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A 3-dimensional electrical model for a thunderstorm is developed and finite difference 
approximations to the model are analyzed. If the spatial derivatives are approximated by a 
method akin to the box scheme and if the temporal derivative is approximated by either a 
backward difference or the Crank-Nicholson scheme, we show that the resulting discretization 
is unconditionally stable. The forward difference approximation to the time derivative is stable 
when the time step is sufficiently small relative to the ratio between the permittivity and the 
conductivity. Max-norm error estimates for the discrete approximations are established. To 
handle the propagation of lightning, special numerical techniques are devised based on the 
Inverse Matrix Modification Formula and Cholesky updates. Numerical comparisons between 
the model and theoretical results of Wilson and Holzer-Saxon are presented. We also apply 
our model to a storm observed at the Kennedy Space Center on July 11, 1978. ‘(‘ 1989 
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1. INTRODUCTION 

In this paper, we develop a 3-dimensional model for the evolution of the electric 
field in a thunderstorm. The output of the model is the electric field as a function 
of time while the inputs are currents generated by the flow of charged particles 
within the thundercloud. In earlier work, Nisbet [16] developed a cylindrically 
symmetric model and he solved the discrete equations using an electronic circuit 
analysis program called ECAP. Later Forbes et al. [S] showed that the horizontal 
structure of a thundercloud is of fundamental importance to the electrification, and 
to make realistic comparisons between data and theory, a 3-dimensional unsym- 
metric model was needed. On the other hand, the circuit analysis approach used by 
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Nisbet in [16] is impractical for 3-dimensional unsymmetric problems since the 
computational effort and the storage associated with each time step are very large. 
We now develop a thunderstorm model that is more tractable numerically. 

From Maxwell’s equations, we obtain a relation between the potential field and 
current density. The spatial derivatives in this equation are approximated by a 
method akin to the box scheme (see [24]); that is, the domain is decomposed into 
boxes, the partial differential equation is integrated over each box, the divergence 
theorem is applied, and spatial derivatives in the resulting boundary integrals are 
approximated by central differences. A l-parameter family of time discretizations 
is studied. This family includes forward difference, backward difference, and 
Crank-Nicholson approximations. Both the backward difference and the 
CrankPNicholson approximations are unconditionally stable while the forward dif- 
ference is stable when the time step is sufficiently small relative to the ratio between 
the permittivity and the conductivity. For a stable scheme, a max-norm error 
estimate of the form O(dP) + O(h*) is established where At and h are the temporal 
and the spatial discretization parameters and m = 2 for the Crank-Nicholson 
scheme while m = 1 otherwise. 

When the electric field reaches the breakdown threshold, the cloud discharges 
since the conductivity in the breakdown region is very large. To compute the 
impact of this electrical discharge on the potential field, we observe that changing 
the conductivity in a region is equivalent to adding a small rank correction to the 
coefficient matrix associated with the discrete equations. As the conductivity tends 
to infinity, the adjustment in the potential throughout the cloud caused by this 
correction term can be computed explicitly using the Inverse Matrix Modification 
Formula (see [8]). Essentially the electrical discharge readjusts the potential field 
throughout the domain so that in the breakdown region, the potential is a constant. 
In other words, the discharge process equilibrates the potential throughout the 
breakdown region. An efficient numerical implementation of this method to handle 
the electrical discharge is presented. 

The paper concludes with some numerical experiments. In the first two 
experiments, we solve problems with known solutions: In [26] Wilson computes 
the electric field generated by a current impulse, and in [12] Holzer and Saxon 
compute the electric field produced by a step function generator. Comparing the 
numerical solution to the known solution, we are able to determine the error in the 
numerical approximation. In these first two experiments, the electric field does 
not break down and we essentially measure the spatial error in our discrete 
approximation. In the third experiment, we present some preliminary results for a 
simulation of a thunderstorm observed at the Kennedy Space Center on July 11, 
1978. In this simulation, the electric field repeatedly reaches the breakdown 
threshold. A more extensive study of this storm as. well as other numerical 
comparisons will be reported in a separate paper. 

In related work [ 11, Browning, Tzur, and Roble study the well-posedness of the 
partial differential equation governing the evolution of the electric potential. In 
addition they obtain some special solutions to this equation, giving incite into the 
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relative time scales in a thunderstorm. A different way to analyze well-posedness 
appears in Section 2 of our paper where we show that the potential field can be 
expressed in terms of the solution to an abstract first-order differential equation. 

2. FORMULATION OF THE EQUATIONS 

By Maxwell’s equations, the curl of the magnetic field strength H is given by 

VxH=e;+oE+J, 

where E is the permittivity, g is the conductivity, E is the electric field, J is the 
current density associated with charged particles circulating in the cloud, aE is the 
conduction current density, and E(~E/&) is the displacement current density. In the 
atmosphere, c typically depends on the altitude. Moreover, cr depends on the elec- 
tric field in the following sense: Whenever the electric field reaches some breakdown 
threshold, g increases by many orders of magnitude. As indicated in Section 1, we 
will compute E assuming that J is known. Methods for estimating J are discussed 
in Section 7. 

To eliminate H from Eq. (l), we take the divergence to obtain: 

In our model, it is assumed that the time derivative of the magnetic field is zero. 
Hence, the curl of the electric field is zero, V x E = 0, and E is the gradient of a 
potential 4. Substituting E = V4 gives 

(2) 

where V* denotes the Laplacian operator defined by V* = V .V. Letting t+Q denote 
the Laplacian of 4, we have 

E~+o$+VOVC#+VJ=O, * = V’qk (3) 

If (r is independent of position, then VC = 0 and Eq. (3) can be integrated to obtain 
$ (or equivalently to obtain V*d) at any time. Knowing II/ and the boundary values 
of 4, we can solve the Poisson equation V’d = $ for 4. On the other hand, for the 
atmosphere, 0 depends on position and the Va .Vd term in (3) cannot be ignored. 

