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Al~traet--A derivative-free scheme for univariate minimization is developed. This scheme has g quadratic 
convergence rate and requires two function evaluations each iteration. 

1. I N T R O D U C T I O N  

This paper develops an algorithm which combines a bracketing strategy, golden section search and 
a new Newton iteration based on the Lagrange cubic interpolation to obtain the minimum of a 
function of  one variable. These techniques are meshed together in a way that ensures the golden 
section step used to guarantee convergence of the algorithm will not interfere with the quadratic 
convergence rate of the underlying Newton iteration. More precisely, we prove that when 
minimizing a univariate function f ,  our algorithm converges to a point 0t which satisfies the 
second-order necessary conditions: f ' (ct)  = 0 and f"(~t) I> 0. Furthermore, iff"(~t) is positive, then 
the convergence is quadratic. That is, letting ek denote the error at step k, there exist constants q 
and r, which are independent of k, such that e k <~ q/r 2k for every k where r > 1. Since algorithms 
to minimize a function of several variables often involve a univariate minimization step, our 
proposed algorithm can be incorporated in a multivariate scheme. 

Let us compare our algorithm to some other derivative-free minimization schemes available in 
the literature. Of course, the simplest and most fundamental univariate minimization scheme based 
on the comparison of function values is the Fibonacci search o r  golden section search (see Refs 
[1, 2]). Although these schemes are reliable, the convergence is just linear. Schemes utilizing a 
quadratic fit can be faster than the Fibonacci search or golden section search since the convergence 
order of the quadratic interpolation iteration is about 1.3 (see Ref. [3, p. 207]). An algorithm that 
combines quadratic interpolation with the golden section search is developed by Brent [4, Chap. 5]. 
The fundamental difference between Brent's scheme and our scheme is that Brent's scheme is built 
around a quadratic interpolation while our scheme is built around a Newton iteration for which 
the convergence order is two. There are several advantages in our algorithm. Although the 
quadratic interpolation iteration just requires a few more function evaluations to achieve a 
given error tolerance than the Newton iteration on a serial computer, on a parallel computer the 
Newton iteration is more than twice as fast as the quadratic fit scheme since each Newton iteration 
involves independent function evaluations. Moreover, since a convergence order greater than 
(1 + ~/-5)/2 ,~ 1.6 can never be achieved for a general class of functions by successively minimizing 
a polynomial that interpolates previous function values (see Ref. [5]), we conclude that for a parallel 
computer, our Newton iteration is always faster than the successive minimization of interpolating 
polynomials. 

Another advantage in our algorithm is related to numerical stability. In Brent's algorithm, an 
error tolerance "eps"  must be provided. If  too small a value for eps is specified, then the following 
phenomenon is observed in numerical experiments: initially, one side of the bracketing interval 
stays fixed while the other side approaches and jumps over the true minimizer. The algorithm then 
senses that something is wrong and the golden section steps are performed until the "bracketing 
interval" is small enough. In contrast, our Algorithm 2 has the property that both sides of the 
bracketing interval typically approach the minimizer simultaneously. If an unrealistic error 
tolerance is specified, the algorithm performs some golden section steps, however, these steps are 
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applied to a relatively small interval so convergence is rapid. Another numerical advantage related 
to the accuracy attainable in the Newton iteration is discussed in Section 5. It is important to 
observe that the point generated by Brent's scheme and our scheme may be different. Our scheme 
is organized so that it will converge to a local minimizer on the interior of  the bracketing interval 
while Brent's scheme can converge to a local minimizer at an endpoint of  the bracketing interval. 
This distinction is important in the following situation: suppose we wish to compute a minimizer 
of  a univariate function f and it is known that a unique local minimizer lies between a and b. 
Although f has a unique local minimizer in the interior of  the interval [a, b], the restriction o f f  
to [a, b] may have a local minimizer at an endpoint of the interval. Since our algorithm ignores to 
local minimizer at an endpoint of  the interval, the iterations converge to the desired minimizer in 
the interior of  [a, b]. Finally, we note that it has not been shown rigorously that the convergence 
order of  Brent's scheme is the same as the convergence order of the under- 
lying quadratic interpolation iteration (see Ref. [6]). For  the scheme developed in this paper, 
we show that the convergence order is the same as the convergence order of  the underlying 
Newton iteration. 

In the companion paper [7], a univariate minimization scheme utilizing derivative evaluations 
and Hermite cubic interpolation is developed. This derivative-based scheme is more numerically 
stable and obtains an estimate for the minimizer with relative accuracy on the order of the machine 
epsilon while the scheme developed in this paper obtains relative accuracy on the order of the 
square root of  the machine epsiion. On the other hand, when f can be evaluated faster than its 
derivative, the derivative-free scheme in this paper is more efficient. For  other references to 
univariate minimization schemes, see Refs [3, 7]. 

2. THE B R A C K E T I N G  S T R A T E G Y  AND TH E F U N D A M E N T A L  I T E R A T I O N  

Suppose that f is a real valued function of  a real variable. Our univariate minimization scheme 
assumes that we are given three points a, b and c with b between a and c and with the following 
property: 

f(a) >>.f(b) <<.f(c), if a # b ~ c, 

f(a)>>.f(b) and f '(b)(b-a)>lO, if a # b = c ,  

f(c)>.f(b) and f'(b)(b-c)>>.O, if  c ~ b = a ,  

f ' ( b ) = 0  and f"(b)~O, if a=b=c .  

