse CHOLMOD CHOLMOD
nonsupernodal nonsupernodal supernodal

rank time Mflops time Mflops time Mflops speedup

1 3.29 667 3.95 458 3.32 554 19%
2 - - 3.09 585 2.53 715 22%
3 - - 2.88 628 2.23 811 29%
4 - - 2.64 685 2.02 895 31%
5 - - 2.65 682 1.82 993 46%
6 - - 2.46 735 1.65 1096 49%
7 - - 2.34 769 1.54 1174 52%
8 - - 2.24 807 1.52 1189 47%

performance in terms of runtime and MFlops can exceed CHOLMOD when
the pattern does not change.

The results in Table III show that using dynamic supernodes increases the
performance of CHOLMOD’s sparse Cholesky update/downdate by about 50%
(the speedup, in the rightmost column) when the rank of W is 5 or greater.

5.1.2 The Qaplib/lp nug15 Matrix. The second problem was selected to
test a changing nonzero pattern. The matrix A is 6330-by-22275; 6330
columns were chosen at random to obtain A F. The matrix S = A F AT

F + β I

was factorized, and then a rank-128 update was selected at random from the
columns in A but not in A F. This procedure mimics the use of CHOLMOD in
a linear programming solver, LPDASA [Davis and Hager 2008a; 2008b]. The
matrix statistics and basic results are shown in Table IV.

In Table V, we present the results with just CHOLMOD (both nonsuper-
nodal and dynamic supernodal) where the nonzero pattern is changing. Of the
67,372 times that a column was modified in the 16 rank-8 updates (the last
row of Table V), the nonzero pattern of a column was modified 15,396 times
(23%, all of which grew in size since entries are not dropped). Although a
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Table IV. The Qaplib/lp nug15 Matrix, Statistics and Results

Matrix name: QAPLIB/LP NUG15
source: linear programming problem

n: 6330

|S|, lower triangular part: 129 × 103

ordering method: CHOLMOD nested dissection
ordering time: 0.58 seconds

CHOLMOD symbolic Cholesky factorization: 0.02 seconds
CHOLMOD numeric Cholesky factorization: 5.89 seconds

time to convert to nonsupernodal LDLT : 0.14 seconds

initial |L|: 7.57 × 106

Cholesky factorization flop count: 16.4 × 109

Cholesky factorization Mflops: 2684

update/downdate rank: 128

# of entries modified in L: 7.56 × 106

final |L|: 7.61 × 106

CHOLMOD update flop count: 2.5 × 109

Table V. Qaplib/lp nug15: CHOLMOD Results (changing nonzero pattern)

CHOLMOD CHOLMOD
nonsupernodal supernodal

rank time Mflops time Mflops speedup

1 6.81 372 6.08 416 12%
2 5.14 492 4.40 575 17%
3 4.78 529 3.97 637 20%
4 4.47 566 3.69 686 21%
5 4.44 570 3.47 729 28%
6 4.25 596 3.30 767 29%
7 4.11 616 3.24 781 27%
8 4.05 625 3.24 781 25%

column grew in length 23% of the time, the gap we create is typically sufficient
to accommodate the growth. When the original gaps between the columns, that
arose when the supernodal factor was converted in place to a simplicial factor,
were left in place (the default), 1,904 columns had to be shifted (3%). When
all gaps were removed initially, 2,320 columns had to be shifted, incurring
an additional runtime cost of only 0.22 seconds above the default method, an
increase in runtime of only 7%. These results show that our strategy of creat-
ing gaps between columns is effective.

The results in Table V cannot be directly compared with CSparse, since
the pattern of L is changing. However, if the update is followed by another
one with the same W , then the nonzero pattern of L remains unchanged.
Almost the same amount of floating-point work is required. The results for
both CHOLMOD (with and without supernodes) and CSparse are listed in
Table VI.

The differences between Tables V and VI reflect the work required to modify
the nonzero pattern L. Modifying the nonzero pattern in a supernodal rank-8
update takes 3.24 seconds, as shown in Table V; the time drops to 1.88 seconds
in Table VI. Thus, the time taken to modify the pattern is about 1.36 seconds
to the total runtime.
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Table VI. Qaplib/lp nug15: CSparse and CHOLMOD Results (fixed nonzero pattern)

CSparse CHOLMOD CHOLMOD
nonsupernodal nonsupernodal supernodal

rank time Mflops time Mflops time Mflops speedup

1 4.65 680 5.32 476 4.57 555 16%
2 - - 3.69 687 2.94 863 25%
3 - - 3.33 762 2.54 999 31%
4 - - 3.03 837 2.23 1137 36%
5 - - 3.03 837 2.05 1237 48%
6 - - 2.85 890 1.92 1321 48%
7 - - 2.75 922 1.87 1357 47%
8 - - 2.70 939 1.88 1349 44%

5.1.3 A Dense Matrix. The next matrix we tested was a randomly gener-
ated dense symmetric positive definite matrix of dimension n = 3000, to test
how close CHOLMOD comes to its theoretical performance limit.