The natural domain for a thunderstorm is the half-space in three dimensions 
defined by z 2 0. Treating the earth as a perfect conductor, the natural boundary 
condition is the Dirichlet condition 4(x, y, 0) = 0; that is, the potential vanishes on 
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the surface of the earth. With these boundary conditions, the solution 4 to V’C,~ = t,b 
can be expressed in terms of the Green’s function G, 

4(r) = js G@> s)+(s), (4) 

where 

1 1 -- 
47tG(r,s)= Ir-sl Ip-q 

and p is the reflection of r across the plane z = 0. Combining (3) and (4) yields 

~g+o$+Vo.s VG(r,s)$(s)+V.J=O. 
s 

Abstractly, Eq. (5) has the form 

(5) 

(6) 

where L is a linear operator and f= V. J. Thus one way to compute the electric 
field is to integrate Eq. (6) from some starting condition to obtain +, compute ,d by 
evaluating the integral (4), and differentiate 4 to obtain E = Vqi It follows from (6) 
that @ has one more time derivative than f and if f varies smoothly in space and 
time, then 4 varies smoothly in space and time. This formulation of the equations 
for the electric field provides some indication of the regularity of the solution to (2). 

3. DISCRETIZED EQUATIONS 

We will describe the discretization process for a uniform mesh in a rectangular 
coordinate system. However, in practice it is better to use a cylindrical coordinate 
system; since the electric field changes rapidly near a current generator and slowly 
far from a current generator, a line mesh should be employed near a current 
generator and a coarse mesh should be used far from the generator-a cylindrical 
coordinate system centered at the generator is well suited for this type of mesh. If 
there are several current generators, then a cylindrical coordinate system can be 
placed at each generator and the total electric field can be computed using a super- 
position technique. For reference, Appendix 1 presents the discretization based on 
a cylindrical coordinate system. 

Our first approximation is to replace the half-space by a large box. For a thun- 
dercloud, the dimensions of the box are on the order of 100 x 100 x 100 kilometers 
since the currents in a thundercloud flow in the earth-ionosphere circuit. There is 
some flexibility in the choice of boundary conditions for 4 since the electric field as 
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well as the potential approaches zero as we move away from the center of the 
thundercloud. In our numerical experiments, either Neumann or Dirichlet 
boundary conditions were employed on the sides and on the top of the box; that 
is, either 4 or its normal derivative vanishes on the sides and the top of the box. 
Treating the earth as a perfect conductor, 4 vanishes on the bottom of the box. 
Next we partition the box into small cubes with sides of length h. The center of a 
typical cube is denoted (xi, yj, zk) and the centers of the neighboring cubes are 
(x I+17 yjk ,, zkk ,). Although the input for Eq. (2) is the current density, it is often 
easier to estimate currents. To convert from current density to current, we integrate 
Eq. (2) over the cube S, containing the point (xi, yj, zk) and we apply the 
divergence theorem to obtain 

s c%.dS+ 
A‘+ at s aVq%.dS+I=O, 

qk 

where I is the net current leaving S, and as, is the boundary of S,. 
We discretize the time derivative in (7) using Euler’s finite difference approxima- 

tion. Let a superscript n denote the time level t,, let At denote the time step 
t n+1- t,, and let p denote an arbitrary parameter between 0 and 1. The following 
family of time discretizations for (7) is considered: 

s V4 n+l -V@ & 
At . dS + ja,,, an M’d “+1+(1-p)VqY’]~dS+I”+1’2=0. (8) 

C’.%,k 

Here the current term is evaluated at time i( t,, i + t,), which is denoted time level 
n + f. By analogy with the terminology used for the heat equation, p = 1 is the 
backward Euler scheme, p = 0 is the forward Euler scheme, and p= i is the 
Crank-Nicholson scheme. Unlike the heat equation, the discretization (8) is 
implicit for all values of ~1 since the time derivative term in (7) contains the gradient 
of the potential. 

The spatial part of (8) can also be discretized using Euler’s finite difference 
approximation. Let drik denote the discrete approximation to 4 at the point 
(xi, yj, zk). The derivative &j/ax at the midpoint of the line segment connecting 
txi5 Yj2 zk) to txi+ 1~ yj, ZJ has an approximation which we denote by 8: cbijk: 

In similar manner, we define approximations aj+ #ijk and a:d, to the partial 
derivatives @//ay and ad/&: 

a:#,="iJ+17~-40k and a:g,=d1*k+~-4~k, respectively. 
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We also define the shifted approximations ~3, I++~~ = a: c$+ I,j,k, 8; $iik = a: I+$~,~- ,,k, 
aTd,=aT$i jk-1. . 3 Integrating around the boundary of S,, we have 

s isYkV&dS=h3 h-’ 5 [a: -&J)(,. 
/=I 

Note that the expression in parentheses is the standard 7-point approximation to 
the Laplacian operator. 

