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Dual Techniques for Constrained Optimization ~ 

W .  W .  H A G E R  2 

Communicated by R. A. Tapia 

Abstract. Algorithms to solve constrained optimization problems are 
derived. These schemes combine an unconstrained minimization scheme 
like the conjugate gradient method, an augmented Lagrangian, and 
multiplier updates to obtain global quadratic convergence. Since an 
augmented Lagrangian can be ill conditioned, a preconditioning strategy 
is developed to eliminate the instabilities associated with the penalty 
term. A criterion for deciding when to increase the penalty is presented. 

Key Words. Constrained optimization, duality, augmented Lagran- 
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1. Introduction 

An algorithm to solve constrained optimization problems is developed. 
Each iteration in our algorithm has three steps: a restoration step which 
tries to satisfy the constraints, a multiplier update where an improved 
approximation to the Lagrange multiplier is computed,  and a step which 
performs an unconstrained minimization of an augmented Lagrangian. 
Papers most  closely related to our work include Refs. 1 and 2 by Rosen 
and Kreuser, Ref. 3 by Tapia,  and Ref. 4 where Robinson presents a 
modification of  the Rosen-Kreuser  scheme. A fundamental  difference 
between our algorithm and the Rosen-Kreuser  scheme is that, in their 
algorithm, the restoration step is not separated from the minimization 
s tep-- thei r  minimization step also takes the constraints into account. An 
advantage to separating the restoration step from the minimization step is 
that feasibility can be maintained as the iterations progress. Note that, in 
the optimal control literature, Miele and his associates (Refs. 5-7) have 
also developed a successful family of  algorithms for optimal control prob- 
lems called the sequential gradient-restoration algorithms which involve a 
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gradient phase where the cost is decreased and a restoration phase where 
the constraints are satisfied. 

A new feature in our algorithm is that we utilize an augmented 
Lagrangian, while the Rosen-Kreuser-Robinson scheme utilizes the 
ordinary Lagrangian. Also, by including a penalty term in the Lagrangian, 
our algorithm has a natural extension to a globally convergent method. We 
show that algorithm 5.1 and Algorithm 5.2 in this paper are locally conver- 
gent while, on a global scale, convergent subsequences of iterations 
approach a Kuhn-Tucker point. Strategies for keeping the iterations 
bounded are discussed. Globally convergent algorithms based on the Rosen- 
Kreuser-Robinson scheme are presented in Refs. 8 and 9. However, the 
spirit of our method is somewhat different from Refs. 8 and 9 where a 
penalty method is used to generate a starting point for the locally convergent 
Rosen-Kreuser-Robinson scheme. Our scheme utilizes an augmented 
Lagrangian and starts with a small penalty. Depending on the direction of 
an inequality, the penalty is either increased or left the same. It is well 
known that, for large penalties, algorithms to solve the penalized problem 
converge slowly. We develop a preconditioning technique for eliminating 
the instabilities due to the penalty. Both numerical experiments and our 
theoretical analysis indicate that this preconditioning procedure will yield 
a striking improvement in the convergence speed. 

Another important numerical issue studied in this paper is the accuracy 
that is needed in the restoration step and in the minimization step to preserve 
the quadratic convergence rate of our three-step algorithm. We show that 
quadratic convergence is preserved when restoration is accomplished with 
just one Newton step and when n - m  conjugate gradient iterations are 
used in the minimization step. Here, n denotes the number of unknowns 
and rn denotes the number of constraints. Finally, note that, although there 
are some similarities between the Rosen-Kreuser-Robinson scheme and 
our scheme, the convergence theory that justified the Rosen-Kreuser- 
Robinson scheme does not seem to apply to our method. That is, proving 
that the Rosen-Kreuser-Robinson scheme is locally quadratically conver- 
gent is equivalent to showing that a derivative of an iteration map vanishes. 
Since this procesure does not seem to apply to our method, we develop a 
new analysis. 

