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Abstract--A derivative-based scheme for univariate minimization is developed. This scheme has a 
quadratic convergence rate and requires an evaluation of the function and its derivative in each iteration. 
An application involving the conjugate gradient method is presented. 

1. I N T R O D U C T I O N  

This paper develops a univariate minimization algorithm that we refer to as the Cubic Algorithm. 
This algorithm combines a bracketing strategy, the bisection method, and a Newton iteration based 
on Hermite cubic interpolation to minimize a function of one variable. These techniques are meshed 
together in a way that ensures the bisection strategy used to guarantee convergence of the algorithm 
will not interfere with the quadratic convergence rate of the underlying Newton iteration. More 
precisely, we prove that when minimizing a univariate function f, our algorithm converges to a 
point 0t which satisfies the second-order necessary conditions: f'(0t) = 0 andf'(~t) >t 0. Furthermore, 
iff"(0t) is positive, then the convergence is quadratic. That is, letting ek denote the error at step 
k, there exist constants q and r with r > 1 such that ek ~ q/r 2~ for every k. Since algorithms to 
minimize a function of several variables often involve a univariate minimization step, our proposed 
algorithm can be incorporated in a multivariate scheme. In Section 6 we show that the Cubic 
Algorithm can be combined with the conjugate gradient method in a way that preserves the 
fundamental convergence properties of the conjugate gradient method; in particular, an efficient 
technique to preserve both guaranteed convergence and n-step quadratic convergence of the 
conjugate gradient method is presented. The paper concludes with a series of numerical 
experiments that compare our Conjugate Gradient Search Scheme to various other algorithms for 
unconstrained optimization. The experimental results are very encouraging. 

We conclude this section with a brief review of literature concerning cubic-based univariate 
minimization algorithms. Some classic optimization books such as [1] by Pierre and [2] by Walsh 
formulate a cubic interpolation iteration. In some of these schemes it is possible that one side of 
the interval bracketing a local minimizer remains fixed while the other side creeps toward the local 
minimizer at a linear rate. Mifflin [3] develops a derivative-based algorithm with rules similar to 
our rules for updating the bracketing interval. Mifflin's algorithm, however, is tailored to 
nonsmooth Lipschitz continuous functions and the convergence is at best superlinear. Dennis and 
Schnabel [4] develop fast cubic interpolation schemes for finding a point that satisfies an Armijo 
condition. Although this objective is not the same as searching for a local minimum, the point 
which satisfies the Armijo condition may be a good approximation to a local minimum. More 
recently, AI-Baali and Fletcher [5] present some efficient line search routines that generate a point 
which satisfies a Goldstein-Wolf-Powell convergence criterion. Again, [5] is mainly concerned with 
efficient low accuracy searches for nonlinear least squares while our paper focuses on the problem 
of computing a local minimum. The report [6] by Gill and Murray provides an insightful 
discussion of various issues that must be considered when designing an efficient, robust univariate 
minimization routine. 

"t'This research was supported by National Science Foundation Grants MCS-8101892 and DMS-8401758 and by Air Force 
Office of Scientific Research Grant AFOSR-ISSA-860091. 
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In the companion paper [7], a derivative-free univariate minimization scheme is developed. The 
scheme in [7] achieves quadratic convergence using two function evaluations each iteration while 
the scheme in this paper achieves quadratic convergence using one function and one derivative 
evaluation each iteration. This derivative-based scheme is more numerically stable and obtains an 
estimate for the minimizer with relative accuracy on the order of  the machine epsilon while the 
derivative-free scheme obtains relative accuracy on the order of the square root of the machine 
epsilon. In applications where derivatives are readily available and the derivative can be computed 
almost as quickly as the function value, the algorithm in this paper will be preferable to the 
algorithm in [7]. Additional references to univariate minimization schemes are found in [7] and [8]. 

2. THE B R A C K E T I N G  STRATEGY 

Suppose that f i s  a real valued differentiable function of a real variable. Our algorithm generates 
a sequence of nested intervals with the following property (see [9]): If  [a, b] denotes a typical interval 
in the sequence, then 

f ' ( a ) ( b  - a) ~ 0 and f ( b )  >.f(a).  (1) 

Throughout this paper, [a, b] denotes an interval with endpoints a and b. We do not mean to imply 
that a is less than or equal to b. Now given A and B for whichf(B) >>.f(A) <.f(O) and A is between 
B and 0, the following rules produce an interval [a, b] which satisfies (1): 

(RO I f f ' ( A ) A  I>0, then a = A  and b =0 .  

(R2) I f f ' ( A ) A  <0,  t h e n a = A  a n d b = B .  

If  C ~ 0 is an approximation to a local minimizer o f f  and f ' ( O ) C  < 0, then one approach for 
finding A and B such that f (B)>>. f (A)<. f (O)  is the following: 

(i) If  f ( C )  >>.f(O), then evaluate f (Ck)  for k = 1, 2 . . . .  where Ck = p - k C  and p > I. Stop 
evaluation process at the first k for which f (Ck)  <f(0)  and set .4 = Ck and B = Ck_ i. Since 
C and f ' (0)  have opposite signs, f (Ck)  <f(0)  for k sufficiently large. 

(ii) I f  f ( C ) < f ( 0 ) ,  then evaluate f (Ck)  for k = 1, 2 . . . .  where Ck = pkC and p > 1. Stop 
evaluation process w h e n f ( C k +  l) ~ f ( C k )  and set A = Ck and B = Ck+ i. Prov ided f (Ck)  is not 
a strictly decreasing function of k, the inequality f (Ck+ ~)>~f(Ck) holds for some k. 

In the casef(C)~>f(0),  Dennis and Schnabel's cubic backtracking strategy [4, Section 6.3.2] is an 
alternative to (i): 

Using rules (R0 and (R2), we can construct an interval which satisfies (1). Now given an interval 
[ak, bk] which satisfies (1) and given a point Ck between ak and bk, the following rules produce a 
subinterval [ak+~, bk+t] which also satisfies (1): 

(R3) I f f (ck)  > f (ak ) ,  then ak+~ = ak and bk+t = Ck. 

(R4) I f  f ( c k )  < f (ak) ,  then ak + j = Ck and bk ÷ ~ = ak if  f ' (Ck)(ak -- Ck) <<. 0 

while ak + l = C, and bk + l = bk i f  f ' ( ck ) (ak  -- Ck) > O. 

(Rs) I f  f ( c k )  = f ( a k ) ,  then ak+ l = Ck and bk+ i = ak i f  f ' (Ck)(ak -- Ck) < O, 

ak + ! = ak and bk + 1 = Ck if both f " ( ck ) ( ak -- Ck ) >1 0 and f ' ( ak ) ( bk -- ak ) < 0, and 

ak + i = Ck and bk + 1 = bk if both f " ( Ck ) ( ak -- Ck ) >- 0 and f ' ( ak ) ( bk -- ak ) >I O. 

Although rules (R3) and (R4) are consistent with the update procedure of  [9], the way we treat the 
casef(ck) =f(ak)  differs from [9]. Observe that if a bracketing interval [a, b] satisfies (1) and either 
f ( b )  > f ( a )  o r f ' ( a ) ( b  - a) < 0, then the cubic which is tangent to f a t  x = a and at x = b has a 
unique local minimizer on the interval [a, b]. Rule (Rs) is designed so that if the bracketing interval 
[ak, bk] satisfies (1) and either f ( b k ) > f ( a k )  or f ' ( a k ) ( b k - - a k ) < 0 ,  then the updated interval 
[ak+l, bk+|] satisfies (1) and either f(bk+l) >f(ak+ l) or f ' (ak+l ) (bk+!  -- ak+l) < 0. Note that the A 
generated by (i) or (ii) has the property that f (B)>>. f (A)<f(0) ,  and in this case, rules (R0 and 
(R2) generate an interval [a, b] for which either f ( b ) > f ( a )  or f ' ( a ) ( b  - a ) <  O. 
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If we start with an interval which satisfies (1) and if we construct nested subintervals using rules 
(B3)-(Rs), then each subinterval satisfies (1). Furthermore, when these subintervals approach a 
limit ~, the second-order necessary conditions are satisfied at ~t: 

