
Computers Math. Applic. Vol. 20, No. 2, pp. 23-34, 1990 0097-4943/90 $3.00 + 0.00
Printed in Great Britain. All rights reserved Copyright © 1990 Pergamon Press plc

A DERIVATIVE-FREE BRACKETING SCHEME FOR
UNIVARIATE MINIMIZATION

N. GHOSI-I t and W. W. HAGER 2
~Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, U.S.A.

2Department of Mathematics, University of Florida, Gainesville, FL 32611, U.S.A.

(Received 28 July 1989)

Al~traet--A derivative-free scheme for univariate minimization is developed. This scheme has g quadratic
convergence rate and requires two function evaluations each iteration.

1. I N T R O D U C T I O N

This paper develops an algorithm which combines a bracketing strategy, golden section search and
a new Newton iteration based on the Lagrange cubic interpolation to obtain the minimum of a
function of one variable. These techniques are meshed together in a way that ensures the golden
section step used to guarantee convergence of the algorithm will not interfere with the quadratic
convergence rate of the underlying Newton iteration. More precisely, we prove that when
minimizing a univariate function f , our algorithm converges to a point 0t which satisfies the
second-order necessary conditions: f ' (ct) = 0 and f"(~t) I> 0. Furthermore, iff"(~t) is positive, then
the convergence is quadratic. That is, letting ek denote the error at step k, there exist constants q
and r, which are independent of k, such that e k <~ q/r 2k for every k where r > 1. Since algorithms
to minimize a function of several variables often involve a univariate minimization step, our
proposed algorithm can be incorporated in a multivariate scheme.

Let us compare our algorithm to some other derivative-free minimization schemes available in
the literature. Of course, the simplest and most fundamental univariate minimization scheme based
on the comparison of function values is the Fibonacci search o r golden section search (see Refs
[1, 2]). Although these schemes are reliable, the convergence is just linear. Schemes utilizing a
quadratic fit can be faster than the Fibonacci search or golden section search since the convergence
order of the quadratic interpolation iteration is about 1.3 (see Ref. [3, p. 207]). An algorithm that
combines quadratic interpolation with the golden section search is developed by Brent [4, Chap. 5].
The fundamental difference between Brent's scheme and our scheme is that Brent's scheme is built
around a quadratic interpolation while our scheme is built around a Newton iteration for which
the convergence order is two. There are several advantages in our algorithm. Although the
quadratic interpolation iteration just requires a few more function evaluations to achieve a
given error tolerance than the Newton iteration on a serial computer, on a parallel computer the
Newton iteration is more than twice as fast as the quadratic fit scheme since each Newton iteration
involves independent function evaluations. Moreover, since a convergence order greater than
(1 + ~/-5)/2 ,~ 1.6 can never be achieved for a general class of functions by successively minimizing
a polynomial that interpolates previous function values (see Ref. [5]), we conclude that for a parallel
computer, our Newton iteration is always faster than the successive minimization of interpolating
polynomials.

Another advantage in our algorithm is related to numerical stability. In Brent's algorithm, an
error tolerance "eps" must be provided. If too small a value for eps is specified, then the following
phenomenon is observed in numerical experiments: initially, one side of the bracketing interval
stays fixed while the other side approaches and jumps over the true minimizer. The algorithm then
senses that something is wrong and the golden section steps are performed until the "bracketing
interval" is small enough. In contrast, our Algorithm 2 has the property that both sides of the
bracketing interval typically approach the minimizer simultaneously. If an unrealistic error
tolerance is specified, the algorithm performs some golden section steps, however, these steps are

23

24 N. GHOSH and W. W. HAGER

applied to a relatively small interval so convergence is rapid. Another numerical advantage related
to the accuracy attainable in the Newton iteration is discussed in Section 5. It is important to
observe that the point generated by Brent's scheme and our scheme may be different. Our scheme
is organized so that it will converge to a local minimizer on the interior of the bracketing interval
while Brent's scheme can converge to a local minimizer at an endpoint of the bracketing interval.
This distinction is important in the following situation: suppose we wish to compute a minimizer
of a univariate function f and it is known that a unique local minimizer lies between a and b.
Although f has a unique local minimizer in the interior of the interval [a, b], the restriction o f f
to [a, b] may have a local minimizer at an endpoint of the interval. Since our algorithm ignores to
local minimizer at an endpoint of the interval, the iterations converge to the desired minimizer in
the interior of [a, b]. Finally, we note that it has not been shown rigorously that the convergence
order of Brent's scheme is the same as the convergence order of the under-
lying quadratic interpolation iteration (see Ref. [6]). For the scheme developed in this paper,
we show that the convergence order is the same as the convergence order of the underlying
Newton iteration.

In the companion paper [7], a univariate minimization scheme utilizing derivative evaluations
and Hermite cubic interpolation is developed. This derivative-based scheme is more numerically
stable and obtains an estimate for the minimizer with relative accuracy on the order of the machine
epsilon while the scheme developed in this paper obtains relative accuracy on the order of the
square root of the machine epsiion. On the other hand, when f can be evaluated faster than its
derivative, the derivative-free scheme in this paper is more efficient. For other references to
univariate minimization schemes, see Refs [3, 7].

2. THE B R A C K E T I N G S T R A T E G Y AND TH E F U N D A M E N T A L I T E R A T I O N

Suppose that f is a real valued function of a real variable. Our univariate minimization scheme
assumes that we are given three points a, b and c with b between a and c and with the following
property:

f(a) >>.f(b) <<.f(c), if a # b ~ c,

f(a)>>.f(b) and f '(b)(b-a)>lO, if a # b = c ,

f(c)>.f(b) and f'(b)(b-c)>>.O, if c ~ b = a ,

f ' (b) = 0 and f"(b)~O, if a=b=c .