Algorithms in this paper are also related to Ref. 3 by Tapia. Tapia 
considers a multiplier update similar to ours and he minimizes an augmented 
Lagrangian in each iteration. Some differences between his approach and 
our approach are the following. His treatment of inequality constraints is 
different from our treatment, and his algorithm does not include adjustments 
to the penalty or preconditioning. Also, in each iteration, he performs one 
quasi-Newton iteration and updates the multiplier to obtain superlinear 
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convergence. In contrast, Algorithm 5.1 and Algorithm 5.2 perform several 
(at most n) conjugate gradient iterations before updating the multiplier. 
Algorithm 5.1 is linearly convergent, while Algorithm 5.2 is locally quadrati- 
cally convergent. Other papers that are somewhat loosely related to our 
work includes Refs. 10-13. We highly recommend Ref. 11 by Nocedal and 
Overton. Besides developing a family of quasi-Newton schemes for con- 
strained optimization, Ref. 11 provides an overview of recent work on 
quasi-Newton methods. 

Our paper is organized as follows: Section 2 summarizes some proper- 
ties of augmented Lagrangians and Section 3 incorporates these Lagrangians 
in algorithms which are locally quadratically convergent. Since an aug- 
mented Lagrangian can be ill conditioned due to the penalty term, Section 
4 analyzes a preconditioning technique for eliminating the instabilities. 
Finally, Section 5 modifies the algorithms of Section 3 to obtain globally 
convergent algorithms and formulates a criterion for deciding when to 
increase the penalty in the augmented Lagrangian. An extended abstract 
of this paper appears in Ref. 14. 

2. Augmented Lagrangians 

A nonconvex problem often has a duality gap and the value of the 
dual problem is strictly less than the value of the primal problem. A strategy 
for bridging this gap emanates from work of Arrow and Solow (Ref. 15), 
Hestenes (Ref. 16), and Powell (Ref. 17). The basic idea is to augment the 
ordinary Lagrangian with a penalty term. To introduce this penalized dual 
approach, we first consider a finite-dimensional mathematical program with 
equality constraints: 

minimizef(x), subject to h(x) =0, x~ R n, (1) 

where f :  R n - R and h : R ~ - R m. Mathematical programs in a Hilbert space 
setting are studied in Refs. 18 and 19. The ordinary Lagrangian correspond- 
ing to (1) is f ( x ) + A r h ( x ) .  Letting r be a positive scalar and letting ]-] 
denote the Euclidean norm, the augmented Lagrangian corresponding to 
the penalty term r]h(x)[ 2 is 

L(A, x) =f (x)  + A Th(x) + rlh(x)l 2. (2) 

The dual functional L(A) corresponding to the augmented Lagrangian 
L(A, x) is obtained by minimizing over x in R": 

L(A) = inf{f(x) + A rh(x) + r[h(x)[2: x E R"}. (3) 

Observe that, for any r - 0 ,  for any x that is feasible in (1), and for any A 
in R", we have f (x)>-L(A) ,  which implies the following optimality result. 



40 JOTA: VOL. 55, NO. 1, OCTOBER 1987 

Proposition 2.1. If A* ~ R", x* ~ R n, h(x*) = 0, and f(x*) = L(A*) for 
some r, then x* is a solution to the primal problem (1), A* is a solution to 
the dual problem 

maximize {L(A): h ~ Rm}, 

and x* minimizes the augmented Lagrangian L(A*, x) over x in R n. 
As r increases, the gap between the value of the primal problem and 

the value of the dual problem decreases. Moreover, under reasonable 
assumptions, there exists a finite r for which the gap disappears. To illustrate 
the type of  results that can be proved about the augmented Lagrangian, we 
state the following theorem which is extracted from Ref. 20. In stating this 
theorem, our convention is that the gradient V is a row vector and the 
gradient Vh of the vector-valued function h is an m x n matrix with i-th 
row Vhi, for i -- 1 to m. Also, we let V 2 denote the Hessian matrix of second 
partial derivatives, and the phrase "x* is a local minimizer for (1)" means 
that h(x*)=0 and f(x*)<-f(x), whenever h(x)=0 and x is near x*. 