I.emma 1 

Suppose that the intervals [ak, bk] are updated using rules (R3)-(Rs) where [a0, b0] satisfies (1) 
and Ck lies between ak and bk for each k. If the width of the intervals tends to zero and 

= N 
k~0 

then f ' ( ~ ) =  0 and f"(~)>>. 0 provided f is twice continuously differentiable near ~t. 
Proof. Choose k large enough that the interval [ak, bk] is contained in the neighborhood of ~t 

where f is twice continuously differentiable. Since f(bk)>~f(ak), the mean value theorem implies 
that there exists Pk between ak and bk such that f ' (pk)(bk--ak)>10. Since f '(ak)(bk -- ak) <<. 0, 
f '  vanishes at some point ~k between ak and Pk. Also, by the mean value theorem, there exists gk 
between ak and Pk such that f"(~/k) I> 0. Since ~k and ~/k approach • as k increases, we conclude that 
f'(ct) = 0 and f"(~) >/0. [] 

3. CUBIC APPROXIMATIONS 

The simplest choice for Ck is the midpoint of the interval [ak, bk]. With this choice, [ak+ ~, bk+ 1] 
is half as wide as [ak, bk] and the diameter of [ak, bk] is 2 -k times the diameter of [ao, b0]. This simple 
choice, however, does not utilize the known value and the known derivative o f f  A faster scheme 
will be developed which uses Hermite cubic interpolation. The local minimizer of the cubic that 
interpolates the value and the derivative o f f  at x = a and x = b can be computed using Davidon 
formula [10, equation 5.1]: 

- -A  i f ( b ) + w - - v  
c = b - i f ( b )  - i f ( a )  + 2w' 

(2) 

where A = b - a  and v and w are given by 

v = i f (a )  + f ' ( b )  - 30r(b) - f ( a ) ) / A  and w = sgn(A)[v 2 - f ' ( a ) f ' ( b ) ]  I/2. (3) 

In (3) "sgn" denotes the sign function defined by sgn(A) = + 1 if A > 0 and sgn(A) = - 1 if A < 0. 
Davidon's paper [10] considers an interval [a, b] where b > a so the "sgn" factor does not appear 
in his formula for the cubic's minimizer. As a natural extension of (2), Davidon's scheme was later 
employed in an iterative fashion. That is, a sequence x~, x2, x3 . . . .  was computed where xk+ ~ was 
determined from xk and Xk=l using (2) with a, b, and c identified with xk_~, xk, and Xk+l 
respectively. Unfortunately, in some of these iterative schemes, the "sgn" factor was omitted. This 
omission can be devastating since an improper sign produces the maximizer of the cubic, not the 
minimizer. This omission still appears in at least one book published in 1984. 

Davidon's formula (2) for the local minimizer yields relatively high computational accuracy 
when (1) is satisfied. We now present an alternative high accuracy formula for the minimizer of 
an interpolating cubic: 

i f (a )  f ' ( b )  
c = a + A f t ( a  ) + v _ w  or c = b - A f t ( b  ) + v + w  (4) 

The expressions in (4) are derived in the Appendix. Generally, one of the expressions in (4) is more 
accurate than the other expression. For example, if b is near a local maximizer of the Hermite cubic 
interpolant, then the second formula in (4) must be avoided. When b is the local maximizer of the 
Hermite cubic interpolant, f ' ( b ) =  0 and the ratio 

f ' (b )  (5) 
f ' ( b ) + v + w  

reduces to zero over zero (if this ratio is not zero over zero, then by (4) the minimizer of the cubic 
is b, which is impossible since b is the maximizer). Theoretically, the ratio (5) approaches a limit 
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as b approaches the cubic's maximizer. Computationally, the relative error in the computed value 
of the numerator and the computed value of  the denominator approaches infinity as b approaches 
the local maximizer. Thus the computed ratio (5) is relatively inaccurate when b approaches the 
local maximizer while the ratio is zero over zero at the local maximizer. If  b is near a local 
maximizer of  the Hermite cubic interpolant, then the first formula in (4) can be utilized. 

One way to implement (4) is to always utilize the expression for which the denominator is largest 
in absolute value. Later we observe (see Lemma 3) that the cubic p that is tangent to f at x -- a 
and at x - -b  has the following second derivatives: 

p"(a) = - 2 ( f ' ( a )  + v)/A (6) 

and 

p"(b) = 2( f ' (b)  + v)/A. (7) 

In the Appendix, we see that either w is pure imaginary and p is monotone with no minimum or 
w/A >. O. In the ease where p has a local minimum, both denominators in (4) vanish if and only 
if p"(a)= p"(b)= - 2 w / A  <. O. Since p" is linear, we conclude that p" is a nonpositive constant. 
If  p"  < 0, then p has no local minimizer. If  p"  = 0, then p is l inear--a linear function has either 
no minimum or an infinite number of  minimizers when the line is flat. In summary, i fp  has a local 
minimizer and p is not constant, then at least one of  the denominators in (4) does not vanish. 

Observe that if A( f ' ( a )  + v) < 0 and w is real, then p"(a) > 0 and the first denominator in (4) 
is negative. If  A(f ' (b)  + v) > 0 and w is real, then p"(b) > 0 and the second denominator in (4) is 
positive. If  (1) holds, then either p"(a) >>. 0 or p"(b) >>. O. Furthermore, we have 

Lemma 2 

I f  (1) holds and at least one of  the inequalities in (1) is strict, then either A( f ' ( a )  + v) < 0 or 
A(f ' (b)  + v) > 0. 

Proof Since p is cubic, p" is linear. In the proof  of  Lemma 1, we show that if (1) holds, then 
there exists r/ between a and b such that p"(rl)>>. O. Referring to the proof  of  Lemma 1, this 
inequality is strict whenever f ( b ) > f ( a )  or f ' (ak) (bk-  ak)<  0. Since p"(x) is a linear function of  
x which is positive at x = t/ ~ [a, b], p"(x) must be positive either at x = a or at x = b. By (6) 
and (7), we conclude that either A( f ' ( a )  + v) < 0 or A( f ' (b )  + v) > 0. []  

As we will soon see, the expressions in (4) are more convenient than (2) for the analysis of  the 
cubic iteration. To compare the numerical accuracy of  (2) with (4), let us consider the cubic 
f ( x )  = x2(1 - x) which has a local minimum at x = 0. For  each choice of  a and b, the c given by 
either (2) or (4) should be zero. Thus the numerical error in the computed c is its absolute value. 
In Table 1, we sum the numerical errors corresponding to various choices of  a and b using a 
VAX 780 computer and single precision arithmetic. In the case where both p"(a) > 0 and p"(b) > O, 
we use the first expression in (4) when If ' (a)[  ~< [f'(b)l and we use the second expression when 
[f'(a)] > If ' (b) l .  

As these experiments (and others) tend to indicate, (2) and (4) have comparable accuracy near 
a local minimizer while (4) is more accurate than (2) when one of  the evaluation points is in a region 
where the second derivative is positive while the other evaluation point is in a region where the 
second derivative is negative. 