Any triple (a, b, c) with b between a and c and with this property will be called a bracketing triple.
One strategy for obtaining a bracketing triple is described in Section 2 of Ref. [7]. Given a
bracketing triple (a, b, c) and given a point 8 on the open interval (a, c) with 8 # b, a new
bracketing triple can be constructed using the standard rules (see Ref. [3]):

(Rt) If 8 lies between a and b and f (8) > f (b) , then a "~w= 8, b"¢~= b and cn~W= c.
(R2) If 8 lies between a and b and f(8)<<.f(b), then a n'~= a, b new= 8 and c n~w= b.
(R3) If 8 lies between b and c and f (8) >~f(b), then a n°w = a, b n~w = b and c "w = 8.
(R4) If 8 lies between b and c and f(8) < f (b) , then a new = b, b n~w = 8 and c n~w = c.

In a similar manner, if fl = b, then after inspecting the sign of f '(b), we can construct a new
bracketing triple (a, b, c) new where the interval [a, c] contains [a, c] new. (Throughout this paper, [a, c]
denotes an interval with endpoints a and c. We do not mean to imply that a is less than or equal
to c.) When implementing the scheme developed in this paper, we keep a, b, c and 8 distinct so
that a derivative is not needed to update the bracketing triple (see the comments that follow the
statement of Algorithm 1 in Section 3). On the other hand, in the theoretical analysis of our scheme,
the discussion is simplified if we allow for bracketing triples where two or three points contained
in the triple coincide. Observe that if a nested sequence of bracketing triples approaches a limit,
then by the mean value theorem, the iteration limit satisfies the second order necessary conditions.
More precisely, we have the following.

A derivative-free bracketing scheme for univariate minimization 25

L e m m a 1

Consider a sequence of bracketing triples (ak, bk, Ck), where (ak + 1, bk + I, Ck + ~) is constructed from
(ak, bk, ck) using rules (RI)-(R4). I f l a k - Ckl tends to zero and

= (3 [ak, cd,
k>~0

then f ' (~) = 0 and f " (~) > / 0 provided f is twice continuously differentiable near ct.
In this paper, the bracketing strategy outlined above is combined with a Newton iteration to

obtain a globally quadratically convergent algorithm. To formulate the Newton iteration, we start
with three distinct points x, y and z and we introduce a fourth point w defined by w = x + agh,
where a is + 1 or - 1. Let C be the cubic that interpolates f a t w, x, y and z. Omitting the algebra,
the derivative of C evaluated at x (denoted N) can be expressed:

(g -- h) f (w) - h~g3f (z) + g~h y (y) + g~ho(g - h) (go + h~ - 3) f (x)
C' (x) = N (x , y, z, w) =

aghg~ho(g - h)

where h~ = 1 + crh and go = 1 + ag. Also, the second derivative of C evaluated at x (denoted D) is
given by

C " (x) = D (x , y , z, w)

(g - h) (g + h) f (w) + a g 3 (l - h Z) f (z) + a h 3 (g 2 - 1) f (y) - g ~ h ~ (g - h) (g + h - a g h) f (x)

G 2 ~ g~ho(gh) (g - h)

In deriving N and D, we restricted x, y, z and w so that no two of these points are the same. With
this restriction, the denominator of N and the denominator of D do not vanish. On the other hand,
when f has four continuous derivatives, it can be shown that both N and D are well defined even
when the denominators vanish since well defined limits exist.

The fundamental iteration that we study in this paper is a variant of the Newton iteration

xk+, = xk - - f ' (x k) / f " (X k) .

To state our derivative-free implementation of Newton's method, we utilize a map T defined in
the following way. Loosely speaking, given a collection of points where f is defined, T extracts
out those three points where the value o f f is the smallest. More precisely, given a collection of
points z~ Zq on wh ich f i s defined, let l, m, and n be the three smallest indices with the property
that

f (z t) <~f(zm) <~f(z,) <~ min{f(zi) : i = 1 q, i ~ l, m, n},

where 1 < m if f (z l) = f (Z m) and m < n if f (z , ,) = f (z ,) . Then T(zt Zq) denotes the triple
(z~, z,,, z ,) . With this notation, iteration k in our derivative-free scheme is essentially the following:

w~ = xk + (xk - y~) (xk - zk),

vk = xk -- N (x~., Yk, zk, wk)/D (xk, y , , zk, wk),

(x~ + I, Yk + I, Zk + I) = T(xk , Yk, Zk, Vk, Wk).