Any triple (a, b, c) with b between a and c and with this property will be called a bracketing triple. 
One strategy for obtaining a bracketing triple is described in Section 2 of Ref. [7]. Given a 
bracketing triple (a, b, c) and given a point 8 on the open interval (a, c) with 8 # b, a new 
bracketing triple can be constructed using the standard rules (see Ref. [3]): 

(Rt) If  8 lies between a and b and f ( 8 ) > f ( b ) ,  then a "~w= 8, b"¢~= b and cn~W= c. 
(R2) If  8 lies between a and b and f(8)<<.f(b), then a n'~= a, b new= 8 and c n~w= b. 
(R3) If  8 lies between b and c and f ( 8 )  >~f(b), then a n°w = a, b n~w = b and c "w = 8. 
(R4) If  8 lies between b and c and f(8) < f ( b ) ,  then a new = b, b n~w = 8 and c n~w = c. 

In a similar manner, if fl = b, then after inspecting the sign of  f '(b), we can construct a new 
bracketing triple (a, b, c) new where the interval [a, c] contains [a, c] new. (Throughout this paper, [a, c] 
denotes an interval with endpoints a and c. We do not mean to imply that a is less than or equal 
to c.) When implementing the scheme developed in this paper, we keep a, b, c and 8 distinct so 
that a derivative is not needed to update the bracketing triple (see the comments that follow the 
statement of  Algorithm 1 in Section 3). On the other hand, in the theoretical analysis of  our scheme, 
the discussion is simplified if we allow for bracketing triples where two or three points contained 
in the triple coincide. Observe that if a nested sequence of  bracketing triples approaches a limit, 
then by the mean value theorem, the iteration limit satisfies the second order necessary conditions. 
More precisely, we have the following. 
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L e m m a  1 

Consider a sequence of bracketing triples (ak, bk, Ck), where (ak + 1, bk + I, Ck + ~ ) is constructed from 
(ak, bk, ck) using rules (RI)-(R4). I f  l a k -  Ckl tends to zero and 

= (3 [ak, cd, 
k>~0 

then f ' ( ~ ) =  0 and f " ( ~ ) > / 0  provided f is twice continuously differentiable near ct. 
In this paper, the bracketing strategy outlined above is combined with a Newton iteration to 

obtain a globally quadratically convergent algorithm. To formulate the Newton iteration, we start 
with three distinct points x, y and z and we introduce a fourth point w defined by w = x + agh, 
where a is + 1 or - 1. Let C be the cubic that interpolates f a t  w, x, y and z. Omitting the algebra, 
the derivative of  C evaluated at x (denoted N) can be expressed: 

(g -- h ) f ( w ) - h~g3f (z ) + g~h y (  y ) + g~ho(g - h ) (go + h~ - 3 ) f (x )  
C' (x )  = N ( x ,  y, z, w) = 

aghg~ho(g - h) 

where h~ = 1 + crh and go = 1 + ag. Also, the second derivative of  C evaluated at x (denoted D) is 
given by 

C " ( x )  = D ( x , y ,  z, w)  

(g - h ) ( g  + h ) f ( w ) + a g 3 ( l  - h Z ) f ( z ) + a h 3 ( g  2 - 1 ) f ( y ) - g ~ h ~ ( g  - h ) ( g  + h  - a g h ) f ( x )  

G 2 ~ g~ho(gh ) (g - h ) 

In deriving N and D, we restricted x, y, z and w so that no two of these points are the same. With 
this restriction, the denominator  of  N and the denominator  of  D do not vanish. On the other hand, 
when f has four continuous derivatives, it can be shown that both N and D are well defined even 
when the denominators vanish since well defined limits exist. 

The fundamental iteration that we study in this paper  is a variant of  the Newton iteration 

xk+, = xk - - f ' ( x k ) / f " ( X k ) .  

To state our derivative-free implementation of  Newton's  method, we utilize a map T defined in 
the following way. Loosely speaking, given a collection of  points where f is defined, T extracts 
out those three points where the value o f f  is the smallest. More precisely, given a collection of  
points z~ . . . . .  Zq on wh ich f i s  defined, let l, m, and n be the three smallest indices with the property 
that 

f ( z t )  <~f(zm) <~f(z,)  <~ min{f(zi) :  i = 1 . . . . .  q, i ~ l, m, n}, 

where 1 < m if f ( z l ) = f ( Z m )  and m < n if f ( z , , ) = f ( z , ) .  Then T(zt  . . . . . .  Zq) denotes the triple 
(z~, z,,, z ,) .  With this notation, iteration k in our derivative-free scheme is essentially the following: 

w~ = xk + (xk - y~)  (xk - zk),  

vk = xk -- N (x~., Yk, zk, wk )/D (xk, y , ,  zk, wk ), 

(x~ + I, Yk + I, Zk + I ) = T(xk ,  Yk, Zk, Vk, Wk). 

