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1. OVERVIEW

Methods for the direct solution of a sparse linear system Ax = b rely on
matrix factorizations. When A is symmetric positive definite, sparse Cholesky
factorization is typically used. Supernodal and multifrontal methods are
among those that can exploit dense matrix kernels (the BLAS [Lawson et al.
1979; Dongarra et al. 1988, 1990]) and can thus achieve high performance on
modern computers. For more background on direct methods for sparse matri-
ces, see Davis [2006]; George and Liu [1981]; and Duff et al. [1986]. Supernodal
methods are discussed by Ashcraft and Grimes [1999]; Dobrian et al. [2000];
Hénon et al. [2002]; Ng and Peyton [1993]; Rothberg and Gupta [1991]; and
Rotkin and Toledo [2004].

CHOLMOD is a package that provides sparse Cholesky factorization meth-
ods and related sparse matrix functions. It includes both a supernodal method
and a nonsupernodal up-looking method [Davis 2005] that does not exploit the
BLAS. If the original matrix A is replaced by A ± WWT, where W is n-by-
k with k << n, the package can update or downdate the factorization while
exploiting dynamic supernodes. An update or downdate of a conventional
supernodal structure is not feasible, since changes in the nonzero pattern of
L cause supernodes to merge and split apart. Reorganizing a conventional
supernodal structure of L would dominate the run time of the update/
downdate. Dynamic supernodes, in contrast, are detected and exploited as
the algorithm progresses. For a rank-1 update/downdate, the running time
is proportional to the number of entries in L that change; the time for a
rank-k update/downdate is proportional to the time for k separate rank-1
update/downdates [Davis and Hager 1999, 2001]. CHOLMOD also exploits
dynamic supernodes in the triangular solves, and can update/downdate
the corresponding solution to Lx = b after updating/downdating L itself. A
detailed discussion of how CHOLMOD uses dynamic supernodes is given in
Davis and Hager [2009].

Section 2 summarizes the features in CHOLMOD. The performance of its
sparse Cholesky factorizations and nested dissection ordering methods is given
in Section 3. Section 4 explains how to obtain the code and the packages it
relies on.

2. FEATURES

CHOLMOD is composed of a set of modules, each of which defines a set
of objects and/or operations on those objects. CHOLMOD’s modules (Core,
Cholesky, Check, Demo, MATLABTM, MatrixOps, Modify, Partition, and
Supernodal) are described in the following. In addition, CHOLMOD includes
a full user guide that documents all of its 134 user-callable functions, a Make-
file, and an exhaustive test suite that exercises all of the statements in the
code. Nearly all matrix operations can be performed on either symmetric
or unsymmetric matrices, except that only symmetric matrices A or A AT

can be factorized and only a symmetric LDLT factorization can be updated/
downdated.
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2.1 Core Module

The Core Module defines the five basic objects that CHOLMOD supports:

(1) cholmod_sparse: a sparse matrix in compressed sparse column form,
either symmetric or unsymmetric (the latter may be rectangular). In the
symmetric case, either the upper or lower triangular part is stored. Most
of CHOLMOD’s functions operate on cholmod_sparse matrices.

(2) cholmod_triplet: a sparse matrix in triplet form (a list of nonzero values
with their row and column indices). This is a flexible data structure for the
user to generate. Only a few functions are provided (including functions
for converting to and from the triplet form).

(3) cholmod_dense: a dense matrix in column-oriented form (compatible with
MATLAB and Fortran).

(4) cholmod_factor: a sparse Cholesky factorization, either supernodal or
nonsupernodal, and either LLT or LDLT (where D is diagonal).

(5) cholmod_common: CHOLMOD parameters, workspace, and statistics.

The first four objects can be real or complex (both double precision), or
pattern only (with no numerical values). CHOLMOD supports two forms of
complex matrices and factors: C/C++/Fortran-style, and the split-style used in
MATLAB. The Core Module provides functions to allocate, reallocate, and free
these objects. The Core can also copy all but the cholmod_common object, and
convert between different object types.