Our rule for deciding which sign to use in the evaluation of wk appears in step 2 of Algorithm 1
(see Section 3). To help compare this derivative-free approximation of Newton's method, we prove

L e m m a 2

Given three distinct points x, y and z, define g = x - y, h = x - z and w = x + gh. I f f has
two Lipschitz continuous derivatives on an interval I which contains • in its interior, then

iim N (x , y , z , w) = f ' (~) and lim D (x , y , z , w) = f " (e) . (1)

26 N. GHtBH and W. W. HAGI~

Moreover, if f is four times continuously differentiable on I and I contains x, y, z and w, then
there exists a point ~ • I such that

N (x, y, z, w) = f ' (x) +. (gh?2 f(4)(¢), (2)
l

.,t 4

and if both I g I ~< 1 and I h [~< 1, then there exists a point r / • I such that

D (x, y, z, w) = f "(x) + ~-~ f(4) 0/), (3)

where 101 ~< 1.
Proof Again, let C be the cubic which interpolates f a t the points, x, y, z and w. Since C is equal

to f at four points and both C and f are continuously differentiable, Rolle's theorem implies that
C' = f ' at three points. Similarly, since both C and f are twice continuously differentiable, Rolle's
theorem implies that C' = f ' at three points. Similarly, since both C and f are twice continuously
differentiable, Rolle's theorem implies that C" = f " at two points. C" is a linear function that agrees
with the Lipschitz continuous function f " at two points. Therefore, the third derivative of C is
bounded by the Lipschitz constant for f " . This bound for the third derivative of C coupled with
the fact that C' = f ' and C" = f " somewhere in the convex hull of w, x, y and z yields equations (1).

Now let us consider equation (2). It is well known (see Ref. [8, p. 248]) that the error in cubic
interpolation satisfies the relation

f (t) - C(t) = (t - w) (t - x) (t - y) (t - z) f [w , x, y, z, t], (4)

wheref[w, x , y , z, t] is the fourth order divided difference of f based on the points w, x, y, z and t.
This fourth order divided difference can be expressed (see [Ref. 8, p. 249]):

f(')(~)
f [w , x, y, z, tl =" (5)

24 '

where ~ lies in the convex hull of the points, w, x, y, z, t. Differentiating equation (4) with respect
to t, evaluating the derivative at t = x, and making the substitution (5), we obtain equation (2).
It is important to note that just four derivatives are needed for f even though differentiation of
equation (5) would appear to require the fifth derivative o f f In fact, as we now show, just one
continuous derivative is needed to obtain the identity

d
l i m (/ - x) ~ t f [w , x, y, z, t] = O.

Since a divided difference is a symmetric function of its arguments, we have:

d d(f [t ,w ,y , z] -__~fx[W,y ,z ,x])
(t - x) -~tf[w, x, y, z, t] = (t - x) -dt t

d
(t - x) -~tf[w, y, z, t] + f [w, y, z, x] - f [w, y, z, t]

t - - x

= -~ttf[w, y, z, t] -- -~ssf[W, y, z, sl , (6)
s = ~(t)

where ~ (t) lies between t and x. Writing f [w, y, z, t] in terms of the value o f f at w, y, z and t, we
see that the derivative on the right-hand side of equations (6) can be computed when f is
differentiable. Moreover, when this derivative is continuous, the right-hand side of equations (6)
approaches zero as t approaches x.

Finally, let us consider equation (3). Without loss of generality, we can assume that
Ih I >1 Igl >1 Igh I. Since the second derivative of e(t) = f (t) - C(t) vanishes for at least two points,
say t = s~ and t = s 2, we have the equality (see Ref. [8, p. 249]):

e" (x) = (x -- sl) (x -- s2) f (' ~ rl)
g

A derivative-free bracketing scheme for univariate minimization 27

where r/lies in the convex hull ofs~, s2 and x. The relation [hl ~ [gl ~ Ighl implies that s~ can be
chosen in the convex hull of w, x, and y and sz can be chosen in the convex hull of w, x, y, and
z. Since Ix - s~l ~< [gl and Ix - s21 ~< [hi, the proof is complete. []

3. I M P L E M E N T A T I O N

Our proposed algorithm to compute a local minimum o f f has five parts:

Algori thm 1

I. Initialization.
2. Newton step.
3. Test convergence speed.
4. Test cost convexity.
5. Golden section step.

We assume that a bracketing triple (a, b, c) is given. At the start of the iteractions, step 1 is executed.
Then in each successive iteration, we perform a Newton step, we test the convergence speed, and
we test the convexity of the cost function. If either the convergence is slow or the cost lacks
convexity, then a golden section step is performed. Conversely, if the convergence seems fast and
the cost appears convex, then a Newton step is performed. The map Tb utilized in step 2 is a slightly
modified form of the map Tdefined in Section 2. In particular, given a collection of points zl Zq
on whichf i s defined with z t = b for some l, let m and n be the two smallest indices with the property
that m ~ ! ¢: n and

f (Z m) < ~ f (z ,) < ~ m i n { f (z i) : i = 1 q, i v ~ l , m , n } ,

where m < n i f f (z ,) . Then Tb(Z t Zq) denotes the triple (b, zm, z,). In detail, the five steps of
Algorithm 1 are the following,

1. Initialization

Set (x , y , z) = T(b, a, c), define l = 21a - c I, and proceed to step 2.

2. Newton step

Set w = x + (x - y) (x - z) , where the sign is chosen which yields the value for w
closer to the midpoint of the interval [a, c]. If D (x, y, z, w) = 0, then branch to step
5. Otherwise, set v = x - N (x , y , z , w) / D (x , y , z, w). If Iv - x l > I or v is outside the
open interval (a, c) or w is both outside (a, c) and f (w) < f (v) , then branch to step
5. Otherwise, update the bracketing triple (a, b, c) using rules (R~)-(R4) and the
following choice for fl: If w is outside the interval (a, c), then fl = v and if w is inside
the interval (a, c), then p = v or fl = w, whichever yields the smaller value for f .
Letting o denote either v or w, whichever yields the larger value for f , update the
bracketing triple a second time using fl = o if o lies inside the new interval (a, c).
Finally, perform the update (x, y, z) "ew = Tb(x, y, z, v, w) and proceed to step 3.