For the conductivity term in (8), we must take into acount the variation of the 
conductivity with position. In the atmosphere, 0 varies with altitude. Assuming the 
CJ is independent of x and y, a similar approximation to (9) can be applied to the 
sides of the cube parallel to the xy-plane. For sides of the cube parallel to the 
xz-plane and the yz-plane, we must introduce an average conductivity. To help 
motivate this average, let us examine some quadrature rules for the integral of a 
product. The standard trapezoidal approximation to the integral of a product is 

s “f(z) g(z) dz = (b - aIf(c) g(c), (I 
where c is the midpoint of the interval [a, h]. The error in the trapezoidal rule is 
given by 

s hf.(z)g(Z)dz-(b-a)f(c)g(c)=~d2~f~~*g(z~1 1 , (10) u z=[ 

where c lies between a and b. However, when f is a slowing varying function and 
g is a rapidly varying function, a better approximation to the integral of a product 
is 

['f(z) g(z) dz =f(c) jb g(z) dz. 
CL a 

(11) 

With this alternative approximation, one less derivative of g appears in the error 
expression and the error is less sensitive to the derivative of g. For example, merely 
assuming that g and f' are essentially bounded, we have the estimate 

/jbf(iM4 dz-f(c) j-” g(z) dzi Gq llgll Ilf’ll, 
a a 

where 11. II denotes the essential supremum. And if both f” and g’ are essentially 
bounded, then the error is bounded by an expression involving the bounds on these 
derivatives times (b - u)~. In contrast, by (10) the corresponding error bound for 
the trapezoidal rule involves the second derivative of g. 
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For the atmosphere, (T varies almost exponentially with altitude. The exponential 
function that agrees with g at z = a and at z = b is 

g(a)e”“-“‘, where cI = h,CdbYda)l 
b-a 

Integrating this exponential over z between a and b and combining with (11) gives 
us the approximation 

Now return to the conductivity term in (8). Letting ik denote the average of zk 
and zk-,: 

i,=‘k+;k-1, 

we define an average conductivity rsk by the rule 

dik+ 1) - dik) 

Ok = log, a([ k+l)-loi%eo(ik)’ 
(12) 

Then we have the following approximation corresponding to the conductivity term 
in (8): 

Ok i (a:-a,)+~(ik+,)a:-~(;,)a,]m,. (13) 
I= I 

4. STABILITY AND CONVERGENCE 

The temporal discretization (8) and the spatial discretizations (9) and (13) 
combine to yield a matrix-vector relation of the form 

A[@“+’ - W] + At B[pW+ ’ + (1 - ~)a”] = At I”, (14) 

where @ denotes the vector with components 4ijk and I” corresponds to the current 
term of (8) evaluated at time level n + i. The matrices A and B are symmetric and 
by the corollary on page 23 of Varga’s book [24], we know that they are also 
positive definite. Since the sum of positive definite matrices is positive definite, 
A + At pB is positive definite and we can solve for W in (14): 

0 “+‘=C-‘D@“+AtC-‘I”, (15) 

where C = A + At pB and D = A - At( 1 - p)B. This finite difference relation is con- 
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sidered stable if the amplification matrix C’D has spectral radius less than one. 
Since C- ‘D is similar to the symmetric matrix C “‘DC- li2, it follows that the 
eigenpairs of the matrix C’D are real. Let (2, x) denote an eigenpair for C’D. 
Multiplying the relation C’Dx =1x by xrC and solving for 1, we have 

x=Dx x=(A-dt(1 -p)B)x= l_ 
A=-= 

At x=Bx 
x=cx x=(A + At pB)x x=(A + At pB)x’ (16) 

Since A and B are positive definite, ,I < 1 for every p > 0. By the second equality in 
(16), it follows that ,I > - 1 when p is between 4 and 1. Hence, the scheme (14) is 
unconditionally stable for p between i and 1. For p in the range 0 <p < i, the 
scheme is stable for At sufficiently small. 

Suppose that r~ is a constant independent of position. Then the expression (16) 
reduces to 

Thus AZ - 1 for p < i if and only if 

The discretized version of (7) is similar to the discretized heat equation in that (14) 
is unconditionally stable for i < p < 1 while conditionally stable for 0 <p < i. 
However, with the heat equation, the stability condition for p < 4 involves the 
spatial parameter h while (17) is independent of h. 

Now suppose that cr varies continuously with position and 0 <p < i. Again, by 
(16) 2~1 while Ig -1 if 

2 x=Ax 
At<---- 

1 - 2,~ x=Bx 

for every eigenvector x of C ~ ‘D. Hence, 12 - 1 if 

2 x=Ax 
At< -max. 

1-2~ xzo x Bx’ 

We will show that 

x=Ax 
maximum - < 

E 
X#O x=Bx maximum u’ (18) 

where the phrase “maximum ~3’ means the maximum value for the conductivity 
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over the domain. It follows that the finite difference equation (15) is stable for p 
between 0 and i. if 

2 
At<- 

& 
1 - 2,~ maximum cr.’ 

To establish (18), we first note that if g is continuous, there exists a point z 
between a and b such that 

g(z) dz = (b-a) g(Z). 

If g is a monotone function (like the exponential function), then g(Z) lies between 
g(u) and g(b). Since the exponential approximation to CJ described in Section 3 
agrees with cr at z=[, and z=ck+,, the g(Z) corresponding to the interval 
[ck, ik+ i] lies between a(ik) and a(ck+,). It follows that x*Bx can be written in 
the form 

x*Bx = h2 1 ~~,[a: xijk]‘, 
i.j,k.l 

where aiikr is either the value of the conductivity at some point or aiikr lies between 
two values of the conductivity. Clearly, replacing any of the parameters oiik, by 
something larger increases x’Bx. Replacing aOk[ by the maximum of (r over the 
domain yields (18). 