The chol function in MATLAB takes 2.3 seconds to factorize this matrix, a
rate of 3.9GFlops using LAPACK [Anderson et al. 1999] and the Goto BLAS
[Goto and van de Geijn 2002]. If that same matrix is converted into a sparse
matrix, CHOLMOD requires 3.1 seconds to factorize it (2.9GFlops), exclud-
ing the ordering time but including both symbolic and numeric factorization.
A rank-1 dense update using cholupdate in MATLAB (based on LINPACK
[Dongarra et al. 1978; Stewart 1979]) takes 0.2 seconds. The same update
using CSparse takes 0.12 seconds (0.03 seconds for the update, and 0.10
seconds to copy the result back to MATLAB). A rank-8 LDLT update in
CHOLMOD takes 0.2 seconds, half of which is the actual update, and the other
half being the time to copy the matrix to and from the MATLAB workspace.
The copy is required simply because a MATLAB function cannot modify its
inputs. Even with the copy (which cholupdate must also perform), our sparse
update/downdate methods (CSparse and CHOLMOD) are faster than the
rank-1 dense update/downdate in MATLAB when operating on the same
matrix.

For comparison, the dense matrix-vector multiply (DGEMV) in the Goto
BLAS has a peak performance of 2.7GFlops for computing y = Ax + y when
A is n-by-n and assumed to already be stored in cache if it is small enough
to fit. DGEMV reaches this peak when n = 160, but drops when n is about
256 or larger because of cache effects (637MFlops for n = 500, and 597MFlops
when n = 1000, for example). This range of performance is comparable to the
sparse Cholesky update/downdate, because L itself is normally too large to fit
into cache. The n-by-k workspace W for the update/downdate will typically
be too large to fit into cache. The peak performance of the rank-8 update is
1349, which is 2.3 times the performance of the dense matrix-vector multiply
for large n. This is very close to the expected ratio of 2.56, based on the differ-
ence in flops per memory reference (2 in DGEMV, 5.12 in CHOLMOD’s rank-8
update). The entries in the matrix L are read and written just once by our
method. Additional performance can only be obtained by an algorithm that
keeps more of W in cache than our method does.
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Table VII. Banded Matrix, CSparse and CHOLMOD Results (fixed nonzero pattern)

CSparse CHOLMOD CHOLMOD
nonsupernodal nonsupernodal supernodal

rank time Mflops time Mflops time Mflops speedup

1 0.77 456 0.75 468 0.65 540 15%
2 - - 0.54 650 0.54 650 0%
3 - - 0.45 780 0.41 856 10%
4 - - 0.41 856 0.36 957 14%
5 - - 0.44 797 0.32 1097 38%
6 - - 0.40 878 0.31 1132 29%
7 - - 0.39 900 0.29 1211 34%
8 - - 0.36 975 0.26 1350 38%

5.1.4 A Banded Matrix. Finally, we consider a banded matrix of dimension
n and with a half-bandwidth of t using a natural ordering. If factorized in a su-
pernodal Cholesky factorization with exact supernodes, the only supernodes
(either static or dynamic) that would appear would be in the last t columns
of L. However, as typical with supernodal Cholesky factorization methods,
CHOLMOD relaxes the restriction that two adjacent columns must be identi-
cal in their pattern (excluding the diagonal) to merge into a single supernode.
A few extra entries are added to create larger supernodes. These entries re-
main in L, and are exploited by our dynamic supernodal update/downdate.

For example, consider a matrix with dimension n = 3000 and half-
bandwidth t = 500. A concise L would have 500 entries in each column, except
for the last 500 columns. Columns in the factor L with relaxed supernodes
have up to 644 nonzeros, using the default supernode relaxation parameters in
CHOLMOD (most columns of L have less than 540 entries). With 128 succes-
sive rank-1 updates with a randomly chosen W (but with no change in pattern),
196,754 columns were updated, as 2,330 individual columns, 60 supernodes of
two columns, and 48,576 supernodes of four columns each. The 3000-by-128
sparse matrix W for the update LDLT + WWT was created by choosing the
pattern of W from 128 randomly chosen columns of L. The results are shown
in Table VII.