Computing c using a cubic approximation is better than bisection when both a and b are close 
to a minimum. However, the convergence can be slow when either a or b is far from a minimum 
since one of  the bracketing points stays fixed while the other point creeps slowly toward the 
minimum at a linear rate. For  example, consider the function f ( x ) =  x ~ -  x 4 which has a local 
minimum at x = 0 and consider the initial bracketing interval [a0, b0] = [ -0 .1 ,  0.9]. Computing ck 

Table  l .  Numerical  errors  corresponding to (2) and (4) for the f u n c t i o n f ( x )  = x2(l  - x)  

Values for a and b Er ro r  for (2) Er ror  for (4) 

a = - 0 . 5 ,  b = 0.01, 0.02 . . . . .  2 0.34 x 10 -4 0.061 x 10 -4 
a = - 0 . 5 ,  b = 0.01, 0.02 . . . . .  0.7 0.17 x 10 -5 0.087 x 10 -5 
a = - 0 . 5 ,  b = 0.01, 0.02 . . . . .  0.25 0.44 x 10 -6 0.40 x l0  -6 
b = - 0 . 5 ,  a = 0.01, 0.02 . . . . .  0.25 0.86 x 10 -6 0.40 x 10 -6 
a = -0.5, b = 0.0025, 0.005, 0.0075 ..... 0.02 0.52 × 10 -6 0.18 x 10 -6 



U n i v a r i a t e  m i n i m i z a t i o n  a n d  t h e  c o n j u g a t e  g r a d i e n t  m e t h o d  

Table 2. Comput ing  c k using (4) for  the function f ( x )  = x 2 - x 4 

k a t b k ct 

0 -0 .10000  0.90000 -0 .04585  
I - 0.04585 0.90000 - 0.02073 
2 - 0.02073 0.90000 - 0.00932 
3 -0 .00932  0.90000 -0 .00417  
4 -0 .00417  0.90000 -0 .00187  
5 -0 .00187  0.90000 --0.00083 
6 - 0.00083 0.90000 - 0.00037 
7 -0 .00037  0.90000 -0 .00016  
8 -- 0.00016 0.90000 -- 0.00007 
9 - 0.00007 0.90000 - 0.00003 

10 -0 .00003  0.90000 -0 .00001 

783 

using (4) and updating the bracketing interval using (R4), the right side of each interval stays fixed 
at x = 0.9 while the successive left sides creep toward zero. 

In Table 2, we see that the distance between ck and the true minimizer x = 0 is divided by about 
2 in each iteration. The convergence is much slower than one hopes to achieve using a cubic 
approximation tof .  This deficiency with cubic interpolation is reminiscent of a similar problem [11, 
p. 230] with regula falsi, a method for computing a root of an equation. 

4. THE HYBRID METHOD 

One method for improving the convergence speed is to insert a bisection step between each cubic 
interpolation step. However, a better strategy is to use the bracketing interval [ak, bk] coupled with 
ak_ ~ to compute a better approximation ck to a local minimizer o f f .  In each iteration of our 
algorithm, the interval [ak, bk] satisfies (1) and the point at has the smallest function value of  all 
the previously generated points. If the convergence is "slow" or the cost lacks convexity, a bisection 
step is performed. Conversely, if the convergence seems "fast" and the cost appears convex, then 
a cubic step is performed and the bracketing interval is updated using (R3)-(Rs) .  In stating our 
algorithm, we utilize a parameter z which is the specified error tolerance--the iterations stop when 
I ak  - bd ~< z. We also utilize the functions "cubic" and "step" and the subroutine "update" defined 
below: 

Function cubic(a, b). This function returns the local minimizer (when it exists) for the Hermite 
cubic interpolant based on function values and derivatives at x = a and at x = b. If  the 
interpolating cubic is a linear function, then cubic(a, b) = a. If  w is imaginary, in which case the 
cubic has no minimum, we replace w by zero in (4) to obtain a real approximation to a minimizer 
of the function being interpolated. 

Function step(a, b, c, ~). This function forces the step size to be at least z. Letting y denote 
minimum[a, b] and letting z denote maximum[a, b], return c i fy  + ,  ~< c ~< z - x. Otherwise, return 
z - ~ if c > (a + b)/2 or return y + x if c <<. (a + b)/2. 

Subroutine update(ak, bk, ok). This subroutine starts with a bracketing interval [ak, bk] and a point 
Ck between a k and b k and generates a new bracketing interval [ak+ l, bk+l] using rules (R3)-(R5). 

With these definitions, our univariate minimization scheme can be stated in the following way: 

Cubic Algorithm 

Step 1. If I ak -- bk] <<. Z, then stop. Otherwise, set lk- ~ = 2 l ak -- bkl, set y = cubic(ak, bk), set 
ck = step(ak, bk, Y, z), and call update(ak, bk, ck). 

Step 2. If  l ak+~- -bk+t l6 z ,  then stop. Otherwise, set lk----lk_J2. If  I ck - -ak l> lk ,  then 
branch to step 5. If  I Ck -- akl <<. lk, proceed to step 3. 

Step 3. If  ( f ' ( ck ) - - f ' (ak ) ) / (Ck- -ak )<~0 ,  then branch to step 5. Otherwise, proceed to 
step 4. 

Step 4. Set ~ = cubic(ck, ak). If  ~ is outside the interval [ak, bk], then branch to step 5. 
Otherwise, increment k by one, set ck = step(ak, bk, ~, ~), call update(ak, bk, ck), and 
branch to step 2. 

Step 5. Increment k by one, set Ck= (ak+bk) /2 ,  call update(ak, bk, ck), and branch to 
step 1 after incrementing k by one. 

C.A.M,W.A. 18/9---B 
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The technique used above to drive the width of  the bracketing interval [ak, b~] below the error 
tolerance ~ is due to Brent [12]. Note that when the algorithm terminates after a cubic step, the 
final y is often a better approximation to the desired minimizer than the point ak+ m. The reason 
for branching to the bisection step whenever ( f ' ( c k ) - - f ' ( a k ) ) / ( c k - - a k ) < < . 0  is the following: 
Generally, the cubic step is most efficient near a local minimizer ~ for which f " ( a ) >  0. The 
expressions we obtain for the error in the cubic approximation involve the second derivative of  
f If  this second derivative is zero or negative, then the point cubic(ck, ak) may even be farther from 
a local minimum than either ck or ak. If  ( f ' ( c k )  - - f ' (ak ) ) / (Ck  -- ak) <<. O, then the second derivative 
of f is nonpositive at a point between ck and ak. To ensure convergence, a bisection step is 
performed. Furthermore, when the second derivative of f vanishes at a local minimizer, or 
equivalently, at a multiple zero o f f ' ,  the cubic iteration typically converges linearly. Below we show 
that the cubic iteration is closely related to Newton's method applied to the equation i f ( x ) =  O. 
It is well known that Newton's method converges linearly at a multiple zero and the linear 
convergence factor is (m - 1) /m when the multiplicity is m. Thus the convergence factor is >t 1/2 
when m/> 2. By analogy, we expect that the convergence factor for the cubic iteration is t> 1/2 when 
the second derivative of  f vanishes at a local minimizer. Consequently, we expect that the bisection 
step will speed up the convergence of the Cubic Algorithm at a local minimizer where the second 
derivative o f f  vanishes. 

5. CONVERGENCE 

We now analyze the asymptotic convergence properties of the Cubic Algorithm when the error 
tolerance T is zero. We begin with an alternative representation for some of  the key terms in (4): 

L e m m a  3 

I f f  is differentiable at x - -a  and at x = b and if p denotes the Hermite cubic interpolant o f f  
based on the function value and derivative at x - a  and at x = b, then 

w 2 

f'(b)b_a+______ o = ½p"(b) and (b _ a) 2 = ¼p"(b) ~ - ½ p ' ( b ) p ' ( b ) ,  (8) 

where v and w are defined in (3). 
P r o o f  Since p is the Hermite cubic interpolant of f ,  the f s  embedded in the left side of  each 

equality in (8) can be replaced by ps. Expanding the ps in a Taylor expansion about x - - b  
yields (8). [] 

Lemma 3 implies that cubic(a, b) approaches a limit as b approaches a when f is three times 
continuously differentiable near x = a and the cubic that interpolatesfand its first three derivatives 
at x = a has a local a minimum. As a consequence, the function cubic(a, b) makes sense even when 
b = a; that is, cubic(a, a) is the limit of cubic(a, b) as b approaches a. Similarly, the convexity test 
"(f ' (ck) - - f ' (ak) ) / (Ck  -- ak) <~ 0"  of step 3 should be replaced by the limiting relation '~f"(cD ~< 0" 
whenever ck = ak. Note that when the error tolerance z is positive, ck ~ ak for every k and these 
limiting cases are never a concern. As an application of l.emma 3, we now show that the Cubic 
Algorithm converges to a point which satisfies the second order necessary conditions: 

Theorem 1 

Suppose that f i s  differentiable on an interval [a0, b0] which satisfies (1) and ~ ffi 0. Then the ak 
generated by the Cubic Algorithm approach a limit a contained in the interval [a0, b0]. If  f is three 
times continuously differentiable in a neighborhood of a, then f ' (a ) f f i  0 and f"(a)1> 0. 