Lower case letters are used for subsets (f) or permutation vectors (p); alpha
and beta are scalars. Sparse matrix operators (for cholmod_sparse) in the Core
Module include (in MATLAB notation) A*A’, A(:,f)*A(:,f)’, alpha*A+beta*B,
tril, triu, diag, A’, A(p,f)’, and A(p,p)’. The Core Module includes a func-
tion to sort row indices within each sparse column vector and a function to
extract entries within a band.

The cholmod_factor object contains either a symbolic or numeric factoriza-
tion, in either LLT or LDLT form, and either supernodal or nonsupernodal.
The Core Module includes a function that converts a cholmod_factor between
these various forms.

2.2 Cholesky Module

The Cholesky Module provides functions for computing or using a sparse
Cholesky factorization. These functions compute the elimination tree of A or
A*A’ and its postordering, row/column counts of chol(A) or chol(A*A’), the
symbolic factorization of A or A*A’, an interface to a supernodal Cholesky
factorization, nonsupernodal LLT and LDLT factorizations (up-looking),
incremental LLT and LDLT factorizations (one row at a time), a symbolic

refactorization (to remove entries after an update/downdate), and solutions to
upper/lower triangular systems (supernodal, dynamic supernodal, and dense,
sparse, and/or multiple right-hand sides). The module also provides an in-
terface to the AMD [Amestoy et al. 1996] and COLAMD [Davis et al. 2004]
ordering methods. The methods used in this Module are discussed by Liu

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 22, Pub. date: October 2008.



22: 4 · Y. Chen et al.

[1990]; Gilbert et al. [1994, 2001]; George and Liu [1981]; and Davis [2005,
2006].

If the Supernodal Module is installed, the sparse Cholesky factorization
automatically selects between a nonsupernodal up-looking factorization, and
a supernodal BLAS-based factorization. An up-looking Cholesky factorization
computes L one row at a time, and is much faster than the supernodal method
for very sparse matrices, such as tridiagonal matrices. The selection is done
during symbolic analysis, when |L| and the floating-point operation count are
found.1 If the operation count divided by |L| is greater than or equal to 40, then
the supernodal method is selected. Otherwise, the nonsupernodal method is
selected. This ratio is a coarse metric of how much memory-reuse a supernodal
method will be able to exploit during numeric factorization. If it is high, then
the supernodes will tend to be large and the BLAS routines will be efficient. If
it is low, there will be little scope for efficient exploitation of cache within the
BLAS kernels. The use of this ratio was selected analytically, based on a model
of cache memory behavior, but the default threshold of 40 was selected based
on performance measurements on a large range of sparse matrices arising in
real applications (see Section 3).

If the Partition Module is not installed, CHOLMOD uses a minimum
degree ordering (AMD or COLAMD). Otherwise, it automatically selects
between minimum degree and nested dissection. The default strategy is to
first try AMD. If AMD finds an ordering where the floating point operation
divided by |L| is less than 500, or if |L| < 5a where a is the number of nonze-
ros in the lower triangular part of A, then the AMD ordering is used and no
other ordering is attempted. Otherwise, METIS Karypis and Kumar [1998] or
CHOLMOD’s nested dissection ordering (NESDIS, described in Section 2.8) is
tried, and the best ordering (the one with the lowest |L|) is used.

CHOLMOD can also be requested to try up to nine different orderings and
select the best one found (user-provided, natural, AMD/COLAMD, METIS,
NESDIS, and the latter three with varying nondefault parameter selections).
This is useful in the case where a sequence of matrices with identical nonzero
patterns must be factorized, as often occurs in nonlinear solvers, optimization
methods, eigensolvers, and many other applications. These options are made
available to the user as simple-to-modify nondefault parameter settings; the
user need not call CHOLMOD multiple times.

Note that MATLAB 7.2 includes neither the Partition Module nor METIS.
It thus always uses AMD for its ordering in x=A\b when A is sparse and
symmetric positive definite.