Our rule for deciding which sign to use in the evaluation of wk appears in step 2 of  Algorithm 1 
(see Section 3). To help compare this derivative-free approximation of  Newton's  method, we prove 

L e m m a  2 

Given three distinct points x, y and z, define g = x - y, h = x - z and w = x + gh. I f  f has 
two Lipschitz continuous derivatives on an interval I which contains • in its interior, then 

iim N ( x , y , z ,  w) = f ' ( ~ )  and lim D ( x , y , z ,  w) = f " ( e ) .  (1) 
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Moreover, if f is four times continuously differentiable on I and I contains x, y, z and w, then 
there exists a point ~ • I such that 

N (x, y, z, w) = f ' ( x )  +. (gh?2 f(4)(¢), (2) 
l 

.,t 4 

and if both I g I ~< 1 and I h [ ~< 1, then there exists a point r / •  I such that 

D (x, y,  z, w) = f "(x) + ~-~ f(4) 0/), (3) 

where 101 ~< 1. 
Proof  Again, let C be the cubic which interpolates f a t  the points, x, y, z and w. Since C is equal 

to f at four points and both C and f are continuously differentiable, Rolle's theorem implies that 
C'  = f '  at three points. Similarly, since both C and f are twice continuously differentiable, Rolle's 
theorem implies that C'  = f '  at three points. Similarly, since both C and f are twice continuously 
differentiable, Rolle's theorem implies that C" = f "  at two points. C" is a linear function that agrees 
with the Lipschitz continuous function f "  at two points. Therefore, the third derivative of  C is 
bounded by the Lipschitz constant for f " .  This bound for the third derivative of  C coupled with 
the fact that C'  = f '  and C" = f "  somewhere in the convex hull of  w, x, y and z yields equations (1). 

Now let us consider equation (2). It is well known (see Ref. [8, p. 248]) that the error in cubic 
interpolation satisfies the relation 

f ( t )  - C( t )  = (t - w) ( t  - x ) ( t  - y ) ( t  - z ) f [ w ,  x, y, z, t], (4) 

wheref[w,  x , y ,  z, t] is the fourth order divided difference of  f based on the points w, x, y, z and t. 
This fourth order divided difference can be expressed (see [Ref. 8, p. 249]): 

f(')(~) 
f [w ,  x, y, z, tl =" (5) 
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where ~ lies in the convex hull of  the points, w, x, y, z, t. Differentiating equation (4) with respect 
to t, evaluating the derivative at t = x, and making the substitution (5), we obtain equation (2). 
It is important to note that just four derivatives are needed for f even though differentiation of  
equation (5) would appear to require the fifth derivative o f f  In fact, as we now show, just one 
continuous derivative is needed to obtain the identity 

d 
l i m ( / -  x ) ~ t f [ w ,  x, y, z, t] = O. 

Since a divided difference is a symmetric function of  its arguments, we have: 

d d( f [ t ,w ,y , z] -__~fx[W,y ,z ,x]  ) 
(t - x )  -~tf[w, x, y, z, t] = (t - x )  -dt t 

d 
(t - x )  -~tf[w, y, z, t] + f [w,  y, z, x] - f [w,  y, z, t] 

t - - x  

= -~ttf[w, y, z, t] -- -~ssf[W, y, z, sl , (6) 
s = ~(t) 

where ~ (t) lies between t and x. Writing f [w,  y, z, t] in terms of  the value o f f  at w, y, z and t, we 
see that the derivative on the right-hand side of  equations (6) can be computed when f is 
differentiable. Moreover, when this derivative is continuous, the right-hand side of  equations (6) 
approaches zero as t approaches x. 

Finally, let us consider equation (3). Without loss of  generality, we can assume that 
Ih I >1 Igl >1 Igh I. Since the second derivative of  e( t )  = f ( t )  - C( t )  vanishes for at least two points, 
say t = s~ and t = s 2, we have the equality (see Ref. [8, p. 249]): 

e" (x ) = (x -- sl ) (x  -- s2) f ( ' ~  rl ) 
g 
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where r/lies in the convex hull ofs~, s2 and x. The relation [hl ~ [gl ~ Ighl implies that s~ can be 
chosen in the convex hull of  w, x, and y and sz can be chosen in the convex hull of  w, x, y, and 
z. Since Ix - s~l ~< [gl and Ix - s21 ~< [hi, the proof  is complete. []  

3. I M P L E M E N T A T I O N  

Our proposed algorithm to compute a local minimum o f f  has five parts: 

Algori thm 1 

I. Initialization. 
2. Newton step. 
3. Test convergence speed. 
4. Test cost convexity. 
5. Golden section step. 

We assume that a bracketing triple (a, b, c) is given. At the start of  the iteractions, step 1 is executed. 
Then in each successive iteration, we perform a Newton step, we test the convergence speed, and 
we test the convexity of  the cost function. If  either the convergence is slow or the cost lacks 
convexity, then a golden section step is performed. Conversely, if the convergence seems fast and 
the cost appears convex, then a Newton step is performed. The map Tb utilized in step 2 is a slightly 
modified form of  the map Tdefined in Section 2. In particular, given a collection of  points zl . . . . .  Zq 
on whichf i s  defined with z t = b for some l, let m and n be the two smallest indices with the property 
that m ~ ! ¢: n and 

f ( Z m ) < ~ f ( z , ) < ~ m i n { f ( z i ) : i  = 1 . . . . .  q, i v ~ l , m , n } ,  

where m < n i f f ( z , ) .  Then Tb(Z t . . . . .  Zq) denotes the triple (b, zm, z,). In detail, the five steps of 
Algorithm 1 are the following, 

1. Initialization 

Set ( x , y ,  z )  = T(b,  a, c), define l = 21a - c I, and proceed to step 2. 

2. Newton  step 

Set w = x + (x  - y ) ( x  - z ) ,  where the sign is chosen which yields the value for w 
closer to the midpoint of  the interval [a, c]. If D (x, y, z, w) = 0, then branch to step 
5. Otherwise, set v = x - N ( x , y , z , w ) / D ( x , y ,  z, w). If Iv - x l > I or v is outside the 
open interval (a, c) or w is both outside (a, c) and f (w )  < f ( v ) ,  then branch to step 
5. Otherwise, update the bracketing triple (a, b, c) using rules (R~)-(R4)  and the 
following choice for fl: If w is outside the interval (a, c), then fl = v and if w is inside 
the interval (a, c), then p = v or fl = w, whichever yields the smaller value for f .  
Letting o denote either v or w, whichever yields the larger value for f ,  update the 
bracketing triple a second time using fl = o if o lies inside the new interval (a, c). 
Finally, perform the update (x, y, z) "ew = Tb(x, y,  z, v, w)  and proceed to step 3. 