3. Test convergence speed

If I Y - x I + I z - x I > / , then branch to step 5. Otherwise, replace the value of /
with I/2 and proceed to step 4.

4. Test cost convexi ty

If the second order divided difference f [x , y, z] is negative, then proceed to step
5. Otherwise, branch to step 2.

5. Golden section step

If x = y, N (x , y, z, w) = 0, and f " (x) ~>0_~ then set a "ew = b "eW = c "e~ = x and stop.
Otherwise, set x = b + (a - b) (3 - x / 5) / 2 if l a - b [/ > l b - c [and set
x = b + (c - b) (3 - x/~)/2 if la - b l < Ib - c l . Use rules (RI)--(R4) with fl = x to
update the bracketing triple (a, b, c), then branch to step 1.

28 N. GHOSH and W. W. HAGER

The map Tb is introduced to help simplify the analysis of Algorithm 1. The analysis is much easier
if it is arranged so that in each iteration x = b, the middle point in the bracketing triple. Since the
point b generated in step 2 is always one of the points x, y, z, v, or w where the value o f f is smallest,
Tb(x, y, z, v, w) is a triple consisting of three arguments where the value of f is smallest. However,
if the function value associated with two or more arguments is identically equal to the minimum
o f f (x) , f (y) f (w), then T b rearranges the three extracted arguments so that b comes first.
When implementing Algorithm 1 on a computer, we must guard against the following source for
numerical instability: As two arguments of N or D in step 2 approach each other, the relative error
in the computed value of N and D increases. On the other hand, small perturbations in x, y, z or
w will not effect the convergence speed of the algorithm. Often, when implementing this algorithm,
a desired error tolerance t is specified and whenever two arguments of N or D are closer together
than t, then their separation is increased to t. In particular, if I w - x I ~< 2t in step 2, then we set
w = x _ t where the sign is chosen which yields the value for w closer to the midpoint of the interval
[a, c]. Likewise, if Iv - x [~< t, then we set v = x + t where the sign is chosen which yields the value
for v closer to the midpoint of the interval [a, c]. Finally, if I v - w I ~< t, then we set v = w + t, where
the sign is chosen so that x and v are on opposite sides of w. Typically, the iterations are terminated
when l a - c I ~< 2t. We emphasize that the modifications discussed above are only needed to ensure
numerical stability. Theoretically, the Newton step is well defined even if two arguments of N and
D are equal (since a limit exists as these arguments approach each other).

When implementing Algorithm 1 on a parallel computer, we simultaneously evaluate f at the
point v of the current iteration and at the point w of the next iteration. Although the value of w
in the next iteration depends on the relationship between f(v), f (x) , f (y) and f (z) , there are at
most four different ws that need to be considered. Thus one strategy is to simultaneously evaluate
f a t v and at the four potential w s and then discard the irrelevant function values. Another strategy,
which involves no discarded function values, is based on the following observations: the sign
convention used in the choice of w is designed so that w lies inside the bracketing interval when
the iterations are near a local minimizer (see Lemma 5). On the other hand, the convergence rate
is not effected if we always use one sign, say the plus sign, when computing w. Since the inequality
f (v) < f (x) typically holds, the value for w in the next iteration is v + (v - x) (v - y) in a large
proport ion of the cases. Therefore, we can evaluate f at both v and at the anticipated w for the
next iteration. I f it turns out that the anticipated w is not the actual w, then we must perform
another evaluation, however, this extra evaluation is carried out infrequently.

In Algorithm 1, the point w generated in step 2 is a somewhat arbitrary point near x, the best
approximation to a local minimizer. It is conceivable that for many iterations, one side of the
bracketing triple stays fixed while the other side approaches the local minimizer. But if it can be
arranged so that w is close to x while w and x are on opposite sides of the local minimizer, then
both sides of the bracketing triple approach the local minimizer as the iterations progress. One
strategy to enhance the likelihood that w and x lie on opposite sides of the local minimizer is the
following: let q denote the minimizer of the quadratic that interpolates f at x, y, z and define
w = 2q - x. Algorithm 1 with this new formula for w will be called Algorithm 2. The fact that w
and x tend to lie on opposite sides of a local minimizer is connected with subtle relations between
error constants associated with the quadratic iteration and with the Newton iteration. A numerical
illustration appears in Section 5. To test this property for a wide range of problems, we performed
the following experiment: functions of the form f (x) = ax2+ bx3+ cx 4 were considered where
0.1~<a~<100, - 1 0 ~ < b ~ < 1 0 and -10~<c~<10 . Starting from z 0 = - 0 . 2 , y0=0.2 , and
xo = Yo-.f '(Yo)/f"(Yo), up to four iterations of the following algorithm were performed:

Wk = 2qk -- Xk,

Uk --'~ Xk - - N (Xk, Yk, Zk, Wk)/ D (xk, Yk, Xk' Wk) '

(Xk+ t, Y~+ I, Zk+ I) = T(Xk, Yk, Zk, Vk, Wk)"

Here qk denotes the minimizer of the quadratic that interpolates f at Xk, Yk, and Zk. Since f has
a local minimum at x = 0, the iterations were terminated whenever t xkl ~< 10-~6. We just considered
problems for w h i c h f " did not vanish on the interval [- 0 . 4 , +0.4]. In over 94% of the iterations,
Xk and wk were on opposite sides of the local minimizer x = 0.