Our sparse Cholesky update/downdate methods do not remove entries from
the factor L, but only add them. After many update/downdates, it may be
useful to prune entries that would not appear in L if it were computed from
scratch. We do this with what we call a symbolic refactorization; it is just the
same as a symbolic factorization, except that it takes as input, the A that L

should be a factor of, and prunes entries that need not appear in L.

1|L| denotes the number of nonzeros in L, or nnz(L) in MATLAB notation.
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The symbolic refactorization step is also used to convert a supernodal L

(which has extra numerically-zero entries due to relaxed supernodal amal-
gamation) into a concise nonsupernodal L where these extra entries do not
appear.

In an incremental LLT or LDLT factorization, only some of the rows of L

are computed. Additional rows of L are computed incrementally, as needed.
We use this method in LPDASA when solutions to subproblems are required
[Davis and Hager 2007b, 2007a].

2.3 Check Module

The Check Module checks the validity of the five CHOLMOD objects, and
prints their contents. It can also read a sparse matrix from a file, in triplet
or Matrix Market form [Boisvert et al. 1997].

2.4 Demo Module

The Demo Module provides sample main programs to illustrate how
CHOLMOD can be used in a user’s application. The CHOLMOD User Guide
has more details.

2.5 MATLAB Module

The MATLAB Module is CHOLMOD’s interface to MATLAB, providing most of
CHOLMOD’s functionality to the MATLAB environment. Note that MATLAB
7.2 already includes much of CHOLMOD itself, as built-in functions (namely,
the Core, Cholesky, MATLAB, and Supernodal Modules). Built-in functions
that rely on CHOLMOD include backslash (x=A\b and x=b/A when A is sparse
and symmetric positive definite), chol, etree, and symbfact.

CHOLMOD provides additional functions to the MATLAB user that are
not built into MATLAB, including nested dissection orderings (METIS and
NESDIS), and the ability to update and downdate a sparse LDLT factoriza-
tion. Its sparse-matrix-times-dense-matrix function, sdmult, is significantly
faster than the corresponding operation in MATLAB 7.2. Its variant of the
sparse function is much faster than the MATLAB built-in version, sometimes
by a factor of 10 or more.

2.6 MatrixOps Module

The MatrixOps Module provides functions for the cholmod_sparse object,
including [A,B], [A;B], alpha*A*X+beta*Y and alpha*A’*X+beta*Y, where A is
sparse and X and Y are dense, A*B, and A(i,j), where i and j are arbitrary
integer vectors. It can also compute norms of sparse or dense matrices. It
can perform row and column scaling, and can drop small entries from a sparse
matrix.

2.7 Modify Module

The Modify Module provides functions that can add or delete a row of L from an
LDLT factorization and compute the dynamic supernodal update/downdate of
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an LDLT factorization. The solution to Lx = b can also be updated/downdated
when L is modified. Details of the methods used are given by Davis and Hager
[1999, 2001, 2009]. For background on update/downdate methods, see Gill
et al. [1974]; Hager [1989], and Stewart [1979, 1998].

2.8 Partition Module

The Partition Module provides graph-partitioning based orderings. The graph
partitioning methods are currently based on METIS. Thus, this Module can
only be used in CHOLMOD if METIS is also available.

The Partition Module includes an interface to three constrained minimum
degree ordering methods: CAMD, CCOLAMD, and CSYMAMD. These meth-
ods are constrained versions of AMD, COLAMD, and SYMAMD, respectively.
In a constrained minimum degree ordering method, each node is in one of up
to n constraint sets. All nodes in constraint set zero are ordered first, followed
by all nodes in set one, and so on. These ordering methods are most useful
when combined with nested dissection [Pellegrini et al. 2000; Rothberg and
Eisenstat 1998].

The Module provides a direct interface to METIS functions for computing
a node separator of an undirected graph (METIS NodeComputeSeparator),
and for computing the nested dissection ordering of an undirected graph
(METIS NodeND). The latter recursively partitions the graph via node sep-
arators until the subgraphs are small. Small subgraphs are ordered inde-
pendently with minimum degree (MMD, [Liu 1985]), not with a constrained
minimum degree ordering.