The error in the discrete approximation 0” is related to the truncation error that 
results from inserting the continuous solution &xi, y,, zk, t,) into the discrete 
equation (14). Let 0” denote the vector whose ijk component is d(xi, yj, zk, t,). 
Inserting 0” into the finite difference relation (14), expanding in a Taylor series, 
and taking into account (2), we find that 

A[@“+’ - On] + At B[@” + ’ + (1 - /~)a~] = At I” + At h32,, (19) 

where rn is the truncation error. If 4 has three time derivatives and four space 
derivatives, then t, satisfies an inequality of the form 

wherem=l ifp#:,m=2ifp= i, and c is a constant depending on the derivatives 
of I$. Subtracting (19) from (14) gives us the following recurrence for the error 
m-0: 

*PI+1 -0 “+‘=C~‘D(~“-O”)+Ath3C-‘2,. (20) 

Since h -3C is essentially a discrete approximation to the Laplacian operator, the 
max-norm of [k3C] ~’ = h3Cp’ is bounded by a constant independent of 
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h: h3 IlC-‘ll co d c, where c is a constant independent of h (a brief proof of this result 
for Dirichlet boundary conditions appears in Appendix 2). It follows from (20) that 

n-1 

W-O”=M”(~“-OO)+ 1 AtM’h3C-‘tn~I~,, (21) 
I=0 

where M = C-ID. If G is a constant and p is between f. and 1, then 

IIMII, = 
E- Ar(1 -p)a < 1 

e+Atp ’ 

Moreover, if rr is constant, p is between 0 and i, and (17) holds, then IlMlI m 6 1. 
In general, when u varies Lipschitz continuously with position, the max-norm of M 
satisfies an inequality of the form llM/l m < 1 + c At for At sufficiently small where c 
is a constant which depends on the Lipschitz constant for 0 but which is essentially 
independent of h (see Appendix 2). Taking the norm of (21) and making use of the 
inequality llMl/ o. < 1 + c At d e““, we conclude that 

n-l 
110” - @“II oc < encAr Il~“-@oll, +h3 IV-‘II, c At Ilt,llm . 

I=0 > 

If II@“-Ool~, =0(/z*), then it follows from the uniform bound for h3C’ and for 
the truncation error given previously, that 

II@” - @“II oc = O(At”) + 0(/z*), 

where m = 2 for the Crank-Nicholson scheme while m = 1 for 0 d p < 1, p # 1. 

5. LIGHTNING 

Whenever the electric field in a region reaches the breakdown threshold E,, the 
conductivity increases by many orders of magnitude. To model lightning, one can 
test the value of the potential gradient (or the electric field) during each time step, 
chop the time step whenever the electric field reaches the breakdown threshold, 
increase the conductivity in the breakdown region by several orders of magnitude, 
and continue the time step using this adjusted B matrix in (14). (We do not take 
into account the effect of heating due to lightning in our model.) In making this 
strategy more precise, we must specify the region where the conductivity is adjusted. 
Rather than monitor the magnitude of E, it is more convenient to monitor the 
individual gradients 8: 4ijk. When 18: 4ijkl reaches E,, the conductivity is increased 
in the region between the nodes involved in the finite difference 8: dijk. For 
example, if I= 1 and la: dijkl > E,, then the conductivity in the region between 
(xi, yj, zk) and (xi+, , yj, zk) is increased by several orders of magnitude. 

When the electric field reaches the breakdown threshold and the conductivity 



THUNDERSTORM ELECTRIC FIELDS 203 

increases, how large should we make the conductivity? It turns out that the precise 
value of the conductivity after breakdown really does not matter provided the con- 
ductivity is large. To see this, we utilize the Inverse Matrix Modification Formula 
(see [S; 7, Section 2-8; 61) Suppose that the electric field first reaches the break- 
down threshold at time level n. In the next instant of time, there is a rapid change 
in the potential which essentially equilibrates the potential in the breakdown region. 
Using a backward-difference time step to determine the adjustment in the potential 
due to breakdown, we have 

where w is a vector with every component equal to zero for two components; one 
of these components is + 1 and the other is - 1. These nonzero components 
correspond to the nodes associated with breakdown. The parameter r is a large 
number corresponding to the conductivity after breakdown. Since the potential 
changes rapidly during breakdown, we will let At tend to zero. Hence, (IV’+’ is 
given by 

0 ‘+’ = lim (A + tww*)-’ A@“. 
r-30 

By the Inverse Matrix Modification Formula, we have 

Thus the perturbation in the potential due to breakdown is the vector A - ‘w times 
the amplification factor - w*@“/w*A ~ ‘w. Since we let the time step At tend to zero, 
t n+1= ?I. t 

After evaluating the new potential, we again examine the electric field to see if it 
exceeds the breakdown threshold at other points. In a typical stroke of lightning, 
the newly computed potential has the property that the electric field at a point 
adjacent to the previous breakdown point now exceeds the breakdown threshold. 
When there are several links in the mesh where the electric field has reached the 
breakdown threshold, the equation for the adjusted potential has the form 

a) ‘+’ = lim (A + TWW*)-’ A@“, 
7 - m 

where W is a matrix and each column of W is completely zero except for a +l 
entry and a -1 entry corresponding to each pair of adjacent nodes where the 
electric field exceeds the breakdown threshold. Again applying the Inverse Matrix 
Modification Formula, we have 

@ II+ I= qp _ A IW(W*A 1~) I wT@n. (22) 

We may have to apply this formula several times as the lightning propagates. 
Finally, when the electric field is beneath the breakdown threshold everywhere, we 
return to (14) and perform time steps in the usual fashion. 
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Typically, the electric field first reaches the breakdown threshold in the middle of 
some time step. To determine the first instant of breakdown, we perform the 
standard time step (15) and evaluate the electric field at time level n and n + 1. 
Using linear interpolation, the instant of time between t, and t,, , where the 
electric field first exceeds the breakdown threshold can be determined. When 
implementing the discharge step (22), we often do not perform a full step in the 
sense that we move from CD” to the <D”+’ given by (22). Instead, we move along the 
line segmenting connecting @” to a” + r until the electric field first exceeds the 
breakdown threshold at a new point. A column is appended to W corresponding 
to the new breakdown and the step (22) is attempted again. In this way W changes 
one column at a time until the lightning discharges. 

6. NUMERICAL IMPLEMENTATION 

In the absence of lightning, the implementation of (14) is well documented in the 
literature. Initially, we LU factor the coefficient matrix A + At pB, and in each time 
step, we solve the factored system 

LU@ “+‘=[A-At(l-p)B]W’+AtI” 

(for example, see Section 2-7 of [7]). On the other hand, the implementation of 
(22) is not as easy. In this section, we develop an efficient implementation of (22). 