A derivative-free bracketing scheme for univariate minimization 29

For reference, we state the formulas for the minimizer of an interpolating quadratic and for both
the first and the second derivative of an interpolating cubic. I f f denotesf(x~), then the minimizer
of the quadratic that interpolates f at x = x0, x = x~, and x = x2 is

1 ((± - + (x , - -

q (Xo, x, , X2)'= Xo + ~ \ (x2 -- x o) (fl --fo) + (Xo -- x,)(f2 - - f o)]"

Defining d~ = x~ - Xo, bij = d~d/(d~ - d/), and aij = d~d/b~j, the derivative at x = Xo of the cubic that
interpolates f at x = Xo, x = x~, x = x2, and x = x3 is

a23(fl --fo) + a3l(f2 --fo) + al2(f3 --fo)
N(xo, x l , x2, x3)-'= (7)

dtd2d3(b23 + b31 + b12)

Defining ri/= d~d~(d~ - d~) the second derivative at x = xo of the cubic that interpolates f a t x = Xo,
x = x l , x =x2 and x =x3 is

2[r23(fl --f0) Jr" r31(f 2 --f0) + r21(f3 --f0)]
D (x0, xl, x2, x3):= -- (8)

dld2d3(b:3 + bal + bl2)

Note that the formulas for N and D given in Section 2 are simplified versions of equations (7) and
(8) corresponding to a special choice for x3. With the notation given above, the Newton step of
Algorithm 2 can be stated.

2. Newton step o f Algorithm 2

If (z - x) f (y) + (x - y) f (z) + (y - z) f (x) = 0, then branch to step 5. Otherwise,
set w = 2q(x, y, z) - x. If D (x , y , z, w) = 0, then branch to step 5. Otherwise, set
v = x - N (x , y, z, w) /D (x, y, z, w). If Iv - x l > l or I w - x I > l or v is outside the
open interval (a, c) or w is both outside (a, c) an d f (w) < f (v) , then branch to step 5.
Otherwise, update the bracketing triple (a , b , c) using rules (RI)-(R4) and the
following choice for fl: If w is outside the interval (a, c), then fl = v. Otherwise, fl = v
or fl = w, whichever yields the smaller value for f . Letting o denote either v or w,
whichever yields the larger value for f , update the bracketing triple a second time
using fl = o if o lies inside the new interval (a, c). Finally, perform the update
(x , y , z) new = Tb(x,y , z, v, w) and proceed to step 3.

Note that Algorithm 2, unlike Algorithm 1, is not well suited for a parallel computer since the
evaluation of f a t v and w cannot be performed simultaneously. For a parallel computer, it is better
to use Algorithm 1 to generate the iterations. However, at the same time that we evaluate f a t the
v and w of Algorithm 1, we can also evaluate f at the w of Algorithm 2. By incorporating the w
of Algorithm 2 into the update of the bracketing triple, it is possible to push both sides of the
bracketing interval toward the local minimizer in each iteration. On a parallel computer, this hybrid
algorithm incorporates good features of both Algorithm 1 and Algorithm 2. As with Algorithm 1,
numerical errors are relatively large when two arguments of N or D are relatively close together.
Again, these arguments can be perturbed slightly to ensure numerical stability. On the other hand,
it is much less likely that Algorithm 2 will generate two points close together than Algorithm 1.
Near a local minimum, x and w tend to lie on opposite sides of the minimizer and the error in
x and w is on the order of the square of the error in either y or z.

4. C O N V E R G E N C E

In this section both the local and the global convergence of Algorithm l are analyzed. Each result
in this section also applies to Algorithm 2 and the analysis is essentially the same since the distance
between w and x in Algorithm l is comparable to the distance between w and x in Algorithm 2.
In the analysis that follows, a k subscript is attached to a variable to denote its value in iteration
k just after v is evaluated in step 2. In stating our results, it is implicitly assumed t h a t f i s sufficiently
smooth that the operations performed in each iteration are defined. We begin by considering the
local convergence of Algorithm 1.

CAMWA 20/2---C

30 N. GHOBH and W. W. HAO~R

Lemma 3

In each iteration of Algorithm 1, [ak+~,c~+~] c [ak, ck], Moreover, if an infinite number of
golden section steps are performed, then l a k - ck[approaches zero as k increases.

Proof. The relation [ak +~, ck +~] c [a~, c~] follows from the update rules (RI)--(R4). Suppose that
a golden section step is performed at iteration k. I f /~ + t is an endpoint of the updated bracketing
interval, then we have

where mk denotes the
that

lak+t - ck+ll + - - ~ m k = lak-- ckl,

maximum of lak-- bkl and Ick- bd. Since mk >1 lak-- Ckl/2, it follows

l ak + i - ck + 11 ~ I ak -- c~l. (9)

This shows that the width of the bracketing interval contracts by at least the factor 0.7. Similarly,
if /~k +~= bk+l and /~k+l either becomes an endpoint or lies outside of a bracketing interval
[aj+ ~, cj+ i] at iteration j > k, then we have

laj+t - cj+ll ~ < ~ 4 ~ 5 [ak - ckl.