CHOLMOD also includes its own nested dissection ordering, NESDIS. It
uses METIS NodeComputeSeparator to partition the graph recursively, in the
same manner as METIS NodeND. Unlike METIS NodeND, which orders each
subgraph independently, NESDIS uses the separators as ordering constraints
for CAMD or CCOLAMD (for symmetric and unsymmetric matrices, respec-
tively). This can sometimes result in a better ordering at the expense of a
modest increase in ordering time. Section 3 compares the performance of
CHOLMOD’s ordering methods.

2.9 Supernodal Module

The Supernodal Module provides supernodal symbolic and numeric factoriza-
tion (LLT only) of A or A AT , and a conventional supernodal triangular solver.
The functions in this Module are normally accessed indirectly by the user,
through the Cholesky Module.

3. PERFORMANCE

This section highlights the performance of CHOLMOD’s sparse Cholesky
factorization methods, and compares its nested dissection ordering with
METIS.
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Fig. 1. CHOLMOD supernodal and nonsupernodal performance.

3.1 Sparse Cholesky factorization

3.1.1 MATLAB Backslash. MATLAB 7.1 uses a left-looking nonsupern-
odal method and the SYMMMD minimum degree ordering [Gilbert et al. 1992].
For large matrices, sparse backslash when A is symmetric positive definite,
is typically five to ten times faster in MATLAB 7.2 as compared with MAT-
LAB 7.1, because of CHOLMOD’s supernodal factorization and AMD order-
ing. CHOLMOD’s up-looking nonsupernodal factorization, coupled with the
better and faster AMD ordering, provides a speedup even for small or very
sparse matrices. For large matrices, a speedup of up to 40 has been observed.
For the ND/ND3K matrix, a 3D mesh, the time for x=A\b reduces from 178.6
seconds in MATLAB 7.1 to 10.7 seconds in MATLAB 7.2. With the Partition
Module and the METIS nested dissection ordering, the time to solve Ax = b

with CHOLMOD drops to 8.5 seconds. Backslash does not use METIS, nor can
it be configured to do so by the MATLAB user. METIS is available only if the
MATLAB user installs both CHOLMOD and METIS, and uses the CHOLMOD
mexFunction instead of backslash.

3.1.2 CHOLMOD Supernodal/Nonsupernodal Tradeoff. Figure 1 shows
the performance of CHOLMOD’s nonsupernodal up-looking method and its
supernodal method, as a function of the ratio of floating-point operations over
the number of nonzeros in L. Figure 2 compares the relative performance of
these two methods. The computer listed in the first row of Table I was used for
Figures 1 and 2, using the Goto BLAS [Goto and van de Geijn 2008]. The test
set of 320 matrices consists of all matrices in the UF Sparse Matrix Collec-
tion [Davis 1994] that are either positive definite or binary with a symmetric
nonzero pattern. For the binary matrices, numerical values were constructed
to ensure the matrices were positive definite; off-diagonal entries were set to
−1, and the diagonal entry aii was set to one plus the number of nonzero en-
tries in column i. Random matrices were excluded. The x-axis of each plot is
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Fig. 2. CHOLMOD relative supernodal and nonsupernodal performance.

the floating-point operation count over |L|, which is the metric used to auto-
matically select between the two methods. Run times include ordering, analy-
sis, factorization, and solution of the resulting triangular systems. This is all
the work done by x=A\b, except for the mldivide meta-algorithm that selects
which method to use (LU, Cholesky, QR, banded solver, etc.). Each circle in the
figure is a single matrix.

These results indicate that the floating-point count per nonzero in L is
a remarkably accurate method for predicting both the absolute and relative
performance of these two methods. The relative performance, and more
importantly the threshold of 40 flops/|L| used to automatically select between
the up-looking and supernodal method, may of course differ on different com-
puters. The value of 40 is the default value of a parameter that the user can
modify. Reasonable thresholds on a range of other computers are shown in
Table I, based on the same test set. On all platforms listed, the flops/|L| ratio
proves to be an accurate performance predictor.