To evaluate the right side of (22) we must compute an expression of the form 

vs-‘WTf, where V = A-‘W, S = WTV, and f=@“. 

Suppose that the matrix S is stored as a Cholesky factorization: S = LLT, where L 
is a lower triangular matrix. Then the evaluation of r = VS-‘WTf proceeds as 
follows: 

1. Compute the matrix-vector product p = WTf. 

2. Solve the factored system (LLT)q = p. 

3. Compute matrix-vector product r = Vq. 

We must repeat this computation for several different W matrices where each 
matrix differs from the previous one by a single column. If a column is added to 
W (or deleted from W), then a column is added to V = A -‘W (or deleted from V). 
Hence, it is easy to update V following changes in W. Now consider the impact of 
a change in W on the Cholesky factorization S = LLT. 

If the old W has m - 1 columns and we add a new column to the right side of 
W, then the new S matrix has the following structure: $1 s - new _ I 1 s .T old : 

s, .” s, 
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where s = W’v, and v, is the new mth column of V. From the structure of the new 
S, it follows that the (m - 1 )th leading submatrix of the new L is identical to the 
(m - 1)th leading submatrix of the original L. Moreover, the elements in row m of 
the new L are 

forj= 1 to m- 1 and 

lnzm = sm - c litzk. 
J k=l 

For completeness, let us also consider the deletion of a column. If column k is 
deleted from W, then column k and row k are deleted from S. The new S can be 
expressed S”“” = MMT, where M is the same as L but with row k deleted. The 
structure of M is indicated in Fig. l-the top part of the matrix is zero while the 
bottom part is generally nonzero. The basic idea is to annihilate the “super- 
diagonal” elements of M using an orthogonal matrix G. Since GG’= I, we have 
S “ew = MG(MG)T. Deleting the last column of MG, which is zero, we obtain the 
lower triangular Cholesky factor of the new S. 

To annihilate the superdiagonal elements of M, we postmultiply M by a sequence 
of Givens rotations. A Givens rotation is an orthogonal matrix with the following 
structure: 

c --s 

s c 

where c* + s* = 1. Observe that if 
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M = 

FIG. I. The matrix M obtained from L by deleting row k. 

then c* + s* = 1 and 

[XI 2 x21 
C --s [ 1 s 

c = [Jm,o]. 

In other words, the second component of x is annihilated and the first component 
is replaced by the length of x. Finally, G is the product of the Givens rotations that 
annihilate the nonzero superdiagonal elements depicted in Fig. 1. The lower 
triangular Cholesky factor of the new S is obtained by deleting the last column 
of MG. 

In detail, if W has m columns and column k is deleted, then the updated 
Cholesky factor L of S is obtained by the following procedure: 

j=ktom-1 
p+-j+l 
if I,P = 0 got0 next j 
t + [Ii + l;]“2 
c t i,jt and s + l,,,,it 
i=jtom-1 

f + 4, 
I,, + IC - sl, 
I, + I,,c + SI 

next i 
next j 

See Section 10 of the review article [8] for references related to updating a 
Cholesky factorization. 

7. NUMERICAL EXPERIMENTS 

In this section, we give a brief report on some numerical experiments using the 
scheme (14) and the treatment of lightning presented in Section 5. More extensive 
simulations will be reported in a separate paper. The first two problems we solve 
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have known solutions which provide some indication of the type of mesh that is 
needed to achieve around a 1% relative error in the computed solution. In these 
computations, the potential was evaluated in a cylinder with height and radius 
equal to 100 km. Dirichlet boundary conditions were employed along the bottom 
and the side of the cylinder while Neumann boundary conditions were employed on 
the top of the cylinder. 

In our first experiment, we compare the electric field at the ground generated by 
a current impulse to the theoretical predictions of Wilson [26]. According to 
Wilson’s model, the change in the vertical electric field at a point on the ground R 
meters from the location of the current impulse at height H meters is 

AE = lO”( 1.8H AQ)/R3, (23) 

where AQ is the charge transfer associated with the impulse. In Table I, we 
compare numerical values for the electric field at the ground to the theoretical 
predictions of Wilson using a current impulse which generates 1 C of charge at 
height 4.8 km. Since the potential changes rapidly near the current impulse, we 
employed a tine mesh near the impulse and a coarse mesh away from the impulse. 
In particular, for the cylindrical coordinate system described in Appendix 1, the 
mesh radii and altitudes in kilometers were 

r,= (j- 1)~ for 1 <j< 10 and rj=9.6+w(~~10’ for 11 ,<j< 18, 

TABLE I 

Comparison between (23) and the 
Vertical Electric Field of the Model 

Radius Wilson’s d/Z 
(km) (V/m) 

Model’s dE 

(V/m) 

0.00 781.3 780.6 
1.07 726.8 721.9 
2.13 596.2 586.1 
3.20 450.0 441.6 
4.27 326.2 321.4 
5.33 233.9 231.6 
6.40 168.8 167.7 
7.47 123.5 122.9 
8.53 92.1 91.3 
9.60 69.9 68.9 

11.46 45.1 44.3 
12.84 33.6 32.6 
15.24 21.2 20.1 
19.42 10.8 10.0 
26.70 4.3 3.9 
39.39 1.4 1.2 
61.50 0.4 0.3 

100.00 0.1 0.1 

581.‘82/1-14 
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where r = 1.06667 and s = 1.74188, and 

z,=kz for Odkf16 and z,=~.~+Ts’~-- 16) for 17<k<32 

where T = 0.6 and s = 1.36813. The parameters z and s are chosen so that the final 
mesh point in either the radial or the vertical direction is at 100 km. Since the 
potential corresponding to a current impulse is symmetric about the z-axis, the 
computed solution is independent of the angular discretization. 