P r o o f  If  the width of  the bracketing intervals [ak, bk] approaches zero as k increases, then by 
Lemma 1, the a~ approach a limit ~ which satisfies the second order necessary conditions. 
Conversely, suppose that the width of the bracketing intervals approaches a positive limit ra. 
Choose K sufficiently large that lk is much smaller than co for k > K and no bisection steps are 
performed for k > K. In each iteration, either ak+~ffi ck or bk+~ffi ck. I f  b~+~ffi ck, then the 
inequalities 

co ~< I bk+l -- ak + 11 = Ice -- ak + ,I = I ck -- ak[ <~ 1~ 
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yield a contradiction when k > K  since lk is less than co. Therefore, a k + ~ f c k  and 
ak +1 = cubic(ak, ak_ i) for k sufficiently large. Since Ik +1 = lk /2  and since I ck - a k  l = [ak +j - - a ~  l <<. l~ 
for each k > K, we conclude that the a~ approach a limit a. Utilizing one of the expressions in 
equation (4) (recall that each of these expressions is equivalent), rearranging terms in the identity 
ak +~ = cubiC(ak, ak_ I),  and applying Lemma 3, we have 

f ' ( a k )  = (ak +1 --  ak){  ½P"(a~) + [¼p"(ak)  ~ - -½P' (ak)P"(a~)] l /2} ,  (9) 

where p is the Hermite cubic interpolant based on function values and derivatives at x --a~ and 
x = a k - i .  By repeated applications of Rolle's theorem (see [13, p. 190]), the third derivative o f p  
is equal to the third derivative o f f  at some point between a~ and a~_ i. As a consequence, each 
of the derivatives contained in (9) approach the corresponding derivatives o f f  at ~ as k increases. 
Since l a k + ~ - - a k [  tends to zero as k increases, (9) implies that f ' ( g ) =  0. Since the convexity test 
is passed for k > K, the ratio ( f ' ( a k +  ~) - - f ' ( a k ) ) / ( a k +  i - -  ak)  is positive for k sufficiently large. Since 
this ratio is equal to the second derivative o f f  at some point between ak +1 and ak,  it follows that 

f " ( ~ t )  >I O. []  
To show that the Cubic Algorithm is quadratically convergent, we must analyze the error 

in the cubic iteration a~+, =cubic(ak, ak_~). By Lemma 3 and formula (4), the iteration 
a~ +, = cubic(ak, a~_ i) is closely related to the Newton iteration 

nk  +1 = nk  - -  f ' ( n ~ ) / f " ( n k ) .  

In addition, as we now show, the convergence properties of the cubic iteration are similar to the 
convergence properties of Newton's method. 

C o r o l l a r y  I 

If f is four times continuously differentiable in a neighborhood of a local minimizer a o f f  
and f"(a)  is positive, then for a0 and al sufficiently close to a, the iteration ak+~ ffi cubic(ak, ak_ i) 
converges to ~ and there exists a constant r, independent of k, such that 

where ek = a k -  ~. Moreover, we have 

lek+ll < . r l e k l e ~ - i ,  (10) 

lim lak+l -ak l  = 0. (11) 
k-.~o l a k - - a k - ~ l  

P r o o f .  Subtracting ~ from each side of the equation a k + l =  cubic(ak, ak_ 1), utilizing one of 
the expressions in (4), applying Lemma 3, and applying the mean value theorem to 
f ' ( a k )  = f ' ( a k )  - -  f ' ( o 0 ,  we have 

f " ( O )  ~ e k ,  
ek+l~  1 - - I  ,, I , ~ "  

2P (ak)  + ~/¼p (ak)  - -  ½ P ' ( a k ) p " ( a k ) ]  
(12) 

where p denotes the cubic which interpolates f and its derivative at x ffi a~ and x --- ak_ i and 0 lies 
between ¢¢ and ak.  Since each derivative o fp  up to the third derivative is equal to a corresponding 
derivative o f f  at some point between ak and a k - I  (this follows from repeated applications of 
Rolle's theorem as in [13, p. 190]) and sincef'(~) --0, (12) implies that le~+,l ~ 0.Slekl whenever 
a~ and a k -  I are sufficiently close to ~. Hence, the iterations contract in a neighborhood of ~ and 
there is no loss of generality in assuming that ]ek +~] ~< 0.5]ekl and l ek] ~< 0.Sick_ ii. The standard 
estimate for the error in the derivative associated with Hermite cubic interpolation (see [13, p. 190]) 
yields 

f ' ( a k  + 1 ) = f ' ( a k  + i ) - -  P ' (ak  + I ) = ~ a k  + i - -  ak)  (ak + 1 - -  ak_  i ) (ak + i - -  ~ ) f (4 ) (7) ,  

where ~ lies between a~ and a k - I  and tl lies in the convex hull of the points ak+l, ak, and a~_ i. 
Again, by the mean value theorem, f ' ( a k  +1)~f"(~)ek+ i where ~ lies between ak+l and ¢¢. Hence, 
we have 

f"((~)e~ +, ffi ~ a ~ +  , - a k ) ( a k  + ~ - -  a k - 1 ) ( a ~  + , - -  ~) : (~)( '7) .  ( 1 3 )  



786 W.W. HAGER 

By the triangle inequality and the fact that the iterations contract, laL+~--aLl<...leL+~l+ 
lekl ,.< 1.51eLI, laL+j--aL-~l---< 1.251eL_~l, and la~+~-~l-~< 1.251eL_ll. These inequalities, the 
relation f " ( ~ ) > 0 ,  and (13) give (10). Also, the triangle inequality, (10), and the contraction 
property l eLI ~< 0.5 l eL- ~1 imply that 

lak+l--akl lek+ll + leLI ~< ~< 
laL--aL_ll  leL-11--1eLI 

2 rlekle2k_l + r l e ,_ l  eL-2 ~ ., 
=art,  ekeL_l[ +e2_2) .  

0.5lek_l] 

Since the fight side tends to zero, (11) holds. [] 
In related work [14], Tamir establishes (10) but he assumes that f is five times continuously 

differentiable. The analysis above shows how to weaken this continuity assumption. Let us now 
consider the convergence rate of the cubic iteration. 

Corollary 2 

If f is four times continuously differentiable in a neighborhood of a loca~i minimizer ct o f f  and 
f"(~t) is positive, then for a0 and a~ sufficiently close to ct, the iteration aL+! = cubic(ak, ak_~) 
converges quadratically to ~. That is, there exist constants p and q, independent of  k, such that 
lab -- otl <~ q/p2k for every k where p > 1. 

Proo f  Let us consider a neighborhood of  ~t where (1 O) holds and let q denote any positive number 
with the property that rq 2 < 1. If  

m a x { l a 0 - ~ [ ,  [ a , - ~ ] )  ~<q/4, 

then the error ek = ak -- ~ satisfies the relation [e,[ ~< q/22k for k = 0 and for k = 1. Proceeding by 
induction, suppose that lekl ~< q/22k and [ek-i[ <~ q/22.-~. By (10) and the condition rq2< 1, we 
conclude that ]ek+l[ ~< q/22.+~ so the proof is complete. [] 

Using the terminology of Ortega and Rheinboldt (see [15, p. 290]), Corollary 2 implies that the 
root convergence order of iteration a,+ t = cubic(ak, ak_ ~) is at least 2. In related work [14]. Tamir 
shows that the root convergence order of  the cubic iteration is at least x/3, which is weaker than 
the conclusion of Corollary 2. He also shows that the quotient convergence order of  the cubic 
iteration is two if f has five continuous derivatives near ~ andf(4)(~t) # 0. This conclusion is slightly 
stronger than the conclusion of Corollary 2, but the assumptions in [14] are also stronger. We do 
not require that f~4)(~t)~ 0 and we just need four continuous derivatives. Moreover, iff(4)(at)= 0, 
and f has five continuous derivatives near ct, then from the proof of  Corollary 1, we see that the 
inequality (10) can be strengthened to 3 I eL + l I <<. r I ek ek_ I I. Consequently, the error estimate in 
Corollary 2 can be strengthened to JeLl ~< q/P~ where a = (1 + x/13)/2 ~ 2.3. In other words, when 
ft4)(~t) = 0, the root convergence order of the cubic iteration is at least (1 + x / ~ ) / 2 .  