Theorem 2.1. Suppose that x* is a local minimizer for (1), both f and 
h are twice continuously differentiable in a neighborhood of x*, and the 
rows of Vh(x*) are linearly independent. If  h -- A* is the solution to the 
equation 

Vf(x*) + h TVh(x*) = 0 (4) 

and V~(f (x*)+  h(x*)TA *) is positive definite in the null space of Vh(x*), 
then there exists a parameter s and a neighborhood N of x* such that the 
problem 

minimize {L(/z, x): x ~ N} 

has a unique minimizer x~,r whenever r>_s and IA*-/z]---r/s.  Moreover, 
there exists a constant c, independent of r and tz, such that 

Ix,,r - x*[ + IX.,, - A*[-< cl/x - A'l /r ,  (5) 

where h~,,~ :=/.t + 2rh(x~,~). 

Remark 2.1. In some optimization problems, we wish to determine a 
saddle point of a functional, rather than a local minimum or a local 
maximum. For example, when expressing a partial differential equation in 
a variational framework, elliptic equations lead to minimization problems, 
while nonelliptic equations typically lead to saddle point problems. For a 
saddle-point problem, the assumption 

minimum yTV2(f(x*) + h Th(x*) )y > 0 (6) 
Vh(x*)y~O 

IlYlI=1 
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of Theorem 2.1 will not be satisfied. In Ref. 18, we observe that (6) can be 
replaced by the weaker assumption 

minimum maximum yrV~( f ( x* )  + h Th(x*))Z > O, (7) 
~h(x*)x=O Vh(x*)y=O 

llxlt=l tlylj=l 

however, x,.r is a point where VxL(/z, - ) = 0, instead of a local minimizer 
for L(/z,.).  Notice that (7) essentially requires that the Hessian of the 
ordinary Lagrangian evaluated at h = h* and at x = x* is nonsingular in 
the null space of Vh(x*), while (6) implies that the Hessian is positive 
definite in this null space. 

As a corollary to Theorem 2.1, L(A*) =f (x*)  if the minimization in 
(3) is restricted to a neighborhood of x*. Moreover, under a global unique- 
ness and growth assumption found in Ref. 21, this neighborhood can be 
extended to the entire space R n. Now, let us consider the inequality con- 
strained problem 

minimize f ( x ) ,  subject to g(x) <- O, x ~ R", (8) 

where g : R ~ o  R I, and let us employ the augmented Lagrangian suggested 
by Rockafellar (Ref. 22). To obtain this Lagrangian, problem (8) is expressed 
(as in Ref. 15) in the form 

minimize f ( x ) ,  subject to g(x) + z = O, z >- O, x ~ R n. (9) 

Rockafellar's augmented Lagrangian is 

L(& x) = in f { f ( x )+  A r (g (x )+  z)+ rlg(x)+ zl2: z >-O, z ~ R~}. 

After minimizing over z, we see that L can be written as 

L ( ) t , x ) = f ( x ) +  ~ [Aigi(x)+rg~(x)2]-(1/4r) ~ A~, (10) 
i~I+ icl_ 

where the sets I÷ and I_ are defined by 

/+ = {i ~ [1,/]: 2rg~(x) + A,--- 0}, 

I_ = {i ~ [1,/]: 2rgi(x) + hi < 0}. 

Thus, the part of the Lagrangian (10) corresponding to indices i~I+ 
resembles the equality Lagrangian (2), while the part of the Lagrangian 
corresponding to indices i ~ L is locally independent of x. 

Bertsekas observes that Theorem 2.1 also applies to inequality con- 
strained problems, since an inequality is equivalent to an equality. In 
particular, (8) is equivalent to the problem 

minimize f ( x ) ,  subject to g(x) + z 2 = O, x ~ R", z ~ R z, (1 I) 

where z 2 denotes the vector with components (z2)i = z~, for i = 1 , . . . , / .  This 
trick for converting an inequality constraint into an equality constraint is 



42 JOTA: VOL 55, NO. 1, OCTOBER 1987 

found in Ref. 23. Letting A(x) denote the active set defined by 

A(x) = {i e [1,/]:  g,(x) = 0}, 

we have the following lemma. 