On dual-core processors, a high flops/|L| ratio is required to warrant the
use of a multi-threaded BLAS, as compared to a single-threaded BLAS (about
300 on the Intel T2500, and 500 on the AMD Opteron). This is due to perfor-
mance bugs in the Intel MKL and AMD ACML multithreaded BLAS libraries.
This bug also results in a slowdown in the sparse component of the MATLAB
bench when multithreading is enabled (MATLAB Versions 7.4 and 7.5) [Moler
2007]. Future versions of the BLAS should attain the same flops/|L| threshold
of about 40, since a multithreaded BLAS should never be significantly slower
than a single-threaded BLAS for any size matrix.

Note that the Pentium 4M and Intel Core Duo T2500 [Gochman et al. 2006]
are laptop processors, where power and thermal constraints are met at the ex-
pense of floating-point performance. All other computers in Table I use desktop
or server processors.
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Table I. Performance of CHOLMOD Sparse Cholesky Factorization on a Range of Computers

up-looking supernodal
Computer threshold peak GFlops peak GFlops

Intel Pentium 4
3.2GHz, 512KB cache, 4GB RAM
Goto BLAS 40 0.38 3.76

Intel Pentium 4M
2GHz, 512KB cache, 1GB RAM
Intel MKL BLAS 40 0.20 1.77
Goto BLAS 40 0.20 1.80

Intel Core Duo T2500 (2-core)
2GHz, 2MB cache, 2GB RAM
Intel MKL BLAS (1 thread) 40 0.41 1.34
Goto BLAS (1 thread) 40 0.41 1.47
Goto BLAS (2 threads) 120 0.41 2.47

AMD Opteron 252 (2-core)
2.6GHz, 1MB cache, 8GB RAM
ACML BLAS (1 thread) 30 0.38 2.56
Goto BLAS (1 thread) 30 0.38 3.93
Goto BLAS (2 threads) 80 0.38 6.65

Sun UltraSparcII V9+vis (4-core)

450GHz, 4MB cache, 4GB RAM
ATLAS BLAS (1 thread) 45 0.06 0.43

3.1.3 Performance Comparisons by Gould, Hu, and Scott. Full details of
an independent performance comparison between CHOLMOD and ten other
solvers are given in [Gould et al. 2007, 2006]. With 87 symmetric positive
definite test matrices, CHOLMOD had the fastest total run time (including
analysis, factorization, and solution of the triangular systems) for 42 matrices,
and its run time was either fastest or within 10% of the fastest for 73 out of 87
matrices.

Gould, Hu, and Scott define a matrix as large if it has dimension larger
than 50,000; there are 42 large matrices in their test set. Considering just the
larger matrices, it was either the fastest or within 10% of the fastest for 40 out
of 42 matrices. The two remaining matrices2 are the two worst-case outliers
in Figure 1. These two matrices are from an interior point linear program-
ming problem and contain many dense rows and columns that cause problems
with many solvers. CHOLMOD’s run time was 2.2 and 3.8 times the fastest
run time for these two matrices, respectively. The bulk of the time was spent
in AMD. Modifying AMD’s default dense row/column control parameter can
greatly reduce the ordering time for these two matrices.

CHOLMOD used the least amount of memory (or within 10% of the least)
for 35 of the 42 larger matrices. Scott and Hu [2007] also discuss the design
considerations for a sparse direct code and give details on the user interface
and design of CHOLMOD.

In many applications, the factorization and solve time is more important
than the total time, since the analysis is done just once for a sequence of
matrices. In this case, CHOLMOD’s default parameters can be modified to

2The GUPTA1 and GUPTA2 matrices.
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instruct it to call all three ordering methods available to it: AMD, METIS, and
NESDIS. Alternatively, user-provided orderings can be given to CHOLMOD.
For 30 of the 42 larger matrices using its default ordering strategy, CHOLMOD
called both AMD and METIS and took the best ordering. For the other 12,
AMD gave a reasonable ordering and so by default, METIS was not attempted.
If METIS were used for these 12 matrices, the fill-in would be reduced for seven
matrices and significantly reduced by more than 10% for only two matrices.