In analyzing the convergence rate of the Cubic Algorithm, we also need the following result 
connecting function values and the error: 

L e m m a  4 

If  f is two times continuously differentiable in a neighborhood of a local minimizer ~ o f f  and 
f"(~t) is positive, then there exists a neighborhood N of ~t with the property that for each w, x, y, 
and z in N withf(w) <<.f(x) and 2 ]y - • [ ~< [z - ~t [, we have [w - ~ I ~< 2 ]x - ~ [ a n d f ( y )  <~f(z). 
These inequalities are strict except for the special cases w = x - ct or y -- z = ~t. 

Proo f  Let I denote a closed interval containing ~ in its interior, let m denote the minimum 
o f f "  on I, and let M denote the maximum o f f "  on I. We assume that I is small enough that m 
is positive. Expanding f in a Taylor series about ~, we have 

m M 
f ( x )  >. f ( ~ )  + -~ (x - ~t) 2 and f ( y )  <<.f(ct) + --f (y  - ~)2. (14) 

If  f (x)~<f(y), it follows that 

I x - ~ l ~ <  l y - ~ l .  
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Table 3. Iterations for the Cubic Algorithm and the function f ( x ) f f i  x ~ -  x 4 

k ak bk ck 

0 - O. 1000000000000 0.9000000000000 -0.0458581335842 
1 -0.045858133584.2 0.9000000000000 -0.0006492938846 
2 -0.0006492938846 0.9000000000000 -0.0000013817061 
3 -0.0000013817061 0.9000000000000 -0.0000000000005 
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Choosing I so small that M / m  < 4, we conclude that Ix - ~ 1  ~< 21y - ~ 1 .  On the other hand, if 
21y -~1<~ Ix - ~ l ,  then the sum of the inequalities in (14) gives us the relation 

M m ( M  2 )  f ( y )  - f ( x )  <~ - ~  (y  - or) 2 - -~ ( x  - o~) 2 <~ - ( x  - or) 2. 

Again, if I is so small that M / m  < 4, it follows that M / 8  - m / 2  < 0 and f ( y )  <~f (x ) .  [] 
Finally, we give our quadratic convergence results for the cubic algorithm. 

Theorem 2 

Suppose that the ak generated by the Cubic Algorithm converge to a local minimizer ~ o f f ,  f 
is four times continuously differentiable in a neighborhood of ~, and f " ( ~ )  is positive. Then the 
ak converge quadratically to ~. 

P r o o f  First, let us assume that no bisections are performed for k sufficiently large. Let N denote 
a neighborhood of ~ for which the hypotheses of Lemma 4 are satisfied and for which the following 
additional properties hold: The second derivative of f is positive throughout N and if a and b 
lie in N and c = cubic(a, b), then [c - ~ l  ~< 0.251a - ~ l  (the existence of this neighborhood was 
established during the proof of Corollary 1). Choose K sufficiently large that ak lies in N and no 
bisections are performed for k >/K. If  ak+l = ck for some k > K, then defining ~ = cubic(ck, ak), 
we have I~ - ~ l  ~< 0.251ck - ~l = 0.251ak+l -- • I. Since f(ak+l)  <<.f(bk+l), Lemma 4 tells us that 
0.51 ak + i - -  • I ~< I bk + 1 -- ~ I. Hence, ~ lies between a k + i and b k + I and C k + 1 = ~" Also, by Lemma 4, 
f (y )  <f(ak+ ,) (except when a k + l =  O~ and the iterations terminate) and by rule (R~), ak+2 = ck+ 1. 
Proceeding by induction, ak+2 = Ck+l = cubiC(Ck, ak) = cubic(ak+ ~, ak) for each successive k. Since 
ak + 2 = cubiC(ak +~, ak), it follows from Corollary 2 that the convergence is quadratic. On the other 
hand, suppose that bk+l ffi Ck for every k > K. By rules (R3) - (Rs ) ,  ak+l = ak for every k > K. Since 
the ak converge to ~, ak = • for every k > K. Since f ' (~)  = 0, cubiC(Ck, ak) = ~ for k sufficiently large 
and the algorithm converges in a finite number of iterations. 

Now consider the case where an infinite number of bisections are performed. Suppose that an 
initialization step is performed at iteration K and both ak and bk lie in N. By the argument earlier, 
a t+  i = cx  = cubic(ax, bx)  and ax+ 2 = CX+ I = cubic(ax+ i, ax).  By (11) with ak_ i identified with bk, 
we conclude that the next iteration will not branch to the bisection step due to slow convergence 
if K is sufficiently large. And since f "  is positive in N, the convexity test is passed for each k > K. 
Proceeding by induction, ak+2 = cubic(ak+~, ak) for k sufficiently large, and by Corollary 2, the 
convergence is quadratic. [] 

To illustrate the convergence that is typically observed with the Cubic Algorithm, Table 3 gives 
iterations for the function f ( x )  = x 2 - x 4 and the initial bracketing interval [a0, b0] = [ -0 .1 ,  0.9]. 

6. THE CONJUGATE G R A D I E N T  METHOD 

In this section, we discuss how to incorporate the Cubic Algorithm in the conjugate gradient 
method. Let f denote a real valued function of n variables. The Fletcher-Reeves formulation of 
the conjugate gradient method can be expressed 

X k + l = X k ' ~ t ' S k d k  and d o + l - - - - - - g k + l + ~ k d k  

where g~ = Vf(xk) T, the initial search direction do is -go ,  

Sk -- arg rain f(xk + sdk) and ~k - - -  
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Notice that each conjugate gradient iteration involves a one dimensional minimization. In an 
efficient implementation of the conjugate gradient method, this minimization is performed with the 
lowest accuracy that preserves the convergence properties of the conjugate gradient method. We 
will consider three issues: global convergence, quadratic convergence, and descent. 

Various steplength rules have been devised to guarantee the convergence of a multivariate 
scheme. Some examples (see [8]) are Armijo's rule, Goldstein's test, and Wolfe's test. In our 
implementation of the conjugate gradient method, we start by finding a point that satisfies either 
Armijo's or Goldstein's criterion. Let O(s) denote the function f (X  k -I-sdk). Given parameters 
# ¢ (0, 1) and p > 1, the step s = a satisfies Armijo's criterion if 

~b(a) ~< ~b(0) +/z~b'(0)a and c~(pa) >1 dp(O) + pc~'(O)pa. (15) 

Given a parameter 2 e (0, 0.5), the step s = a satisfies Goldstein's criterion if 

~b(a) ~< 4(0) + 2~'(0)a and ~(a) i> q~(0) + (1 - 2)~b'(0)a. (16) 

A point that satisfies Armijo's criterion is generated by successively multiplying or dividing a 
starting a by the factor p until (15) holds. As long as ~b is bounded from below and ~b'(0) < 0, a 
point will be generated that satisfies (15). A disadvantage with Armijo's criterion is that at least 
two function evaluations are required to determine whether (15) holds. In contrast, Goldstein's test 
may be satisfied by the starting a in which case one function evaluation is needed. To implement 
this combined Armijo-Goldstein strategy, we take (for convenience) /~ = 2 < 0.5 and we test 
whether (16) holds for a given starting a. If (16) holds, then we stop. Otherwise, there are two 
separate cases to consider; 

(a) If ~b(a) ~< ~b(0) + 2~b'(0)a, then a is successively multiplied by p until an a is generated that 
satisfies either (15) or (16). In particular, evaluating ~b(ak) for k = 0, 1 . . . .  where ak = pka, 
we stop at the first k for which ~b(ak) >t ~b(0) + (1 - 2)~'(0)ak. If ~b(ak) ~< ~b(0) + 2~b'(0)ak, 
then a = a~ satisfies Goldstein's criterion. Conversely, if c~(ak) > q~(0) + 2~b'(0)ak, then 
a = ak_ ~ satisfies Armijo's criterion. 