Next, we added entries to W to make the last row of W completely nonzero,
to force the nonzero pattern of L to change. The patterns of nearly all columns
of L do change (2,331 of 3,000). This provides a worst-case scenario for our
method. There are few natural supernodes (only those found via relaxed amal-
gamation) and almost all columns of L increase in length. The results for this
experiment are shown in Table VIII. Comparing these results with Table VII,
it is clear the performance of our method suffers in this worst-case example.
However, it is still worthwhile to exploit dynamic supernodes. Consider a rank-
128 update done in steps of rank-8 updates (the last row of each of these two
tables). The performance of this update is 1350Mflops when the pattern does
not change, and drops to 1099Mflops when the patterns of most columns of
L change. This is a significant decrease, but still higher than a nonsuper-
nodal rank-8 update, and much higher than any rank-1 update, supernodal or
otherwise.
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Table VIII. Banded Matrix, CHOLMOD Results (changing nonzero pattern)

CHOLMOD CHOLMOD
nonsupernodal supernodal

rank time Mflops time Mflops speedup

1 0.73 481 0.67 524 9%
2 0.55 639 0.58 606 −5%
3 0.48 732 0.48 732 0%
4 0.46 764 0.43 818 7%
5 0.46 764 0.38 925 21%
6 0.44 799 0.37 950 19%
7 0.43 817 0.35 1004 23%
8 0.42 837 0.32 1099 31%

5.2 Dynamic Supernodal Solve

In this experiment, we compare four different methods for solving LX = B,
where B is an n-by-k matrix and L is lower triangular with a nonunit
diagonal:

(1) a simple method in CSparse (cs_lsolve) that solves Lx = b with a single
righthand side (k = 1);

(2) a nonsupernodal method, but with loop-unrolling and the ability to handle
multiple righthand sides;

(3) the dynamic supernodal method, which is the same as (2) except that it
detects and exploits dynamic supernodes; and

(4) a conventional supernodal method, using DTRSV and DGEMV for
one righthand side and DTRSM and DGEMM for multiple righthand
sides.

The last two methods are in CHOLMOD. Method (2) is the same as
(3) except that the dynamic supernode detection in (3) was disabled. The
ND/ND3K matrix was used, with the same ordering as discussed in the previous
section. The results for all four methods are shown in Table IX, for various
values of k. The performance for k > 32 is essentially the same for k = 32 for
all methods.

The dynamic supernodal method (method (3)) is nearly twice as fast as both

the nonsupernodal method and conventional BLAS-based supernodal method
for k = 2. We did not expect our dynamic supernodal solve to outperform
a conventional BLAS-based supernodal solve, for any value of k. For other
values of k, it is about 50% faster than the nonsupernodal method. This is the
same speedup obtained by the dynamic update/downdate method discussed
in the previous section. The dynamic solver is slower than the conventional
supernodal solver only for k ≥ 7. For k ≥ 32 the conventional supernodal
solver is about 80% faster than the dynamic supernodal solver.

These results are significant in applications such as the LP Dual Active
Set Algorithm that require many solutions to triangular systems. For many
linear programming problems, the update/downdate and triangular solve time
dominate the time required by the initial Cholesky factorization.
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Table IX. Performance of Simple, Nonsupernodal, Dynamic Supernodal, and
Conventional Supernodal Solvers

(1) CSparse (2) non- (3) dynamic (4) conventional

supernodal supernodal supernodal
k time Mflops time Mflops time Mflops time Mflops

1 0.060 421 0.058 437 0.041 619 0.048 525
2 - - 0.092 550 0.050 1010 0.098 514
3 - - 0.117 655 0.072 1050 0.107 708
4 - - 0.108 935 0.078 1300 0.113 891
5 - - 0.167 757 0.118 1072 0.123 1023
6 - - 0.193 783 0.128 1188 0.128 1188
7 - - 0.220 803 0.147 1201 0.136 1297
8 - - 0.208 971 0.151 1334 0.143 1414
9 - - 0.263 865 0.193 1175 0.151 1500

10 - - 0.298 849 0.202 1250 0.157 1606
11 - - 0.325 854 0.226 1229 0.167 1666
12 - - 0.313 969 0.230 1317 0.173 1748

16 - - 0.410 985 0.303 1335 0.206 1961
20 - - 0.515 980 0.380 1329 0.240 2104

24 - - 0.615 985 0.460 1317 0.270 2244
28 - - 0.720 982 0.535 1321 0.303 2336
32 - - 0.825 979 0.605 1335 0.340 2376

6. SUMMARY

We have shown how dynamic supernodes can be exploited to obtain efficient
methods for updating or downdating a sparse Cholesky factorization and for
solving the resulting triangular systems. The dynamic supernodal update/
downdate and triangular solve methods are faster than the corresponding
nonsupernodal methods. Our dynamic supernodal solve is faster than a con-
ventional supernodal solve, except when solving with a righthand side with 6
or more columns. The CHOLMOD package is written in C, with a MATLAB
interface, and is described in a companion paper [Chen et al. 2008].
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