3. Test  convergence speed 

If I Y - x I + I z - x I > / ,  then branch to step 5. Otherwise, replace the value of / 
with I/2 and proceed to step 4. 

4. Test  cost convexi ty  

If the second order divided difference f [ x ,  y,  z] is negative, then proceed to step 
5. Otherwise, branch to step 2. 

5. Golden section step 

If x = y,  N ( x ,  y, z, w) = 0, and f " ( x )  ~>0_~ then set a "ew = b "eW = c "e~ = x and stop. 
Otherwise, set x = b + ( a - b ) ( 3 - x / 5 ) / 2  if l a - b [ / > l b - c [  and set 
x = b  + ( c  - b ) ( 3  - x/~)/2 if la - b l  < Ib - c l .  Use rules (RI)--(R4) with fl = x  to 
update the bracketing triple (a, b, c), then branch to step 1. 
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The map  Tb is introduced to help simplify the analysis of  Algorithm 1. The analysis is much easier 
if it is arranged so that in each iteration x = b, the middle point in the bracketing triple. Since the 
point b generated in step 2 is always one of  the points x, y, z, v, or w where the value o f f  is smallest, 
Tb(x, y, z, v, w) is a triple consisting of three arguments where the value of  f is smallest. However, 
if the function value associated with two or more arguments is identically equal to the minimum 
o f f ( x ) ,  f ( y )  . . . . .  f (w),  then T b rearranges the three extracted arguments so that b comes first. 
When implementing Algorithm 1 on a computer,  we must guard against the following source for 
numerical instability: As two arguments of  N or D in step 2 approach each other, the relative error 
in the computed value of N and D increases. On the other hand, small perturbations in x, y, z or 
w will not effect the convergence speed of  the algorithm. Often, when implementing this algorithm, 
a desired error tolerance t is specified and whenever two arguments of  N or D are closer together 
than t, then their separation is increased to t. In particular, if I w - x I ~< 2t in step 2, then we set 
w = x _ t where the sign is chosen which yields the value for w closer to the midpoint of  the interval 
[a, c]. Likewise, if Iv - x [ ~< t, then we set v = x + t where the sign is chosen which yields the value 
for v closer to the midpoint  of  the interval [a, c]. Finally, if I v - w I ~< t, then we set v = w + t, where 
the sign is chosen so that x and v are on opposite sides of  w. Typically, the iterations are terminated 
when l a - c I ~< 2t. We emphasize that the modifications discussed above are only needed to ensure 
numerical stability. Theoretically, the Newton step is well defined even if two arguments of  N and 
D are equal (since a limit exists as these arguments approach each other). 

When implementing Algorithm 1 on a parallel computer,  we simultaneously evaluate f at the 
point v of  the current iteration and at the point w of  the next iteration. Although the value of  w 
in the next iteration depends on the relationship between f(v),  f (x ) ,  f ( y )  and f (z) ,  there are at 
most four different ws that need to be considered. Thus one strategy is to simultaneously evaluate 
f a t  v and at the four potential w s and then discard the irrelevant function values. Another strategy, 
which involves no discarded function values, is based on the following observations: the sign 
convention used in the choice of  w is designed so that w lies inside the bracketing interval when 
the iterations are near a local minimizer (see Lemma 5). On the other hand, the convergence rate 
is not effected if we always use one sign, say the plus sign, when computing w. Since the inequality 
f (v )  < f ( x )  typically holds, the value for w in the next iteration is v + (v - x ) ( v  - y )  in a large 
proport ion of  the cases. Therefore, we can evaluate f at both v and at the anticipated w for the 
next iteration. I f  it turns out that the anticipated w is not the actual w, then we must perform 
another evaluation, however, this extra evaluation is carried out infrequently. 

In Algorithm 1, the point w generated in step 2 is a somewhat arbitrary point near x, the best 
approximation to a local minimizer. It is conceivable that for many iterations, one side of  the 
bracketing triple stays fixed while the other side approaches the local minimizer. But if it can be 
arranged so that w is close to x while w and x are on opposite sides of  the local minimizer, then 
both sides of  the bracketing triple approach the local minimizer as the iterations progress. One 
strategy to enhance the likelihood that w and x lie on opposite sides of  the local minimizer is the 
following: let q denote the minimizer of  the quadratic that interpolates f at x, y, z and define 
w = 2q - x. Algorithm 1 with this new formula for w will be called Algorithm 2. The fact that w 
and x tend to lie on opposite sides of a local minimizer is connected with subtle relations between 
error constants associated with the quadratic iteration and with the Newton iteration. A numerical 
illustration appears in Section 5. To test this property for a wide range of  problems, we performed 
the following experiment: functions of  the form f ( x ) =  ax2+ bx3+ cx 4 were considered where 
0.1~<a~<100, - 1 0 ~ < b ~ < 1 0  and -10~<c~<10 .  Starting from z 0 = - 0 . 2 ,  y0=0.2 ,  and 
xo = Yo-.f '(Yo)/f"(Yo), up to four iterations of  the following algorithm were performed: 

Wk = 2qk -- Xk, 

Uk --'~ Xk - -  N ( Xk, Yk, Zk, Wk )/ D (xk, Yk, Xk'  Wk ) '  