Therefore, if the/~k + ~ generated in a golden section step eventually becomes an endpoint or falls
outside of a bracketing interval, then I ak - ckl tends to zero as k increases provided an infinite
number of golden section steps are performed. Conversely, suppose that an infinite number of
golden section steps are performed and there exists an integer K such that bk =/~x for every k I> K.
If a golden section step is performed at iteration k where k > K, then the equality bk + ~ =/~x implies
that /~k+~ is an endpoint of [ak+l, c~+~]. By condition (9) we conclude that the width of the
bracketing interval contracts by at least the factor 0.7. Again, l ak - ckl tends to zero as k increases
since the width of the bracketing interval contracts by at least the factor 0.7 whenever the iteration
number exceeds K and a golden section step is performed. []

By the structure of step 2, Xk = bk is contained in the bracketing interval (ak, Ck) for every k.
Lemma 3 tells us that the width of the bracketing interval shrinks to zero if an infinite number
of golden section steps are performed. Consequently, when an infinite number of golden section
steps are performed, the x~ approach a limit ~. By Lemma 1, f ' (~) = 0 and f"(~)>1 0 provided f
is twice continuously differentiable near ~. Conversely, suppose that a finite number of golden
section steps are performed. Since the lk approach zero at least as fast as a constant time 2 -k and
since xk is an element of the set {Xk+l,Yk+l,Zk+~} for every k, it follows from step 3 that xk,
Yk, and Zk all approach a limit ~. Since a finite number of golden section steps are performed, the
convexity test is passed for k sufficiently large. Since the second order divided difference f[x,y,z]
is equal to the second derivative of f somewhere in the convex hull of x, y, and z, it follows
that f"(~)>~O. Moreover, the inequality Ivk--xkl<<.lk contained in step 2 implies that
N(xk,yk,zk, Wk)/D(x,,yk,Zk, Wk) approaches zero as k increases. Under the hypotheses of
Lemma 2, f ' (~) = 0. These observations are summarized in the following.

Theorem I
The xk generated by Algorithm 1 approach a limit ~ contained in the initial bracketing interval

[a0, c0]. I f f has two Lipsehitz continuous derivatives in a neighborhood of ~, then f ' (~) = 0 and
f" (~) /> 0.

Now let us suppose that the xk generated by Algorithm 1 approach a limit a for whichf ' (a) = 0
and f " (a) > 0 and let us analyze the convergence rate. We will show that if f is four times
continuously differentiable in a neighborhood of ~, then the golden section step is not invoked for
k sufficiently large and the root convergence order of the iterations is at least two. We begin with
two lemmas which will show that the convergence is "fast" and both Vk and Wk are inside the interval
(ak, Ck) for k sufficiently large.

A derivative-free bracketing scheme for univariate minimization 31

Lemma 4

I f f is four times continuously differentiable in a neighborhood of a local minimizer ~¢ o f f and
f " (~) is positive, then there exists a neighborhood N of • and there exists a constant p such that

(10) Iv -~1 ~p(Ix -~1 + Ix - y l Ix - z l) +,

for every x, y and z in N where v is generated by step 2 of Algorithm 1.
Proof Expanding f ' (m) in a Taylor series about x, we have

2

0 = f ' (0 0 = f ' (x) -- e f" (x) + 2 f°)(~) ,

where e = x - a and ¢ lies between ~ and x. Solving for f ' (x) yields

2

f ' (x) = e f" (x) - 2f(3)(¢) . (11)

Subtracting ~ from each side of the equation v = x - N (x, y, z, w)/D (x, y, z, w) and utilizing both
Lemma 2 and equation (11) gives us

e f" (x) + 0 (e ~) + 0 (p2)
v - ~ = e

f " (x) + O (I P l) '

where p = (x - y) (x - z) . Since f " (~) > 0 , the conclusion of the lemma follows almost
directly. []

Lemma 5

If the xk generated by Algorithm 1 converge to a local minimizer ~ and f " (~) is positive, then
there exists a neighborhood N of 0(with the property that whenever x , , Yk and Zk are contained
in N and ak ~ Ck, then either the vk and the Wk generated by step 2 are contained in the open interval
(a~,c,) or ak+, = b , + l =c,+l =o~.

Proof Let us consider a neighborhood of ~ where f " is positive. Since f ' is monotone in this
neighborhood, f (y) >. f (x) when y >I x /> ~. Similarly, f (y) >. f (x) when y ~< x ~< ~. It is now
demonstrated that in each iteration, we either have ak = Yk andf(z~) <<.f(ck) or we have ck = Yk and
f (zk) <<.f(ak). We observed earlier that bk = xk for every k. By the structure of step 2, Yk and zk
cannot lie on the open interval (ak, ck). If neither Yk nor zk is an endpoint of the interval [a,, ck],
then the monotonicity o f f ' implies that b o t h f (y k) andf(zk) are larger than the minimum off (ak)
and f(ck). But this violates the requirement that xk, Yk, and zk are the previously computed points
with smallest value. Similarly, if ak = Yk and f (zk)> f (ck) , then we again violate the requirement
that xk, Yk, and zk are the previously computed points with the smallest value.