(b) If ~b(a)> ~b(0)+ 2~b'(0)a, then a is successively divided by p until an a is generated that 
satisfies (15). 

Now let us consider quadratic convergence. There is an enormous literature dealing with 
quadratic convergence of the conjugate gradient method. Some of the pioneering work appears in 
papers by Cohen [16] and by Daniel [17-19]. More recent papers include [20] by Klessig and Polak, 
[21, 22] by Lenard, and [23, 24] by Baptist and Stoer. In Cohen's paper [16], he demonstrates that 
the conjugate gradient algorithm is quadratically convergent in the sense that n iterations essentially 
square the error. He proves this quadratic convergence result for the Daniel, Fletcher-Reeves, and 
Polak-Ribirre formulations of the conjugate gradient method with exact line search (see [8] for a 
statement of various formulations of the conjugate gradient method). More recent conjugate 
gradient papers treat inaccurate line searches. These papers typically demonstrate that conjugate 
gradient methods (or more general classes of methods) are quadratically convergent if the line 
search is performed with enough accuracy so that the function derivative satisfies some bound. 
Thus to implement the conjugate gradient method, we can apply the Cubic Algorithm until the 
derivative satisfies one of these bounds. 

As an alternative to this brute force application of the Cubic Algorithm, we consider a special 
quadratic interpolation step. In Daniel's explicit conjugate gradient scheme, the step sk is given by 

--g~dk 
sk = dk rHkdk, 

where Hk is the Hessian o f f  evaluated at xk. Notice that this sk corresponds to one step of Newton's 
method applied to the equation ~'(s) = 0 starting from s = 0. Since one step of Newton's method 
essentially squares the error near a local minimizer and since the Daniel step apparently preserves 
the overall quadratic convergence rate of the conjugate gradient scheme, this suggests that in the 
Fletcher-Reeves formulation, one step of any quadratically convergent scheme will yield sufficient 
accuracy in the line search to preserve the quadratic convergence of the conjugate gradient method. 
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In addition, numerical experiments as well as a recent convergence analysis by a Ph.D. student 
Holly Hirst all indicate that the quadratic convergence rate of  the conjugate gradient algorithm 
is preserved if one step of any quadratically convergent algorithm is used in the line search. 
Although the standard quadratic interpolation algorithm for univariate minimization has con- 
vergence order around 1.3, the following lemma implies that for an approximation derived from 
a special quadratic interpolation, the error is squared. 

L e m m a  5 

Given a point b, suppose that 4 is three times continuously differentiable on the interval [b, oo) 
and let m ( s )  and M ( s )  denote the minimum and the maximum of the second derivative on the 
interval [b, s]. I f  4 ' (b)  ~< 0 and m ( a )  > 0 for some a > b, then the quadratic that interpolates the 
value and the derivative of 4 at x = b  and the value of 4 at x = a  has a minimizer 
q <<, b - 4" (b) /m(a) .  If  in addition 4 has a local minimizer ~ > b, m(ct) >/0, and M(ot) /m(a)  <~ 2, 
then Iq - 0tl ~< Ib - ~l. If  in addition g (max{a ,  ~t})/m(max{a, ~}) ~< 4 and 4(a)  ~< 4(b), then 

3(b - ~t) 2 
max 14 "(s) I • Iq - ~tl ~< m(max{~, q}) b~s~max{a,q} 

The key condition in Lemma 5 that ensures the error is squared is the inequality 4(a)~< 4(b). 
Proof. Let p denote the quadratic interpolant of 4 based on the function value and derivative 

at x = b and the function value at x = a. If  p" > 0, then this quadratic has a minimizer q given 
by q = b - p ' ( b ) / p " .  Since the second derivative of this interpolant is equal to the second derivative 
of  4 at some point o between a and b, it follows that 

q = b - 4 ' ( b ) / 4 " ( a ) ,  (17) 

which implies that q <~ b - 4 ' ( b ) / m ( a )  when 4 '(b)  ~< 0. Subtracting ~t from each side of (17) and 
expanding the first derivative in a Taylor series about 0t, we obtain 

4 " ( o )  , .  1 q - • = 1 ~ - ; ~ j t o  - = ) ,  ( 18 )  

where 0 lies between b and ~t. If  the bracketed expression in (18) is at most one in magnitude, then 
[q - ct] ~< Ib - 0tl. Observe that the relations M(~t) /m(a)  <. 2, m(~t) >/0, and re(a)  > 0 ensure that 
the bracketed expression in (18) has magnitude at most one. As in the proof of Corollary 1, the 
fact that q minimizes a quadratic interpolant of 4 implies that 

4"(O)(q  - ~ ) = ½(q - b )(q - ~)4"(~/) (19) 

where ~ lies between q and ~t, ~ lies between a and b, and t/lies in the convex hull of a, b, and q. 
If  [q - ~t I <~ ]b - ~t I, then ]q - b I ~< ] q - • I + I b - ~t I ~< 2 I b - ~t [. I f  M(max {a, ~ })/m (max {a, ct }) 
~< 4, then by Lemma 4 and the assumption that 4(a)  ~< 4(b), we conclude that la - ~t] ~< 2lb - ~l 
and I q - a ] ~< I q - ~ I + I a - 0t I ~< 31 b - ~ I. Since ~ lies between a and b, it again follows from 
the triangle inequality that I q - ~ [ ~< 3[b - = I. These inequalities in conjunction with (19) complete 
the proof. [] 

In formulating a globally convergent conjugate gradient algorithm, we utilize the 
Armijo-Goldstein strategy (a) and (b) above to obtain a point a such that 4(a)<~ 4(0). Forming 
the quadratic that interpolates the function value and derivative at s = 0 and the function value 
at s -- a, we compute the minimizer q if it exists: 

- 4 ' ( 0 ) a  

0 o>] 
By Lemma 5, we know that under appropriate assumptions, the error [q - 0tll dkl associated with 
the step s = q is on the order of the square of the error I=lldkl corresponding to s = 0. If  
4(q)  ~< 4(a),  then we take sk = q as our approximation to a local minimizer along the search 
direction. If  4(q)  > 4(a),  then Sk = a is the approximation. 
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There is still one more issue to contend with when implementing the conjugate gradient method. 
Unless the local minimizer along each search direction is computed with sufficient accuracy, 
the new direction dk+~ may not be a decent direction. When an exact local minimizer is 
computed along a search direction, the relation C~'(Sk)=g~+~dk=O holds and the formula 
dk + ~ = - gk + ~ + ]/~lk implies that g~+ ~dk + ~ = -- gT+ mgk + ~ ~< 0. Thus the new direction is a descent 
direction when gk+l # 0. On the other hand, for an approximate local minimizer, g~+~dk ~ 0 and 
g~+ ldk +~ ~ --gT+ lgk +l" TO guarantee that the new direction is a descent direction, we require that 
g~+~dk+~ ~--Eg~+lgk+~ where 0 < E  < 1. Referring to the definition of  dk+~, this condition is 
equivalent to 

$'(sk) = dTgk+ 1 < (1 -- E)Jgkl 2. (21) 

If  the quadratic approximation generated by (20) satisfies (21), then we proceed to the next 
conjugate gradient iteration. Conversely, if (21) is violated, then the Cubic Algorithm can be used 
to generate a point that satisfies (21). In particular, since ~b'(sk)> (1 --E)lgk[2 ~> 0 when (21) is 
violated, an initial bracketing interval for the Cubic Algorithm can be established on the interval 
[0, sk] (be sure to take advantage of  all the previous function values to make this interval as small 
as possible). 

In summary, for the Fletcher-Reeves formulation of  the conjugate gradient method, the 
univariate search along the direction dk can be implemented in the following way: 

Conjugate gradient search scheme 

Step 1. Using either procedure (a) or (b), find a point that satisfies either (15) or (16). 
Step 2. Using formula (20) and the point a with smallest function value generated in step 1, 

obtained an approximation q to a local minimizer of  4. If  ~b(q) ~< ~b(a), then sk = q 
is our approximation to a local minimizer along the search direction. If  either 
~b(q) > ~b(a) or q does not exist, then sk = a is our approximation. 