(Xk+ t, Y~+ I, Zk+ I) = T(Xk, Yk, Zk, Vk, Wk)" 

Here qk denotes the minimizer of  the quadratic that interpolates f at Xk, Yk, and Zk. Since f has 
a local minimum at x = 0, the iterations were terminated whenever t xkl ~< 10-~6. We just considered 
problems for w h i c h f "  did not vanish on the interval [ - 0 . 4 ,  +0.4]. In over 94% of the iterations, 
Xk and wk were on opposite sides of  the local minimizer x = 0. 
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For  reference, we state the formulas for the minimizer of  an interpolating quadratic and for both 
the first and the second derivative of  an interpolating cubic. I f f  denotesf(x~), then the minimizer 
of  the quadratic that interpolates f at x = x0, x = x~, and x = x2 is 

1 ( ( ±  - + ( x , -  - 

q (Xo, x, ,  X2)'= Xo + ~ \ (x2 -- x o) (fl --fo) + (Xo -- x, )(f2 - - f  o) ]"  

Defining d~ = x~ - Xo, bij = d~d/(d~ - d/), and aij = d~d/b~j, the derivative at x = Xo of the cubic that 
interpolates f at x = Xo, x = x~, x = x2, and x = x3 is 

a23(fl --fo) + a3l(f2 --fo) + al2(f3 --fo) 
N(xo,  x l ,  x2, x3)-'= (7) 

dtd2d3(b23 + b31 + b12) 

Defining ri/= d~d~(d~ - d~) the second derivative at x = xo of the cubic that interpolates f a t  x = Xo, 
x = x l ,  x =x2 and x =x3 is 

2[r23(fl --f0) Jr" r31(f 2 --f0) + r21(f3 --f0)] 
D (x0, xl,  x2, x3):= -- (8) 

dld2d3(b:3 + bal + bl2) 

Note that the formulas for N and D given in Section 2 are simplified versions of  equations (7) and 
(8) corresponding to a special choice for x3. With the notation given above, the Newton step of  
Algorithm 2 can be stated. 

2. Newton step o f  Algorithm 2 

If  (z - x ) f ( y ) + (x - y ) f (z ) + ( y - z ) f (x ) = 0, then branch to step 5. Otherwise, 
set w = 2q(x,  y, z ) -  x. If  D ( x , y ,  z, w ) =  0, then branch to step 5. Otherwise, set 
v = x - N ( x ,  y, z, w) /D (x, y, z, w). If Iv - x l > l or I w - x I > l or v is outside the 
open interval (a, c) or w is both outside (a, c) an d f (w )  < f ( v ) ,  then branch to step 5. 
Otherwise, update the bracketing triple ( a , b , c )  using rules (RI)-(R4) and the 
following choice for fl: If w is outside the interval (a, c), then fl = v. Otherwise, fl = v 
or fl = w, whichever yields the smaller value for f .  Letting o denote either v or w, 
whichever yields the larger value for f ,  update the bracketing triple a second time 
using fl = o if o lies inside the new interval (a, c). Finally, perform the update 
( x , y ,  z) new = Tb(x,y ,  z, v, w) and proceed to step 3. 

Note that Algorithm 2, unlike Algorithm 1, is not well suited for a parallel computer since the 
evaluation of f a t  v and w cannot be performed simultaneously. For  a parallel computer, it is better 
to use Algorithm 1 to generate the iterations. However, at the same time that we evaluate f a t  the 
v and w of  Algorithm 1, we can also evaluate f at the w of  Algorithm 2. By incorporating the w 
of  Algorithm 2 into the update of  the bracketing triple, it is possible to push both sides of  the 
bracketing interval toward the local minimizer in each iteration. On a parallel computer, this hybrid 
algorithm incorporates good features of  both Algorithm 1 and Algorithm 2. As with Algorithm 1, 
numerical errors are relatively large when two arguments of  N or D are relatively close together. 
Again, these arguments can be perturbed slightly to ensure numerical stability. On the other hand, 
it is much less likely that Algorithm 2 will generate two points close together than Algorithm 1. 
Near a local minimum, x and w tend to lie on opposite sides of  the minimizer and the error in 
x and w is on the order of  the square of  the error in either y or z. 

4. C O N V E R G E N C E  

In this section both the local and the global convergence of Algorithm l are analyzed. Each result 
in this section also applies to Algorithm 2 and the analysis is essentially the same since the distance 
between w and x in Algorithm l is comparable to the distance between w and x in Algorithm 2. 
In the analysis that follows, a k subscript is attached to a variable to denote its value in iteration 
k just after v is evaluated in step 2. In stating our results, it is implicitly assumed t h a t f i s  sufficiently 
smooth that the operations performed in each iteration are defined. We begin by considering the 
local convergence of  Algorithm 1. 

CAMWA 20/2---C 
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Lemma 3 

In each iteration of Algorithm 1, [ak+~,c~+~] c [ak, ck], Moreover, if an infinite number of 
golden section steps are performed, then l a k -  ck[ approaches zero as k increases. 

Proof. The relation [ak +~, ck +~] c [a~, c~] follows from the update rules (RI)--(R4). Suppose that 
a golden section step is performed at iteration k. I f /~  + t is an endpoint of the updated bracketing 
interval, then we have 

where mk denotes the 
that 

lak+t - ck+ll + - - ~ m k =  lak-- ckl, 

maximum of lak-- bkl and Ick-  bd. Since mk >1 lak-- Ckl/2, it follows 

l ak + i - ck + 11 ~ I ak -- c~l. (9) 

This shows that the width of the bracketing interval contracts by at least the factor 0.7. Similarly, 
if /~k +~= bk+l and /~k+l either becomes an endpoint or lies outside of a bracketing interval 
[aj+ ~, cj+ i] at iteration j > k, then we have 

laj+t - cj+ll ~ < ~ 4  ~ 5  [ak - ckl. 