Let us now assume that ak = Yk andf(zk) <~f(ck) and let us consider a neighborhood of ~ where
IXk--Zkl<~l/2. Since xk=bk for every k, we have Ixk--YkllXk--zkl~<lXk--Yk[/2=
[bk - - ak [/2 ~ [C k - - ak[/2. Since [xk - wk I = I xk -- y, [[xk -- zkl ~< [ck -- ak[/2, it follows from step 2
that wk lies between ak and ck when the iterations lie in a neighborhood of o~. Now consider vk.
If a finite number of golden section steps are performed, then vk lies on the open interval (ak, ck)
for k sufficiently large and we are done. If an infinite number of golden section steps are performed,
then there exists an integer K such that for k /> K, xk, Yk, zk, ak and ck are all contained in a
neighborhood of ~ where both condition (10) and the hypotheses of Ref. [7, Lemma 4] are satisfied.
Henceforth, it is assumed that k i> K. We will show that in a neighborhood of 0~, [vk - ~ [~< the
minimum of lak--~[and I ck--~[so that v, must lie between ak and c,. The inequality
f (ak) >--f(b,) =f(Xk) and Ref. [7, Lemma 4] yield the estimate Ixk - ~1 ~< 21ak - ~[. Lemma 4 tells
us that [v, - ~ I ~< P (ek + Pk)2 where ek = [Xk -- ~ I and Pk = I xk -- Yk [I xk -- zk [. If ek < Pk, it follows
that [vk-~J<~4pp 2. The inequality f(xk)<<.f(y~) and Ref. [7, Lemma 4] imply that
Ixk--y~[~< e, + lYk -- ~l ~ 31a~-- ~l. Likewise, the inequalities f (xk) <~f(c~) and f (z~) <~f(c~)
imply that [x~-z,l<<.lx~-~[+[z~-~l<~41c~-~l. Hence, we have Iv~-~l<<.4pp~<<.
576p lak - ~ 12[c~ - • [2 ~ 1/2 times the minimum of la, - ~1 and Ic, - ~1 in neighborhood of ~.
Conversely, if ek >~Pk, then it follows from Lemma 4 that I v ~ - ~[~< 4pp~. Consequently, in a
neighborhood of ~, [vk--~l<<.e,/4. By Ref. [7, Lemma 4], we have I~-~l>>.e~/2 and

32 N. GHOSH and W. W. HAGER

tc~-~l >~ekl2. If neither a k nor Ck is equal to ~, then the inequality tvk--~l<<.ekl4 implies
that Vk must lie on the open interval (a,,Ck). If C~=~, then a , = b k = C k = ~ since

f (c ,)>>-f(zk)>~f(yk)=f(a~)>>-f(b ,) . But this is impossible since ak@Ck. If ak=~ , then
x~ = y~ = v~ = ~ and in the first part of the golden section step, we set ak + ~ = bk + ~ = C~ + ~ = ~. This
completes the proof. []

Theorem 2

If the xk generated by Algorithm 1 convergence to a local minimizer ~ a n d f " (~) is positive, then
there exist constants q and r, independent of k, such that [xk - ~] ~< q/r 2k for every k where r > 1.

Proof. Sincef"(~) > 0, the convexity test is always passed in a neighborhood of ~. By Lemma 5,
vk and wk are contained on the interval (ak, ok) when the iterations are sufficiently close to ~. Thus
for k sufficiently large, a golden section step is only performed when the convergence is "slow".
We now use Lemma 4 to show that the convergence is quadratic. Throughout the proof, C denotes
a generic constant which is independent of k, but which may have different values in different
equations. Since the qualifier "in a neighborhood of ~" applies to almost every inequality in this
proof, we sometimes omit the qualifier to minimize repetition. By Lemma 4, Iv k - or] ~ C (ek + pk) 2
were Pk = I xk -- Yk[I x~ -- zk I. Let uk denote I Zk -- • I. Applying the triangle inequality, we have

Pk <~ (ek + [Yk -- ~ [)(ek + Uk). (12)

By Ref. [7, Lemma 4], e~ ~< 2Uk and LYk -- ~ I ~< 2Uk in a neighborhood of a. Hence, condition (12)
gives us the relation Pk <<-12U~ and by Lemma 4, we have LVk- ~l <<. C (ek+ u~) 2. Referring to
Algorithm 1, observe that the convergence speed test in step 3 is always passed the first iteration
after a golden section step since both vk and Wk lie on the interval [ak, Ck]. Let us suppose that
(Xk + I, Yk + I, 2k + I) = Tb (Xk, y~, Zk, Vk, Wk). Since f (x k + I) ~ f (V k) , Ref. [7, Lemma 4] also tells us that
ek + j <~ 21Vk -- ~ I. Therefore, we have the relation

ek + , ~ C(ek + u~) 2. (13)

Since f(zk+~)<~ the largest of f (xk) , f (vk) , and f (wk) , Ref. [7, Lemma 4] implies that
uk + ~ ~< 2ek + 21 vk - ~ I + 21 wk - ~ I. The inequality I wk - ~ I ~< I x~ - ~ I + I xk - wkl = ek + Pk
coupled with the previous estimates for Pk and I r k - ~1 tell us that

uk+l <~ C(ek + u~). (14)

Adding the square of condition (14) to condition (13) gives

ek+ j + U~+ i <~ C(ek + U~) 2. (15)

Thus the quantity ek + u~ converges to zero quadratically. In particular, the error ek is bound by
an expression of the form q/r 2k.

To complete the proof, we show that in a neighborhood of ~, the convergence is fast enough
that a golden section step is not performed due to slow convergence. There are two places where
the algorithm can jump to a golden section step due to slow convergence: steps 2 and 3. In step
3 we monitor the quantity I xk - Ykl + I xk - zk I. By the triangle inequality, I xk - Yk I + I Xk -- zkl <~
2ek + uk + lYk-- ~1. Since f (y ~) <<.f(zk), Ref. [7, Lemma 4] implies that lYk- ~1 ~< 2uk and
I x k - - Y k I + I x k - - Z ~ I <~2ek+ 3Uk. From inequality (15), we conclude that the quantity
I x k - ykl + [x ~ - z~[converges to zero much faster than a constant times 2 -~. More precisely, if an
initialization step is performed at iteration j, then for a neighborhood of ~, we have
[x~ - Y ~ I + [xk - z~l <~ lj/2 ~- j - I for each k > j . Furthermore, the quantity 2k(Ix~ --Y~I + IX~ -- Z~[)
tends to zero as k increases. In step 2 the difference }v~ - x~l is monitored. During the proof of
Lemma 4, we obtained the estimate