In the second experiment, we compared the vertical Maxwell current density at 
the ground produced by a step function generator and zero capacitance (E = 0) with 
the theoretical predictions of Holzer and Saxon [ 121. Nisbet [ 171 shows that as a 
consequence of Holzer and Saxon’s formulas for the electric fields, the vertical 
Maxwell current density at a point on the ground R meters from a current generator 
at height H meters and with magnitude I is given by 

J 
M 

= (1 +O.SrcR) Hlep0~5”‘R+H’ 
27cR3 (24) 

and d(z)= 10-14eKZ. We take K= 2 x 10e4 and as with the previous experiment, 
H = 4800 m. In Table II we compare (24) to the Maxwell current densities obtained 
from the model. Again, the agreement between the model and the theoretical 
predictions is quite good. 

TABLE II 

Comparison between (24) and the 
Vertical Maxwell Current Density of the Model 

Radius Holzer-Saxon .I,,, 
(km) ( x 10-‘0A/m2) 

Model’s J, 
(X 10-‘0A/m2) 

0.00 39.1450 39.2007 
I .07 36.2155 36.0193 
2.13 29.4219 28.8195 
3.20 21.8065 21.2831 
4.27 15.4195 15.1033 
5.33 10.7244 10.5613 
6.40 7.4674 7.3836 
1.47 5.2518 5.1997 
8.53 3.7447 3.6994 
9.60 2.7099 2.6592 

11.46 1.5963 1.5643 
12.84 1.1058 1.0644 
15.24 0.6095 0.5683 
19.42 0.2397 0.2133 
26.70 0.0583 0.0494 
39.39 0.0071 0.0061 
61.50 0.0003 0.0003 

100.00 0.0000 0.0000 
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In a third experiment, we compared results produced by our model for the 
electric field with data obtained for a thunderstorm observed at the Kennedy Space 
Center on July 11, 1978. In our model, we assume that the current term of (14) is 
known and we compute the potential. One way to estimate the currents is to use 
either a convective model or a microphysical model for the thundercloud. In a 
convective model, the velocity field, the temperature, the pressure, the size of water 
drops, and in some cases, the types and sizes of ice particles are computed using the 
momentum equations. Convective models for a thundercloud include those of 
Klemp and Wilhemson [ 143, Miller [ 151, Schlesinger [ 193, Chen and Orville [Z], 
Clark [4], and Tripoli and Cotton [21, 223. In microphysical cloud electrification 
models, the position of precipitation particles with respect to the airflow, 
temperature, and water substance fields is computed. Microphysical models for a 
thundercloud include those of Ziv and Levin [27], Illingworth and Latham [13], 
Chiu [3], Spangler and Rosenkilde [20], Wagner and Telford [25], and Tzur and 
Levin [23]. Models such as those of Helsdon [9] and Helsdon and Farley [ 10, 111 
also incorporate convective dynamic effects. 

Another way to estimate the currents is through experimental measurements, 
using field mill data to estimate the location and magnitude of current generators. 
This is the approach that we followed in our simulation of the storm at the 
Kennedy Space Center. During the storm, the electric field was measured at 25 
locations on the ground within the Space Center. Using the data collected at these 
field mills, the vertical Maxwell current densities as well as the locations and 

0.24 
N 

1 3 5 7 9 11 13 15 17 19 21 23 25 

Field Mill Number 
m Model 124 Data 

FIG. 2. Maxwell current densities for TRIP storm at 19:12 h. 
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FIG. 3. Maxwell current densities for TRIP storm at 19:27 h. 

magnitudes of current generators within the thundercloud were estimated (see 
[18]). After obtaining the current generators for the period of time to be modeled, 
the cloud boundaries were defined. These boundaries enclose a volume with a 
relatively low value for the conductivity. Using our model, we followed the develop- 
ment of the storm, computing the Maxwell current densities and electric field values 
at ground node locations for selected times. This work has proceeded to the point 
that the first 10 min following the initial electrification has been modeled. In Figs. 2 
and 3, the Maxwell current densities from the model are compared to those of the 
actual storm at field mill locations. It is apparent from the figures that the model 
has produced results in agreement with the real storm for early storm times. 

8. CONCLUSIONS 

Realistic electrical models for a thunderstorm involve special problems related to 
the time and distance scales. The current densities flow outside the cloud to the 
ionosphere above and to the ground below so that the model must encompass 
around 100 km. Dynamic structure affecting the charged hydrometeors exists on a 
length scale of a kilometer while lightning channels have diameters of less than a 
meter. The lifetime of a thunderstorm cell is about an hour while time scales 
associated with electrical breakdown are less than a microsecond. In this paper, we 
started with Maxwell’s equations and we obtained an equation governing the evolu- 
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tion of the electric potential under the assumption that the time derivative of the 
magnetic field strength can be neglected. Integrating this equation over boxes and 
approximating derivatives by finite differences, we generated an implicit system of 
difference equations governing the evolution of the electric field. Max-norm 
estimates were obtained for the error in the discrete potential. When the electric 
field reached the breakdown threshold, the electric potential changed instan- 
taneously throughout the thrundercloud. This change was evaluated using the 
Inverse Matrix Modification Formula. Preliminary results for an actual storm 
simulation appear in Section 7. 

The work in this paper is connected with convective and microphysical 
thunderstorm models. In these models, the motion of charged particles can be 
monitored and the electric field can be calculated by solving the Poisson equation 

&V$i5 = p, 

which is obtained from Gauss’s law “EV. E = p” after the substitution E =V& 
Lightning discharges are not incorporated in these models. In contrast, our model 
is based on Eq. (1) (Ampere’s law) and lightning discharges are included in the 
model. Since the input to our model is the electric current associated with the 
motion of charged particles in the cloud, a convective or microphysical model for 
the charged particles in a thundercloud provides the date needed by our model to 
evaluate the electric field. Hence, one way to completely simulate a thunderstorm 
is to link together a microphysical cloud model with our model for the electric 
fields. 