Lemma 2.1. Suppose that x* is a local minimizer for (8), both f and 
g are twice continuously differentiable in a neighborhood of x*, and the 
vectors Vg~(x*) for i~ A(x*) are linearly independent. If h = h* satisfies 
the conditions 

Vf(x*) + h rVg(x*)  = 0, 

hi > 0, if i e A(x*), 

,~i = 0, if i ~ A(x*),  

and if V~(f(x*)+g(x*)rA *) is positive definite in the space of vectors 
orthogonal to Vgi(x*) for every i c A(x*), then the equality constrained 
problem (11) satisfies the assumptions of  Theorem 2.1. 

3. Local Algorithms 

We now develop algorithms to solve constrained optimization prob- 
lems. To simplify the discussion, these algorithms are formulated for equality 
constrained problems, although with slight modification these methods also 
apply to inequality constraints (see Section 5). Of course, in a neighborhood 
of  an optimum, an inequality constrained problem can usually be treated 
as an equality constrained problem. Let us consider the mathematical 
program 

minimize f(x),  subject to h(x) = 0, x c R", (12) 

where f :  R n --) R and h : R n ~ R m. Let L denote the augmented Lagrangian 
defined by 

L(A, x) =f(x)+ A rh(x)+ r[h(x)[ 2. 

Suppose that x* is a local minimizer for (12) and h = A* satisfies (4). Letting 
xk and hk be the kth approximation to x* and A*, respectively, our first 
scheme for computing the ( k + l ) t h  approximation is the following 
algorithm. 

Algorithm 3.1 

Step I. Compute a point Yk 
example) the Newton iteration 

zj+l= zj-Vh(zj)-lh(zj), 

which satisfies h(yk)=0 using (for 
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where the starting guess is zl = Xk and Vh(zj) -~ denotes the pseudoinverse 
o f  V h ( z j ) .  

Step 2. Let Xk+~ be a solution to the linear equality constrained 
problem 

minimize {L(Ak, x): V h(yk)(X -- Yk) = O, X ~ R'}. (13) 

Step 3. Set Ak+~ = Ak + 2rh(Xk+O + v, where v is the vector of minimal 
Euclidean norm that satisfies 

VxL(Ak, X k + l )  T -]- V h(yk)  TId = O. (14) 

The vector ~, generated in Step 3 is the multiplier associated with the 
Kuhn-Tucker  conditions for (13). When the optimization problem (13) has 
more than one local minimizer, the xk+~ computed in Step 2 should be the 
local minimizer that is closest to Xk. Before analyzing Algorithm 3.1, let us 
review some facts about the pseudoinverse of  a matrix. Consider the linear 
system A x  = b, where A is an m × n matrix and b is a vector in R m. The 
pseudoinverse of A, denoted A -l,  is an n x m matrix with the property that 
x = A-~b is the vector with minimal Euclidean norm for which 

lAx - bl = m i n i m u m  lAy - b I. y ~ R  n 

The pseudoinverse can be expressed using the singular-value decomposition. 
By the singular-value decomposition, A can be written as the product QAP,  
where Q and P are square orthogonal matrices and A is an m x n matrix 
which is entirely zero except for its diagonal elements A,, for i =  
1 , . . . ,  min{m, n}. Moreover, the ith diagonal element A, is the square root 
of  the ith largest eigenvalue of A A  r. It can be shown (see Ref. 24) that the 
pseudoinverse of A is given by 

A - I =  p - I A - I Q - I =  p T  A - 1 Q r  ' 

where the pseudoinverse of A is an n x m matrix which is entirely zero 
except for its diagonal. With the convention that t / 0  is zero, the diagonal 
elements of  A -~ are the reciprocal of the diagonal elements of A. If the 
rows of A are linearly independent, then the eigenvalues o fAA r are positive 
and the diagonal elements of  A are positive. Hence, the formula 

A - I =  p r  A - 1 Q T  

implies that 

A A  -1 = I, 
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when the rows of A are linearly independent, even though A is not square. 
Observe that 

(AT)  -1 = ( p T A T Q T ) - '  = Q ( A r ) - l p  = Q(A-~)rp  = ( A - l )  T. 