Step 3. If  the approximation sk (generated in step 2) to the local minimizer satisfies (21), 
then proceed to the next conjugate gradient iteration. Otherwise, perform iterations 
of  the Cubic Algorithm until (21) holds. 

One final suggestion: In step I, we have not explained how to generate the starting guess 
employed in either (a) or (b). Typically, the step length associated with one conjugate gradient 
iteration becomes the starting guess for the next iteration. In some cases, however, this starting 
guess can be in error by many orders of  magnitude. In practice, we have found that some function 
evaluations in step 1 can be eliminated if the starting guess is the minimizer of  a quadratic fit based 
on the function value and derivative at s = 0 and the function value at s = Osk_,  where sk_ ~ is the 
step employed in the previous iteration and 0 < 0 < 1. To summarize, the following step can be 
inserted before step 1: 

Step 0. If sk_ ~ is the step employed in the previous iteration, then the q given by (20) with 
a = Osk_ j is the starting guess for step 1 if q exists. (If ~b (Osk_,) ~< ~b (0), then after 
completing step 1, step 2 can be skipped.) 

We now prove a global convergence result for the Conjugate Gradient Search Scheme. This 
theorem demonstrates that a convergent subsequence approaches a point where the gradient 
vanishes. After the proof, we observe that with small changes in the assumptions, the entire 
sequence approaches a local minimizer. Note that Al-Baali [25] gives a global convergence result 
for the Fletcher-Reeves formulation of  the conjugate gradient method and for a line search that 
satisfies a Goldstein-Wolfe-Powell condition. His analysis does not seem to apply to the Conjugate 
Gradient Search Scheme due to differences in the termination conditions. For example, in [1] the 
analogue of  (21) involves the absolute value of  ~b'(sk). Also, in the Conjugate Gradient Search 
Scheme, the final s~ may not satisfy the first condition in either (15) or (16). 

Theorem 3 

Let x0 denote the starting guess of  the conjugate gradient method and suppose t ha t f i s  two times 
continuously differentiable on the convex hull F of  the level set {x: f (x )  ~<f(Xo)}, the spectral radius 
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of the Hessian of f is uniformly bounded on F, f is bounded from below on F, and the search 
directions in the Conjugate Gradient Search Scheme are renormalized to be the negative gradient 
every r iterations for some r. Then any convergent subsequence of the xk, converges to a point where 
the gradient o f f  vanishes. 

Proof Let ak denote the point generated in step 1 (corresponding to iteration k of the conjugate 
gradient method) which satisfies either (15) or (16) and let M denote a bound for the spectral radius 
of the Hessian o f f  over F. If ak satisfies the second inequality in (15), then expanding dp(Pak) in 
a Taylor series about s = 0 yields 

M 
~(0) + g~'(O)pak <~ d~(pak) <~ ~(0) + dp'(O)pak + --~ p2a21dkl2. 

Since ~'(0) = g[dk ~< -- elgkl 2, it follows that 

2(1 --/z)¢ Igtl 2 
ak >1 

Mp Idkl 2" 

In a similar fashion, if the second inequality in (16) holds, then 

2AE Igkl 2 ak>_. 
M [dkl 2' 

Combining these lower bounds for ak, we have ak >t m Ig,12/ldkl 2 where m is the minimum of the 
expressions 2(1 -/~)E/Mp and 22E/M. Since step 2 and step 3 maintain descent, the final step sk 
associated with iteration k of the Conjugate Gradient Search Scheme has the property that 
f(xk+~)=dP(Sk)<.~(ak). Combining the first inequality in (15) or (16) and the inequality 
~b'(O)<~--Elgk[ 2 with the lower bound for ak gives f(xk+l)<~f(Xk)--fllgk[4/ldkl 2 where 
fl = min{Em2, em/t}. Summing these inequalities over k yields: 

kr 4 I 4 k 

=J(Xo) - fl ,-~o Ig~[2' (22) 

where d;, = - g i r .  Since f is bounded from below on F, we conclude that the gradients gk, tend to 
zero as k increases. [] 

Corollary 3 

Suppose that the iterations generated by the Conjugate Gradient Search Scheme are contained 
in a compact convex set K where f is two times continuously differentiable, the search directions 
are renormalized to be the negative gradient every r iterations for some r, and there exists an upper 
bound M and a lower bound m > 0 for the eigenvalues of the Hessian o f f  on K. Then the iterations 
generated by the Conjugate Gradient Search Scheme approach the unique minimizer for f on the 
set K. 

Proof By Theorem 3 and the compactness of K, a subsequence of the iterations approach a point 
x* where the gradient vanishes. Since f is convex on K, x* is the unique global minimizer o f f  on 
K. By the mean value theorem, we have [gk+l--gkl ~ M[Xk+~- xkl, which implies that 

[gk+~l ~< Igkl +M[Xk+I--Xkl = Igkl "l-Msk[dk[. (23) 

Expanding f in a Taylor series about x k yields 

g~(Xk +~-- Xk) + 2 [Xk+t-- Xk[ 2 =f(Xk) + skgTkdk + 2 s2ldkl2" f(xk 1) >~f(Xk) + + 

Since f(Xk + t) ~<f(Xk), it follows that 

ms21dkl 2 <. --2Sk~kdn <. 2sklgkl [dkl, 

which implies that skldd ~ 21gkl/m. Referring to (23), we conclude that 

2M 
Igk+ll ~<[1 +--m-]lgk,. (24) 
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Since g~, tends to zero, (24) shows that all the g, approach zero. Finally, expandingf(x*) in a Taylor 
series about x k gives 

/n  
f ( x * )  ~ f ( x k )  + gT(x* - -  Xk) --{- -~ Ix k -- x* 12. 

Since f(x*)~<f(x~), it follows that 

m 
-~ JXk - -  X*J 2 ~< g ~ ( x k  - -  X * )  ~< IgkJ Ixk - -  x ' l ,  

and [xk-x*[  ~< 2Jgkl/m. Since the g, tend to zero, the Xk approach x*. [] 

7. NUMERICAL COMPARISONS 

To compare the Conjugate Gradient Search Scheme to various other algorithms, we have solved 
some of the standard test problems. In [26] Ecker and Kupferschmid comlSare the performance of 
various constrained optimization algorithms. The following algorithms were studied: EA3: the 
variant of the ellipsoid algorithm implemented by Kupferschmid and Ecker [27]. GRG2: The 
generalized reduced gradient algorithm of Lasdon et al. [28]. IQP: The Han [29]-Powell [30] 
iterative quadratic programming algorithm implemented by Crane et al. [31]. NAG8: The 
augmented Lagrangian algorithm of Gill and Murray [32] as implemented in subroutine EO4VAF 
of the Mark 8 NAG Subroutine Library. RQP: The recursive (iterative) quadratic programming 
method of Biggs [33] as implemented in subroutine OPRQP of the Hatfield Subroutine Library [34]. 

Although most of the test problems studied in [26] contained constraints, the unconstrained 
problem Colville 4 [35] was examined. In Colville 4 the cost function is 

f ( X l ,  X2, X3, X4) = 100(X 2 - -  X2) 2 + (1 - -  Xl) 2 d- 90(X 4 - -  X32) 2 d- (1 - -  x3) 2 

-I- 10 .1[ (x  2 - -  1 ) 2 +  ( x  4 - -  1) 2] d- 19.8(x2- 1)(x4- 1). 

This problem, proposed by C. F. Wood at Westinghouse Research Laboratory, is essentially two 
Rosenbrock functions tied together and the minimizer is Xl = x2 = x3 = x4 = 1. For an enlightening 
picture of the Rosenbrock function see [36, p. 5]. Using the starting condition xt = x2 = x3 = x4 = 0 
and the stopping criterion If(xk) - f (x*) l  / If(x0) - f (x*) [  ~< 0.001 where x* denotes the solution and 
x0 is the starting guess, Ecker and Kupferschmid obtained the results given in Table 4. 