When simulating a thundercloud using the model proposed in this paper, mesh 
points can be 100 m apart. Obviously, with a 100 m mesh, it is not possible to get 
a detailed picture of a lightning stroke. However, the electric fields generated by our 
model combined with Gauss’s law give an estimate for the charge transfer 
associated with a lightning stroke. 

APPENDIX 1: CYLINDRICAL COORDINATES 

In a cylindrical coordinate system, the unknowns are the value of the potential 
at a sequence of nodes positioned on rings around the z-axis. Let zi through zN 
denote the height of the various rings, let ri through rM denote the ring radii, and 
let 8, through 8, denote the angles corresponding to nodes in a ring. Hence, the 
(0, r, z) coordinates of the nodes have the form (Si, r,, zk). The cylinder is 
partitioned into the wedge shaped volume elements corresponding to those points 
(0, r, z) which satisfy the inequalities 
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where hi lies between Oi-, and f3,, pj lies between rj-, and rj, and ik lies between 
zk-, and zk. Preferably, we have 

h.=ei+ei-i rj+ rj- 1 
I 

2 ’ Pj = 
2 ’ ~k=zk+;k-‘~ 

Letting S, denote the surface of the volume element given by (25), observe that 
S, contains the node (ei, r,, zk). Moreover, the analogue of (9) is 

s as@ 
i c,a: - i &a; 
I= I I= I 

where 

C, = D, = (pj+ 1 -Pj)(ck+ 1 -<k), 

rJ 

C,=Pi+~(hi+,-hi)(ik+~-ik), &=~j(hj+I -hi)(ik+ I -C/c), 

c =D 

3 3 
=(h,+,-hi)(Pj+,-pJ) 

2 

The conductance integral in (8) is similar although we must take into account the 
variation in the conductivity with altitude. Using the average conductivity ok 
defined by ( 12) we have 

APPENDIX 2: MAX-NORM BOUNDS 

In this Appendix, we establish some properties for the discrete elliptic operators 
that appear in Section 4. These operators arise from the discretization of the equa- 
tion -V . oVc$ =f: Abstractly, these discretization have the form 

where C,, is the value of a at some point in the domain of interest and C,, is 
related to D,,. For example, in the case I= 1, C,, = Di+ L,jkl. Letting y denote the 
minimum of the C,,, we assume that y is positive and that C,, is independent of 
either i or j or k. To be specific, suppose that C,, is independent of i. Let Nh denote 
the set of indices i, j, and k for which (26) should hold. It is assumed that Nh is a 
bounded set in the first octant. We consider Dirichlet boundary conditions so that 
diik is constrained to be zero whenever (i, j, k) is outside Nh. Let @ denote the 
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vector containing the $ijk for (i, j, k) in Nh and let A denote the coefficient matrix 
corresponding to (26). A is symmetric provided the Eqs. (26) are written down in 
the same order that the 4iik are inserted into the array @. If I- 1 is the maximum 
value of the index i associated with points in the set Nh and if a denotes the product 
h1, we will show that 

IWII x 6 a2/y. (27) 

By Corollary 1 on page 85 of [24], the elements of A - ’ are nonnegative. Hence, 
IL-‘IL = llA-‘111,, where 1 is the vector with every component equal to 1. 
Furthermore, I/A-’ /I o. Q IIAp’F~I m if F > 1. Defining tiijk = - (/~i)~/2y, observe that 
a2r+G,=a,ll/,i, = 0, since $iik is independent of j and k. Letting C,, denote C,, 
(recall that C,, is independent of i) and evaluating the left side of (26) for 
diik = Ii/Ok yields 

Cjk h’[(i+ 1)2 - i’] 

-[ 2y h2 
h2[i2 - (i- l)‘] , 1, 1 h2 ’ (28) 

Define 1, = (hi)2/2y for (i, j, k) outside Nh while for (i, j, k) E Nh, choose Arjk so that 
it satisfies the equation 

,c, CC,,V - D$d, IAjk = 0. (29) 

By the maximum principle, I& for (i, j, k) in Nh is bounded by the magnitude of 
/&,I for (i, j, k) just outside Nh. Hence, for (i, j, k) in Nh, I1iik] <a2/2y. If dijk is the 
sum eiik + Jeijk, then #i,k vanishes for (i, j, k) outside Nh while 

c,,a:-o,,a; 1 lpVkdl 

for (i, j, k) in Nh. Again, letting @, Y, and A denote the vectors formed from #+ 
$lj!i, and Batik for (i, j, k) in Nh, we have 

This establishes (27). 
The preceding analysis yields a bound for the max-norm of the inverse of the 

matrix C introduced in Section 4. Now let us consider the product C’D. From the 
definition of C and D, we have 

Cp’D=(A+dtpB)p’[A-dt(l-p)B]=I-dt(A+~ftpB)~’B 

=I-dt(I+dtpA--‘B)-‘A -‘B. 
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IIC-‘,,)I, < 1 + At IIA-‘B’I= 
1 -At p llA-‘Bll, (30) 

whenever At p IIAplBII 3? < 1. We will obtain a bound for llA~mlBll m under the 
assumption that G is Lipschitz continuous. In one space dimension, this bound is 
independent of h. In more than one space dimension, our method of analysis 
indicates that this bound is “essentially” independent of h. Consequently, (30) 
implies that for At sufficiently small, IlC’Dll, is bounded by an expression of the 
form 1 + c At where c is essentially independent of h. 