Ignoring the ordering and analysis time and considering just the
factor+solve time, CHOLMOD was fastest for just 5 out of the 42 larger matri-
ces, but it was within 10% of the fastest for 21 matrices. The total CHOLMOD
factor+solve time for all 42 matrices was 2009 seconds, which is the second
lowest among the 11 methods. This total time could be reduced if CHOLMOD
were to be instructed to use all of its ordering methods and pick the best. The
lowest total factor+solve time was obtained by WSMP [Gupta et al. 2001, 1997]
at 1910 seconds, or just 5% lower than CHOLMOD. The WSMP analysis phase
is designed to minimize the factor+solve time at the expense of ordering time.
If the total analysis+factor+solve time is considered, CHOLMOD takes 2320
seconds for all 42 matrices, whereas WSMP takes 3062 seconds (32% more
than CHOLMOD) because of its costly ordering and analysis phase.

These results by Gould, Hu, and Scott point out some of the strengths
and weaknesses of CHOLMOD relative to other solvers. Comparing the per-
formance of solvers is fraught with pitfalls: the matrix test sets used may
not reflect a user’s application (even though the test matrices arise in real
applications) and the default parameters and ordering options for different
solvers are tuned for different goals. However, with these caveats, these results
do indicate that CHOLMOD has competitive performance relative to other
solvers.

3.2 Ordering Methods in CHOLMOD

The results in this section demonstrate the improvement in fill-in that can be
obtained by combining nested dissection and minimum degree ordering.

The default ordering strategy for CHOLMOD is to first try AMD (or
COLAMD for the Cholesky factorization of A AT). Let f be the floating point
operation count as determined by AMD. Let a be the number of nonzeros in
the lower triangular part of the symmetric matrix A. Then if f/|L| ≥ 500
and |L| ≥ 5a, METIS is tried and the best ordering is used—AMD or METIS,
whichever gives the lowest |L|. If one or both of these conditions do not hold,
then AMD has returned an ordering with low fill-in and flop count, and METIS
is not attempted at all. This strategy is useful because while METIS can give
good orderings, it is very costly in terms of run time and thus should be used
only when AMD reports a high fill-in.

Our test set consists of 137 symmetric positive definite matrices. These are
all matrices in the UF Sparse Matrix Collection [Davis 1994] that are either
symmetric positive definite, or binary with symmetric nonzero pattern. Binary
matrices were given values to make them positive definite, since symmetric
binary matrices in the test set normally arise from symmetric positive definite
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matrices whose values have not been contributed to the collection.3 Random
matrices and matrices with fewer than one million entries were also excluded.
Six large matrices were too large to be solved on the computer used for the
test and were also excluded (we used the computer in the first row of Table I).
Of these 137 matrices, 108 come from applications with a 2D or 3D geometry.
Nested dissection orderings (METIS and NESDIS) are typically better than
minimum degree (AMD) for 3D problems, and often tie in quality with AMD
for 2D problems.

Five different methods were used:

(1) The default strategy (AMD, then try METIS if warranted).

(2) Always try both AMD and METIS, and take the best ordering.

(3) AMD alone.4 AMD failed for one of the 137 matrices.

(4) METIS alone.

(5) NESDIS alone. NESDIS failed for one of the 137 matrices.

The run time and flop count performance profiles of these five methods are
shown in Figure 3.

In the left plot, the x-axis is the ratio of the total run time (ordering,
symbolic factorization, numeric factorization, and forward/backsolve), divided
by the best total run time for all of the five methods. The y-axis is the fraction
of matrices for which a given method obtained that relative run time, or better.
For example, the point (2, 0.84) on the run-time plot for AMD means that for
84% of the matrices, the total run time when using AMD was no higher than
twice the lowest run time of any of the five methods. The default method is
the absolute fastest for only 20% of the matrices, but its run time is no more
than 10% higher than the fastest method for 78% of the matrices. Our default
strategy clearly dominates the run time of the other four strategies.