= e ~ f " (x D + O (~) . + O (p ~)
Irk - x~l f " (x D + O (p D "

Again, the bounds established for e~ and pk tell us that I v~ - x~l converges to zero much faster than
a constant times 2 -~. In summary, the iterations will not jump to a golden section step due to slow
convergence and the proof is complete. []

A derivative-free bracketing scheme for univariate minimization

Table I. Minimizing function (16) using Algorithm I

k xk w j, ak ck

0 I. 100000000~ I. 10700000000 0.80000000000 1.20000000000
1 1.01513728324 1.01048148404 0.80000000000 1.07000000000
2 1.00029516203 1.00014397540 0.80000000000 1.01048148404
3 1.00000009863 1.00000005618 0.80000000000 1.00014397540
4 1.00000000000 1.00000000000 0.80000000000 1.00000005618
5 1.00000000000 1.00000000000 0.80000000000 1.000000000~

Table 2. Minimizing function (16) using Algorithm 2

k x k w k a~ c k

0 1.10000000000 0.86521739130 0,80000000000 1.20000000000
1 1.01026222078 0.97624406339 0.86521739130 I. 10000000000
2 1.00005291611 0.99970269959 0.97624406339 1.01026222078
3 0.99999997426 1.00000001002 0.99970269959 1.0000529161 I
4 1.00000000000 1.00000000000 0.99999997426 1.00000001002
5 1.00000000000 1,00000000000 1.00000000000 1.00000000000

33

5. C O N C L U D I N G REMARKS

One reason that our Newton iteration is preferable to an iteration that interpolates f at the
previous xk is that the Newton iteration often yields a more accurate approximation to the
minimizer 0t. Recall Ref. [9] that the machine epsilon for a computer is the smallest number E with
the property that 1 + E > 1 when the sum 1 + E is evaluated using machine arithmetic. If ~t is a local
minimizer for f and f " (c t)> 0, then using machine arithmetic, we typically find that f (x) = f (c t)
when Ix - ct I is on the order of x/~. Therefore, ct can only be determined numerically with accuracy
on the order of v/~.

Let xk +1 denote the last iteration computed by some algorithm and suppose that the error in
Xk+, is O (E ,/2). If the convergence order is p, then Xk typically has error O(E ,/2p) and f(Xk) differs
from the minimum value f(~t) by O (E ~/P)--the error in f(Xk) is on the order of the square of the
error in xk since f ' (~ t)= 0. For simplicity, let us suppose that f (0 t)= 0 so t h a t f (x k) = O(E'/P).
Assuming roundoff errors in the evaluation o f f are on the order of E, the computed value o f f at
Xk is on the order of E and the relative error in the computed value of f a t Xk is O(E'-l/p). Since
xk +l is evaluated using the computed value of f a t xk, the computed xk +~ is generally less accurate
than the computed f(xk). In others words, the relative error in Xk+, is at least O (E'-i/p). I f p < 2,
then the iteration never attains the "optimal" O(E ~/2) accuracy. The optimal accuracy is only
achieved when p t> 2. (Recall [10] that a convergence order >/2 can never be achieved using function
values at the previous xk).

To compare the iterations generated by the Newton step of Algorithm 1 to the corresponding
Newton step of Algorithm 2, let us numerically evaluate the minimizer x = 1 of the function

f (x) = x 4 - 3x 3 + 4x 2 - 3x + 1. (16)

Table 1 presents the iterations generated by Algorithm 1 while Table 2 presents the iterations
generated by Algorithm 2. Observe that Xk and Wk in Table 2 are on opposite sides of the local
minimizer ct = 1 and the bracketing interval shrinks to zero while just one side of the bracketing
interval approaches the minimizer in Table 1.

Acknowledgement--The second author (W.W.H.) was supported by National Science Foundat ion Grant DMS-8520926.

REFERENCES

1. S. M. Johnson, Best exploration for max i mum is Fibonaccian. Report RM-1590, R A N D Corporation, Santa Monica,
Calif. (1955).

2. J. Kiefer, Sequential minimax search for a maximum. Proc. Am. math. Soc. 4, 503-506 (1953).
3. D. G. Luenberger, Introduction to Linear and Nonlinear Programming. Addison-Wesley, Reading, Mass. 0984).
4. R. P. Brent, Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood Cliffs, N.J. (1973).
5. A. Tamir, Rates o f convergence o f a one-dimensional search based on interpolating polynomials. J. Optimiz. Theory

Applic. 27, 187-203 (1979).
6. S. M. Robinson, Quadratic interpolation is risky. SIAM Jl numer. Analysis 16, 377-379 (1979).

34 N. GHOSH and W. W. HAGER

7. W. W. Hager, A derivative-based bracketing scheme for univariate minimization and the conjugate gradient method.
Computers Math. Applic. 18, 779-795 (1989).

8. E. Isaacson and H. B. Keller, Analysis of Numerical Methods. Wiley, New York (1966).
9. (3. E. Forsythe, M. A. Malcom and C. B. Moler, Computer Method~ for Mathematical Computations. Prentice-Hall,

Englewood Cliffs, N.J. (1977).
10. J. F. Traub, lterative Methods for the Solution of Equations. Prentice-Hail, Englewood Cliffs, N.J. (1964).