First, let us consider one space dimension. In this case, A is E times the symmetric 
tridiagonal matrix with each diagonal element equal to 2 and with each super- 
diagonal and subdiagonal element equal to - 1. For convenience assume that E = 1. 
Similarly, B is the symmetric tridiagonal matrix defined by 

h;,i+, = -cJi and bji=Qj+Cj-.,, 

where cri is the value of c at x = (i+ 0.5)/z. (Actually, A and B are multiplied by 
powers of h, but when A-‘B is computed, these powers of h cancel.) The nonzero 
elements in the kth column of B have the form 

-“k~l [ 1 ak+ak-, , 

-Ok 

which can be rewritten 

(31) 

Letting hk denote the vector with every component equal to zero except for compo- 
nent k which is one, A- ’ times the vector corresponding to the first term in (31) 
is eksk. Now consider the product between A-’ and the vector corresponding to 
the second term in (31). This product can be expressed (ck - rrkP i) AP’(6k-1 - sk). 
By the Lipschitz continuity of cr, 

where c is the Lipschitz constant. 
The vector 0 = A ~ ‘(hk- ’ - sk) can be constructed in the following way: Let ‘I’ 

be the vector given by 

$,=O for i>k and $i=l for i<k. 
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It is easily verified that 

{ 

0 for i>k or i<k-1, 

-II/j-l+211/i-‘)i+l= -l for i=k, 

1 for i=k-1. 
Suppose that A is Zx Z and let A be chosen so that 

I*,= -1, i,+,=o, -j+,+21?,-&+,=O for l<idZ. 

By the maximum principle, 11A11 o. 6 1, and by construction, IJ\YII m = 1 while 
A(I + A) = 13~ ~ ’ - 13~. Thus I + A = A ~ ‘(13~~ ’ - sk). Since the max-norm of both 
Y and A are bounded by 1, the max-norm of A-‘(&-’ -15~) is bounded by 2. 
Moreover, each element of the vector (gk - ck _ ,)A -‘(hkP ’ - sk) is bounded by 
2ch, where c is the Lipschitz constant for 0. Collecting these observations, we see 
that A-‘B is the sum of a diagonal matrix with the ck on the diagonal and another 
matrix with each element bounded by 20% Letting a denote the product AZ, it 
follows that in one dimension, 

11 A - ‘BI( m < maximum r~ + 2a maximum 
da 

I I 
dx . 

(Recall that the Lipschitz constant for a function is bounded by its maximum 
derivative.) If E # 1, then the right side of this inequality is divided by E. 

Now consider two space dimensions and a rectangular domain. Let T denote the 
symmetric tridiagonal matrix with 2’s on the diagonal and with - l’s on the super- 
diagonal and on the subdiagonal. Then A is the sum of a block diagonal matrix 
with T’s on the diagonal and a symmetric block tridiagonal matrix with 21 for each 
diagonal element and with -1 on the superdiagonal and on the subdiagonal. 
Similarly, B is the sum D + C of a block diagonal matrix D and a symmetric block 
tridiagonal matrix C, however, since G varies with position, the diagonal blocks 
T,, T,, . . . . T, of D are not all the same. Likewise, the diagonal blocks as well as the 
off-diagonal blocks of C may depend on their location in the matrix. Factoring T 
from each row of the block matrix A, the product A- ‘D can be expressed in the 
following form: 

A-‘DE 

1+2T--’ -T-’ 

-T-’ 1+2T-’ 
. . 

-T-’ 

-T-’ I+2T-’ 

T-‘T, 
T-IT, 

X . . I. T-‘T, 

1 
-I 

(32) 
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By the l-dimensional analysis given previously, the max-norm of each product 
T ~ ‘Tk is bounded b y a constant that is independent of h. Let E denote the first 
factor on the right side of (32). Even though E is difficult to analyze using the max- 
norm, this matrix is independent of o-it just depends on the size of the mesh. 
Hence, E can be evaluated on a computer and a numerical value for (IEl(, can be 
obtained. If T is 10 x 10 and m = 10, so that E is 100 x 100, then lIEI 3c z 1.67. If T 
is 20 x 20 and m = 20, so that E is 400 x 400, then i/El] no z 2.08. If T is 40 x 40 and 
m = 40, so that E is 1600 x 1600, then lIEI 3c 2 2.50. It appears that IiEil, is 
proportional to the logarithm of the matrix dimension. In summary, for two space 
dimensions. we have the bound 

I/A-ID )I m < 2.5 maximum (T + 2a maximum , (33) 

which applies to matrices with up to a million elements. 
Now consider the product A-C. Note that pivoting two columns or two rows 

does not change the max-norm of a matrix. Also, by reordering the unknowns (or 
equivalently, by applying a sequence of row and column interchanges to C and A), 
C can be transformed to a block diagonal matrix like D. Since these pivots leave 
A invariant, it follows that the estimate (33) also applies to the product A -‘C. In 
conclusion, for two space dimension and for matrices with up to a million elements, 
we have 

where b denotes the maximum product j/r corresponding to points (i, i) in the 
domain. 

Three dimensions can be analyzed in the same fashion-the matrix A is written 
as the sum of three matrices. One of these matrices is block diagonal with T’s on 
the diagonal. We factor T from each row of the block matrix A and we proceed as 
we did previously. Terms of the form IIT-‘Tkll ~ are bounded by the l-dimensional 
analysis while the max-norm of the 3-dimensional analogue to E can be evaluated 
on a computer. For example, if T is 5 x 5, so that E is 125 x 125, then IJEJJ oc z 1.30. 
If T is 10x 10, so that E is 1000x 1000, then lIEI 3cI z 1.78. In conclusion, for three 
space dimensions and for matrices with up to a million elements, we have 

where c denotes the maximum product kh corresponding to points (i, j, k) in the 
domain. 
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