For comparison, the Conjugate Gradient Search Scheme, with 2 = g = e = 0.1, p = 5, and 
0 = 0.3, satisfied the convergence criterion after 7 iterations, 20 function evaluations, and 9 gradient 
evaluations. Since there are four unknowns in Colville 4, the direction vector was renormalized to 
be the negative gradient after every four consecutive iterations. A copy of the program used in these 
experiments is stored under the name CG in the subroutine package NAPACK. Instructions for 
obtaining a copy of this program by electronic mail appear in [37]. 

It should be noted that although our program seems to perform spectacularly relative to the data 
in Table 4, one must be cautious in drawing conclusions. First, the algorithms in Table 4 are general 
constrained optimization routines while the Conjugate Gradient Search Scheme is an unconstrained 
optimization routine. Second, Colville 4 is a somewhat unstable test problem in the following sense: 
If the iterations turn down the wrong valley (in four dimensions) looking for the minimizer, it often 
takes many iterations before the iterations turn around and head up the correct valley. Moreover, 
tiny changes in the starting point can cause the iterations to turn down the wrong valley. 

Some experimental results that focus on conjugate gradient schemes appear in [38]. In these 
experiments, 10 different conjugate gradient codes are examined: Harwell subroutines VA14A and 

Table 4. Algorithm statistics extracted from [26] for Colville 4 

Time Function Gradient 
Method Iterations (s) evaluations evaluations 

EA3 138 0.058 1,242 138 
GRG2 I 0 0.024 509 90 
IQP 13 0.140 189 189 
NAG8 12 0.040 252 243 
RQP 22 0.035 666 198 
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Table 5. Computational effort for various test problems (see Table 2 of [38D 
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Pl Pl P8 
Problem (n = 2) (n = 4) I'2 P3 P4 P5 P6 P7 (n = 4) 

Fastest 36 70 45 67 111 170 37 390 104 
Slowest 272 620 156 600 1251 495 300 1680 472 
Average 113 280 81 173 402 290 129 955 248 
CG 56 139 49 134 130 212 23 93 ! 84 

VA08A, the Hatfield codes CONGRA and CONLS, a Fletcher-Reeves code with a new line search, 
the Buckley and Le Nir method, and four new methods OPCGI-OPCG4 presented in [38]. The 
stopping criterion was I gkl ~< 0.01, where the norm is the Euclidean norm, and the computational 
effort was measured by the expression N~ + nNo where n is the number of unknowns, NF is the 
number of function calls, and No is the number of gradient calls. In Table 5 we list for each test 
problem, the lowest computational effort achieved by a code, the highest computational effort 
(among the codes that solved the test problem), the average computational effort corresponding 
to all the codes that solved a given test problem, and the computational effort for CG. 

Observe that the computational effort associated with the Conjugate Gradient Search Scheme 
is well above the average and near the fastest algorithm in most cases, and in 2 cases it is the fastest 
algorithm. In [38] there were 3 algorithms that solved all the test problems of T~ble 5 successfully. 
If the computational effort for these 3 algorithms along with CG is averaged over all the test 
problems, we obtain the following averages; CONGRA (516), CONLS (496), VA08A (309), and 
CG (111). Hence, the Conjugate Gradient Search Scheme performs quite well relative to the most 
reliable algorithms. 

Results for higher dimensional versions of the test problems seemed to parallel results in lower 
dimensions. For example, our algorithm did not fare as well on the Powell function (P8) as on the 
Rosenbrock function (P5). In extended versions of these functions (see [38], P8 and P9), the 
computational effort for CG is 4415 in P8 with n = 60 and 959 in P9 with n = 20. In [38] the 
computational efforts are 1688 (fastest), 9577 (slowest), and 4025 (average)for P8 and 801 (fastest), 
4111 (slowest), and 1913 (average) for P9. 

Some of the test problems in [39] were also examined. In [39] Shanno presents several different 
versions of the conjugate gradient method and compares them to each other as well as to a BFGS 
quasi-Newton method. In implementing the conjugate gradient schemes, he uses the same 
(relatively simple) search scheme so that the differences in efficiency are due to the conjugate 
gradient scheme and not to the line search efficiency. In comparing the conjugate gradient results 
to the BFGS quasi-Newton results, he concludes that in general quasi-Newton methods are 
superior to conjugate gradient methods. Note though that with a more involved search scheme such 
as the Conjugate Gradient Search Scheme, the conjugate gradient method may fare better. For 
example, solving Colville 4 with 4 different starting points, the BFGS method uses 42, 112, 111, 
and 51 function and gradient evaluations (see Table 4 in [39]). With CG the corresponding number 
of function (F) and gradient (G) evaluations are (53F, 22G), (72F, 29G), (623F, 239G), and 
(280F, 110G). Hence, in two of the cases, the quasi-Newton method seems superior while in two 
of the cases, the conjugate gradient method seems superior. For an extended Rosenbrock function 
with n = 10, the quasi-Newton method requires 993 function and gradient evaluations while CG 
requires 45 function and 21 gradient evaluations. In summary, the Conjugate Gradient Search 
Scheme seems promising. 
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A P P E N D I X  

The Local Minimum of a Cubic 

Suppose that p(x) is a cubic with values P0 and p~ at x = 0 and at x -- 1 and with derivatives do and d~ at x = 0 and at 
x -- 1. Then the derivative of p is given by 

p'(x) = do- 2(do + v)x + (do + d, + 2v)x 2, (A.l) 

where 

v = do + d I + 3(/70 -p j ) .  
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Except in the trivial case where p is constant, a cubic has a most one local minimum which is the root of  the quadratic 
equation p'(x) -- 0. Recall that two zeros x+ and x of  the quadratic ax 2 + bx + c are 

- b  + (b 2 - 4 a c )  ~/~ 
(A.2) x± = 2a 

For the quadratic (A.1), we have a = ( d o + d  L +2v) ,  b = -2(do + v), c = d  0, and 

b 2 - 4ac 
- -  = (do + v) 2 - (do + d~ + 2v)do = v 2 - dodl. (A.3) 

4 

If the discriminant b 2 - 4 a c  is less than zero, then p'(x) never vanishes when x is real. Hence, p is strictly monotone and 
there is no local minimum. On the other hand, if b 2 - 4ac is positive, then p ' (x )  has two real zeros. Differentiating p'(x) 
and inserting x = x±,  it can be verified that p"(x+)= +2w where w is related to the discriminant: 

w = ( v  2 - dodJ '/2. 

Consequently, the local minimum of  p(x) occurs at x = x+ where the second derivative is positive. 
It is well known (see [40, pp. 20-21]) that if b is positive and 41ac I is small relative to b ~, then the computed value of  

- b  + (b 2 _ 4ac)l/2 is relatively inaccurate since nearly equal numbers/tre subtracted. Moreover, multiplying the numerator 
and the denominator of  x + b y  - b  - ( b : - 4 a c )  ~/2, we obtain 

- 2 c  
x +  = b + (b  ~ - 4ac) I/2' (A.4) 

which can now be evaluated accurately since the positive parameter b is added to the square root, not subtracted from 
the square root. In general, (A.4) yields a more accurate value for x+ than (A.2) when b is positive and b 2 >  4ac. 
Differentiating (A.I) we see that p#(0)ffi -2(do + v ) =  b. Thus the sign of  b is the same as the sign of  p#(0). The second 
derivative of  a real valued function f i s  typically positive in a neighborhood of  a local minimum ~. If  f has two continuous 
derivatives, then the second derivative of  a cubic interpolant will also be positive near ~ provided the interpolation points 
are sufficiently close to ~. Furthermore, (A.3) implies that b '  is greater than 4ac whenever u s -  dodl is positive or 
equivalently, whenever w is pure real. Hence, in a neighborhood of  a local minimum, it is better to compute the local 
minimum of  the cubic interpolant using relation (A.4) rather than relation (A.2). Substituting a = (do + dl + 2v), 
b = -2(do + v), c = do in (A.4) gives 

d o  
- (A.5) 

x+-do+v_w. 

In a similar manner, adding and subtracting one from (A.2), x+ can be written 

d, 
-- , ( A . 6 )  x+ 1 d t + v + w  

and this formula is accurate when p"(1) ffi 2(all + v) is positive. After changing variables, (A.5) and (A.6) yield (4). 