The right plot in Figure 3 is a performance profile for the same experiment,
except the x-axis is the flop count relative to the best flop count for any method
(AMD, METIS, or NESDIS). NESDIS can sometimes find slightly better
orderings than METIS, but as can be seen in Figure 3, the total run time with
NESDIS is higher because NESDIS is slower than METIS. AMD is a very fast
method, but it does not always give the best orderings.

We can conclude from these results that the default ordering strategy is the
best approach. The faster AMD/COLAMD minimum degree ordering routines
should be used first. If CHOLMOD finds that AMD/COLAMD does not lead to
a reasonable ordering quality, then the slower but sometimes better METIS or
NESDIS should be tried. NESDIS can sometimes give slightly better orderings
than METIS, but at a cost of higher run time. Thus, NESDIS is not used in the
default ordering for CHOLMOD. CHOLMOD can be configured via parameter
settings to try many different orderings and select the best one, which is useful

3Refer to Section 3.1.2 for how binary matrices were given numerical values.
4This is the ordering method used in MATLAB’s backslash because (as of Version 7.5) MATLAB
does not include the METIS ordering.
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Fig. 3. Performance profiles of five CHOLMOD ordering strategies.

for the scenario where multiple matrices with identical nonzero patterns are
to be factorized.

4. AVAILABILITY AND DEPENDENCIES

In addition to appearing as a Collected Algorithm of the ACM, CHOLMOD is
available as a built-in function in MATLAB version 7.2 or later. It requires
the ordering functions AMD, COLAMD, CAMD, and CCOLAMD, the dense
matrix libraries LAPACK [Anderson et al. 1999] and the BLAS [Lawson et al.
1979; Dongarra et al. 1988, 1990], and optionally uses METIS [Karypis and
Kumar 1998] for its nested dissection orderings.

REFERENCES

AMESTOY, P. R., DAVIS, T. A., AND DUFF, I. S. 1996. An approximate minimum degree ordering
algorithm. SIAM J. Matrix Anal. Appl. 17, 4, 886–905.

ANDERSON, E., BAI, Z., BISCHOF, C. H., BLACKFORD, S., DEMMEL, J. W., DONGARRA, J. J., DU

CROZ, J., GREENBAUM, A., HAMMARLING, S., MCKENNEY, A., AND SORENSEN, D. C. 1999.
LAPACK Users’ Guide, 3rd ed. SIAM, Philadelphia.

ASHCRAFT, C. C. AND GRIMES, R. G. 1999. SPOOLES: an object-oriented sparse matrix library.
In Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing.
SIAM, Philadelphia.

BOISVERT, R. F., POZO, R., REMINGTON, K., BARRETT, R., AND DONGARRA, J. J. 1997.
The Matrix Market: A Web resource for test matrix collections. In Quality of Numerical

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 22, Pub. date: October 2008.



Algorithm: CHOLMOD · 22: 13

Software, Assessment and Enhancement, R. F. Boisvert, Ed. Chapman & Hall, London, 125–137.
(http://math.nist.gov/MatrixMarket).

DAVIS, T. A. 1994. University of Florida sparse matrix collection. www.cise.ufl.edu/research/
sparse. NA Digest, vol 92, no. 42.

DAVIS, T. A. 2005. Algorithm 849: A concise sparse Cholesky factorization package. ACM Trans.

Math. Softw. 31, 4, 587–591.

DAVIS, T. A. 2006. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia, PA.

DAVIS, T. A., GILBERT, J. R., LARIMORE, S. I., AND NG, E. G. 2004. A column approximate
minimum degree ordering algorithm. ACM Trans. Math. Softw. 30, 3, 353–376.

DAVIS, T. A. AND HAGER, W. W. 1999. Modifying a sparse Cholesky factorization. SIAM J. Matrix

Anal. Appl. 20, 3, 606–627.

DAVIS, T. A. AND HAGER, W. W. 2001. Multiple-rank modifications of a sparse Cholesky factor-
ization. SIAM J. Matrix Anal. Appl. 22, 997–1013.