Therefore, if the/~k + ~ generated in a golden section step eventually becomes an endpoint or falls 
outside of a bracketing interval, then I ak - ckl tends to zero as k increases provided an infinite 
number of golden section steps are performed. Conversely, suppose that an infinite number of 
golden section steps are performed and there exists an integer K such that bk =/~x for every k I> K. 
If  a golden section step is performed at iteration k where k > K, then the equality bk + ~ =/~x implies 
that /~k+~ is an endpoint of [ak+l, c~+~]. By condition (9) we conclude that the width of the 
bracketing interval contracts by at least the factor 0.7. Again, l ak - ckl tends to zero as k increases 
since the width of the bracketing interval contracts by at least the factor 0.7 whenever the iteration 
number exceeds K and a golden section step is performed. [] 

By the structure of step 2, Xk = bk is contained in the bracketing interval (ak, Ck) for every k. 
Lemma 3 tells us that the width of the bracketing interval shrinks to zero if an infinite number 
of golden section steps are performed. Consequently, when an infinite number of golden section 
steps are performed, the x~ approach a limit ~. By Lemma 1, f ' ( ~ ) =  0 and f"(~)>1 0 provided f 
is twice continuously differentiable near ~. Conversely, suppose that a finite number of golden 
section steps are performed. Since the lk approach zero at least as fast as a constant time 2 -k and 
since xk is an element of the set {Xk+l,Yk+l,Zk+~} for every k, it follows from step 3 that xk, 
Yk, and Zk all approach a limit ~. Since a finite number of golden section steps are performed, the 
convexity test is passed for k sufficiently large. Since the second order divided difference f[x,y,z] 
is equal to the second derivative of f somewhere in the convex hull of x, y, and z, it follows 
that f"(~)>~O. Moreover, the inequality Ivk--xkl<<.lk contained in step 2 implies that 
N(xk,yk,zk, Wk)/D(x,,yk,Zk, Wk) approaches zero as k increases. Under the hypotheses of 
Lemma 2, f ' ( ~ ) =  0. These observations are summarized in the following. 

Theorem I 
The xk generated by Algorithm 1 approach a limit ~ contained in the initial bracketing interval 

[a0, c0]. I f f  has two Lipsehitz continuous derivatives in a neighborhood of ~, then f ' ( ~ ) =  0 and 
f" (~) />  0. 

Now let us suppose that the xk generated by Algorithm 1 approach a limit a for whichf ' ( a )  = 0 
and f " ( a ) >  0 and let us analyze the convergence rate. We will show that if f is four times 
continuously differentiable in a neighborhood of ~, then the golden section step is not invoked for 
k sufficiently large and the root convergence order of the iterations is at least two. We begin with 
two lemmas which will show that the convergence is "fast" and both Vk and Wk are inside the interval 
(ak, Ck) for k sufficiently large. 



A derivative-free bracketing scheme for univariate minimization 31 

Lemma 4 

I f f  is four times continuously differentiable in a neighborhood of  a local minimizer ~¢ o f f  and 
f " ( ~ )  is positive, then there exists a neighborhood N of  • and there exists a constant p such that 

(10) Iv -~1 ~p(Ix -~1 + Ix - y l  Ix - z l )  +, 

for every x, y and z in N where v is generated by step 2 of  Algorithm 1. 
Proof  Expanding f ' (m)  in a Taylor series about x, we have 

2 

0 = f ' ( 0 0  = f ' ( x )  -- e f" (x )  + 2 f°)(~) ,  

where e = x - a  and ¢ lies between ~ and x. Solving for f ' ( x )  yields 

2 

f ' ( x )  = e f" (x )  - 2f(3)(¢) .  (11) 

Subtracting ~ from each side of  the equation v = x - N (x, y, z, w )/D (x, y, z, w) and utilizing both 
Lemma 2 and equation (11) gives us 

e f" (x )  + 0 (e ~) + 0 (p2) 
v - ~  = e  

f " ( x ) + O ( I P l )  ' 

where p = ( x - y ) ( x - z ) .  Since f " ( ~ ) > 0 ,  the conclusion of the lemma follows almost 
directly. []  

Lemma 5 

If  the xk generated by Algorithm 1 converge to a local minimizer ~ and f " ( ~ )  is positive, then 
there exists a neighborhood N of  0( with the property that whenever x , ,  Yk and Zk are contained 
in N and ak ~ Ck, then either the vk and the Wk generated by step 2 are contained in the open interval 
(a~,c,) or ak+, = b , + l  =c,+l  =o~. 

Proof  Let us consider a neighborhood of  ~ where f "  is positive. Since f '  is monotone in this 
neighborhood, f ( y )  >. f (x)  when y >I x />  ~. Similarly, f ( y )  >. f (x)  when y ~< x ~< ~. It is now 
demonstrated that in each iteration, we either have ak = Yk andf(z~) <<.f(ck) or we have ck = Yk and 
f ( zk )  <<.f(ak). We observed earlier that bk = xk for every k. By the structure of  step 2, Yk and zk 
cannot lie on the open interval (ak, ck). If  neither Yk nor zk is an endpoint of  the interval [a,, ck], 
then the monotonicity o f f '  implies that b o t h f ( y k )  andf(zk)  are larger than the minimum off (ak)  
and f(ck).  But this violates the requirement that xk, Yk, and zk are the previously computed points 
with smallest value. Similarly, if ak = Yk and f ( zk )> f ( ck ) ,  then we again violate the requirement 
that xk, Yk, and zk are the previously computed points with the smallest value. 

Let us now assume that ak = Yk andf(zk)  <~f(ck) and let us consider a neighborhood of ~ where 
IXk--Zkl<~l/2. Since xk=bk  for every k, we have Ixk--YkllXk--zkl~<lXk--Yk[/2= 
[ bk - -  ak [ /2  ~ [ C k - -  ak[/2. Since [ xk - wk I = I xk -- y,  [ [xk -- zkl ~< [ ck -- ak[/2, it follows from step 2 
that wk lies between ak and ck when the iterations lie in a neighborhood of  o~. Now consider vk. 
If  a finite number of  golden section steps are performed, then vk lies on the open interval (ak, ck) 
for k sufficiently large and we are done. If  an infinite number of  golden section steps are performed, 
then there exists an integer K such that for k />  K, xk, Yk, zk, ak and ck are all contained in a 
neighborhood of  ~ where both condition (10) and the hypotheses of  Ref. [7, Lemma 4] are satisfied. 
Henceforth, it is assumed that k i> K. We will show that in a neighborhood of  0~, [vk - ~ [ ~< the 
minimum of  lak--~[ and I ck--~[ so that v, must lie between ak and c,. The inequality 
f (ak)  >--f(b,) =f(Xk) and Ref. [7, Lemma 4] yield the estimate Ixk - ~1 ~< 21ak - ~[. Lemma 4 tells 
us that [ v, - ~ I ~< P (ek + Pk)2 where ek = [ Xk -- ~ I and Pk = I xk -- Yk [ I xk -- zk [. If ek < Pk, it follows 
that [vk-~J<~4pp 2. The inequality f(xk)<<.f(y~) and Ref. [7, Lemma 4] imply that 
Ixk--y~[ ~< e, + lYk -- ~l ~ 31a~-- ~l. Likewise, the inequalities f ( xk )  <~f(c~) and f (z~)  <~f(c~) 
imply that [x~-z,l<<.lx~-~[+[z~-~l<~41c~-~l. Hence, we have Iv~-~l<<.4pp~<<. 
576p lak - ~ 12[c~ - • [2 ~ 1/2 times the minimum of  la, - ~1 and Ic, - ~1 in neighborhood of  ~. 
Conversely, if ek >~Pk, then it follows from Lemma 4 that I v ~ -  ~[~< 4pp~. Consequently, in a 
neighborhood of  ~, [vk--~l<<.e,/4. By Ref. [7, Lemma 4], we have I~-~l>>.e~/2 and 
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tc~-~l >~ekl2. If neither a k nor Ck is equal to ~, then the inequality tvk--~l<<.ekl4 implies 
that Vk must lie on the open interval (a,,Ck). If  C~=~, then a , = b k = C k = ~  since 

f (c , )>>-f(zk)>~f(yk)=f(a~)>>-f(b , ) .  But this is impossible since ak@Ck. If  ak=~ ,  then 
x~ = y~ = v~ = ~ and in the first part of  the golden section step, we set ak + ~ = bk + ~ = C~ + ~ = ~. This 
completes the proof. [] 

Theorem 2 

If  the xk generated by Algorithm 1 convergence to a local minimizer ~ a n d f " ( ~ )  is positive, then 
there exist constants q and r, independent of  k, such that [xk - ~] ~< q/r 2k for every k where r > 1. 

Proof. Sincef"(~)  > 0, the convexity test is always passed in a neighborhood of  ~. By Lemma 5, 
vk and wk are contained on the interval (ak, ok) when the iterations are sufficiently close to ~. Thus 
for k sufficiently large, a golden section step is only performed when the convergence is "slow". 
We now use Lemma 4 to show that the convergence is quadratic. Throughout  the proof, C denotes 
a generic constant which is independent of  k, but which may have different values in different 
equations. Since the qualifier "in a neighborhood of ~" applies to almost every inequality in this 
proof, we sometimes omit the qualifier to minimize repetition. By Lemma 4, Iv k - or] ~ C (ek + pk) 2 
were Pk = I xk -- Yk[ I x~ -- zk I. Let uk denote I Zk -- • I. Applying the triangle inequality, we have 

Pk <~ (ek + [Yk -- ~ [)(ek + Uk). (12) 

By Ref. [7, Lemma 4], e~ ~< 2Uk and LYk -- ~ I ~< 2Uk in a neighborhood of a. Hence, condition (12) 
gives us the relation Pk <<-12U~ and by Lemma 4, we have LVk- ~l <<. C (ek+  u~) 2. Referring to 
Algorithm 1, observe that the convergence speed test in step 3 is always passed the first iteration 
after a golden section step since both vk and Wk lie on the interval [ak, Ck]. Let us suppose that 
(Xk + I, Yk  + I,  2k + I ) = Tb (Xk, y~, Zk, Vk, Wk). Since f ( x  k + I ) ~ f ( V k ) ,  Ref. [7, Lemma 4] also tells us that 
ek + j <~ 21Vk -- ~ I. Therefore, we have the relation 

ek + , ~ C(ek + u~) 2. (13) 

Since f(zk+~)<~ the largest of  f ( xk ) ,  f (vk) ,  and f (wk) ,  Ref. [7, Lemma 4] implies that 
uk + ~ ~< 2ek + 21 vk - ~ I + 21 wk - ~ I. The inequality I wk - ~ I ~< I x~ - ~ I + I xk - wkl = ek + Pk 
coupled with the previous estimates for Pk and I r k -  ~1 tell us that 

uk+l <~ C(ek + u~). (14) 

Adding the square of  condition (14) to condition (13) gives 

ek+ j + U~+ i <~ C(ek + U~) 2. (15) 

Thus the quantity ek + u~ converges to zero quadratically. In particular, the error ek is bound by 
an expression of the form q/r 2k. 