DAVIS, T. A. AND HAGER, W. W. 2007a. Dual multilevel optimization. Math. Program. 112, 2
(Nov.), 403–425.

DAVIS, T. A. AND HAGER, W. W. 2007b. A sparse proximal implementation of the LP Dual Active
Set Algorithm. Math. Program. 112, 2 (Nov.), 275–301.

DAVIS, T. A. AND HAGER, W. W. 2009. Dynamic supernodes in sparse Cholesky update/downdate
and triangular solves. ACM Trans. Math. Softw., to appear.

DOBRIAN, F., KUMFERT, G. K., AND POTHEN, A. 2000. The design of sparse direct
solvers using object oriented techniques. In Advances in Software Tools for Scientific Computing,
H. P. Langtangen, A. M. Bruaset, and E. Quak, Eds. Lecture Notes in Computational Science
and Engineering, vol. 10. Springer-Verlag, Berlin, 89–131.

DONGARRA, J. J., DU CROZ, J., DUFF, I. S., AND HAMMARLING, S. 1990. A set of level-3 basic
linear algebra subprograms. ACM Trans. Math. Softw. 16, 1, 1–17.

DONGARRA, J. J., DU CROZ, J., HAMMARLING, S., AND HANSON, R. J. 1988. An extended set of
Fortran basic linear algebra subprograms. ACM Trans. Math. Softw. 14, 18–32.

DUFF, I. S., ERISMAN, A. M., AND REID, J. K. 1986. Direct Methods for Sparse Matrices. OUP,
Oxford, UK.

GEORGE, A. AND LIU, J. W. H. 1981. Computer Solution of Large Sparse Positive Definite Systems.
Prentice-Hall, Englewood Cliffs, New Jersey.

GILBERT, J. R., LI, X. S., NG, E. G., AND PEYTON, B. W. 2001. Computing row and column counts
for sparse QR and LU factorization. BIT 41, 4, 693–710.

GILBERT, J. R., MOLER, C., AND SCHREIBER, R. 1992. Sparse matrices in MATLAB: design and
implementation. SIAM J. Matrix Anal. Appl. 13, 1, 333–356.

GILBERT, J. R., NG, E. G., AND PEYTON, B. W. 1994. An efficient algorithm to compute row and
column counts for sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 15, 4, 1075–1091.

GILL, P. E., GOLUB, G. H., MURRAY, W., AND SAUNDERS, M. A. 1974. Methods for modifying
matrix factorizations. Math. Comp. 28, 126, 505–535.

GOCHMAN, S., MENDELSON, A., NAVEH, A., AND ROTEM, E. 2006. Introduction to the Intel core
duo processor architecture. Intel Techn. J. 10, 2, 89–98.

GOTO, K. AND VAN DE GEIJN, R. 2008. High performance implementation of the level-3 BLAS.
ACM Trans. Math. Softw. 35, 1.

GOULD, N. I. M., HU, Y., AND SCOTT, J. A. 2006. Complete results from a numerical evaluation
of sparse direct solvers for the solution of large sparse, symmetric linear systems of equations.
Tech. Rep. Internal report 2005-1 (revision 2), CCLRC, Rutherford Appleton Laboratory. (Mar.)

GOULD, N. I. M., HU, Y., AND SCOTT, J. A. 2007. A numerical evaluation of sparse direct solvers
for the solution of large sparse, symmetric linear systems of equations. ACM Trans. Math. Softw.

33, 2 (June), 32 pages.

GUPTA, A., JOSHI, M., AND KUMAR, V. 2001. WSMP: A high-performance serial and parallel
sparse linear solver. Tech. Rep. RC 22038 (98932), IBM T.J. Watson Research Center.

GUPTA, A., KARYPIS, G., AND KUMAR, V. 1997. Highly scalable parallel algorithms for sparse
matrix factorization. IEEE Trans. Para. Distrib. Syst. 8, 5, 502–520.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 22, Pub. date: October 2008.



22: 14 · Y. Chen et al.

HAGER, W. W. 1989. Updating the inverse of a matrix. SIAM Rev. 31, 2, 221–239.
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