To complete the proof, we show that in a neighborhood of  ~, the convergence is fast enough 
that a golden section step is not performed due to slow convergence. There are two places where 
the algorithm can jump to a golden section step due to slow convergence: steps 2 and 3. In step 
3 we monitor the quantity I xk - Ykl + I xk - zk I. By the triangle inequality, I xk - Yk I + I Xk -- zkl <~ 
2ek + uk + lYk-- ~1. Since f ( y ~ )  <<.f(zk), Ref. [7, Lemma 4] implies that lYk- ~1 ~< 2uk and 
I x k - - Y k I + I x k - - Z ~ I  <~2ek+ 3Uk. From inequality (15), we conclude that the quantity 
I x k -  ykl + [ x ~ -  z~[ converges to zero much faster than a constant times 2 -~. More precisely, if an 
initialization step is performed at iteration j, then for a neighborhood of ~, we have 
[x~ - Y ~ I  + [xk - z~l <~ lj/2 ~- j -  I for each k > j .  Furthermore, the quantity 2k(Ix~ --Y~I + IX~ -- Z~[) 
tends to zero as k increases. In step 2 the difference }v~ - x~l is monitored. During the proof  of 
Lemma 4, we obtained the estimate 

= e ~ f " ( x D + O ( ~ ) . + O ( p ~ )  
Irk - x~l f " ( x D  + O ( p D  " 

Again, the bounds established for e~ and pk tell us that I v~ - x~l converges to zero much faster than 
a constant times 2 -~. In summary, the iterations will not jump to a golden section step due to slow 
convergence and the proof  is complete. [ ]  
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Table I. Minimizing function (16) using Algorithm I 

k xk w j, ak ck 

0 I. 100000000~ I. 10700000000 0.80000000000 1.20000000000 
1 1.01513728324 1.01048148404 0.80000000000 1.07000000000 
2 1.00029516203 1.00014397540 0.80000000000 1.01048148404 
3 1.00000009863 1.00000005618 0.80000000000 1.00014397540 
4 1.00000000000 1.00000000000 0.80000000000 1.00000005618 
5 1.00000000000 1.00000000000 0.80000000000 1.000000000~ 

Table 2. Minimizing function (16) using Algorithm 2 

k x k w k a~ c k 

0 1.10000000000 0.86521739130 0,80000000000 1.20000000000 
1 1.01026222078 0.97624406339 0.86521739130 I. 10000000000 
2 1.00005291611 0.99970269959 0.97624406339 1.01026222078 
3 0.99999997426 1.00000001002 0.99970269959 1.0000529161 I 
4 1.00000000000 1.00000000000 0.99999997426 1.00000001002 
5 1.00000000000 1,00000000000 1.00000000000 1.00000000000 
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5. C O N C L U D I N G  REMARKS 

One reason that our Newton iteration is preferable to an iteration that interpolates f at the 
previous xk is that the Newton iteration often yields a more accurate approximation to the 
minimizer 0t. Recall Ref. [9] that the machine epsilon for a computer is the smallest number E with 
the property that 1 + E > 1 when the sum 1 + E is evaluated using machine arithmetic. If  ~t is a local 
minimizer for f and f " ( c t )>  0, then using machine arithmetic, we typically find that f ( x ) = f ( c t )  
when Ix - ct I is on the order of x/~. Therefore, ct can only be determined numerically with accuracy 
on the order of v/~. 

Let xk +1 denote the last iteration computed by some algorithm and suppose that the error in 
Xk+, is O (E ,/2). If  the convergence order is p, then Xk typically has error O(E ,/2p) and f(Xk) differs 
from the minimum value f(~t) by O (E ~/P)--the error in f(Xk) is on the order of the square of the 
error in xk since f ' (~ t )=  0. For simplicity, let us suppose that f (0 t )=  0 so t h a t f ( x k ) =  O(E'/P). 
Assuming roundoff errors in the evaluation o f f  are on the order of E, the computed value o f f  at 
Xk is on the order of E and the relative error in the computed value of f a t  Xk is O(E'-l/p). Since 
xk +l is evaluated using the computed value of f a t  xk, the computed xk +~ is generally less accurate 
than the computed f(xk ). In others words, the relative error in Xk+, is at least O (E'-i/p). I f p  < 2, 
then the iteration never attains the "optimal" O(E ~/2) accuracy. The optimal accuracy is only 
achieved when p t> 2. (Recall [10] that a convergence order >/2 can never be achieved using function 
values at the previous xk). 

To compare the iterations generated by the Newton step of Algorithm 1 to the corresponding 
Newton step of Algorithm 2, let us numerically evaluate the minimizer x = 1 of the function 

f ( x )  = x 4 - 3x 3 + 4x 2 - 3x + 1. (16) 

Table 1 presents the iterations generated by Algorithm 1 while Table 2 presents the iterations 
generated by Algorithm 2. Observe that Xk and Wk in Table 2 are on opposite sides of the local 
minimizer ct = 1 and the bracketing interval shrinks to zero while just one side of the bracketing 
interval approaches the minimizer in Table 1. 
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