The matrix ( A T )  -~ is denoted A -T. 
The representation of  the pseudoinverse in terms of  the singular-value 

decomposition is a useful tool in analysis. However, there are more efficient 
ways to compute the pseudoinverse. Using the singular-value decomposi- 
tion, it can be verified that 

A -'r = ( A A r ) - ' A .  (15) 

But when the rows of A are linearly independent, A A  v is a nonsingular 
matrix and the pseud0inverse of A A  r is the ordinary inverse. Hence, (15) 
expresses the pseudoinverse of A r in terms of the ordinary inverse. Also, 
the QR factorization can be used to compute both A -~ and A - r  efficiently. 
Assuming that n >i m, the QR factorization implies that A can be written as 

a = [L, 0]P = [L, 011 Pt[ ,  (16) 
LPoJ 

where L is an m x I lower triangular matrix with linearly independent 
columns, 0 is an m × ( n -  l) matrix of  zeros, and P is an n x n orthogonal 
matrix with its first l rows denoted P~ and with its last n -  t rows denoted 
Po. It can be shown that 

A -~ = p r L - t "  

Since the columns of  L are linearly independent, either L is nonsingular 
and L -~ is the ordinary inverse, or by (15) we have 

L -1 = ( L r L ) - ' L  T. 

Similarly, the pseudoinverse of A T can be written 

A - T =  L-TpI" 

In general, the vector v, computed in Step 3 of Algorithm 3.1, is given by 

v = - -Vh(yk ) - rVxL(Ak ,  Xk+,) r. 

However, when the rows of Vh(yk) are linearly independent, it may be 
more convenient to express v in the form 

v = - - (Vh(yk )Vh(yk )T) -~Vh(yk )VxL(Ak ,  Xk+~) T 

= - L - T p ,  V~L(hk,  xk+,) "r, 

where LPt is the factorization of A = Vh(yk) given in (16). Efficient codes 
to compute either the singular-value decomposition or the QR factorization 
of  a matrix are contained in UNPACK (Ref. 25). 

Now, let us examine the convergence properties of Algorithm 3.1. 
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Theorem 3.1. Under the hypotheses of  Theorem 2.1, there exists a 
neighborhood N of (x*, A*) and there exists a constant c independent of 
(Yk,)~k) in N such that 

I~+,-A*l+lxk+l-x*l<_cl~k-~*12+clyk-x*12+clh(yk)l, (17) 

where Ak+l and xk+l are generated by Steps 2 and 3 of Algorithm 3.1. 

Proof. Since v is equal to Ak+~--Ak--2rh(xk+O, relation (14) can be 
written as 

Vf(Xk+l)r + Vh(yk)rAk+l 

+ (Vh(Xk+O - - V h ( y k ) ) r ( A k  + 2rh(xk+l)) = 0. (18) 

Since xk+~ satisfies the constraints of (13), we have 

Vh(yk)(Xk+~--Yk) =0.  (19) 

Defining the function F :  R "+m x R n+" ~ R n+m by 

[Vf(x)  r + Vh(y)rA + (Vh(x) - Vh(y)) r (/x + 2rh(x) )  7 
F(A, Y) x, L Vh(y)(x-y) J 

(18) and (19) are equivalent to the equation 

F(hk+l, Xk+l, Ak, Yk) = O. 

Let us compute the gradient of F with respect to its first two arguments, 

Vx.AF(A*, x*, A*, x*) = L Vh(x*) " (20) 

Since the rows of Vh(x*) are linearly independent and V~L(A*, x*) is 
positive definite in the null space of Vh(x*), Ref. 26, Lemma 3.2 tells us 
that the Jacobian (20) is nonsingular for every r -> 0. By the implicit function 
theorem, there exist neighborhoods N~ and N2 of (A*, x*) such that the 
equation F(A, x, Ix, y) = 0 has a unique solution (A, x) = (A (/z, y), x(tx, y)) 
in N1 for every (ix, y) in N2. Moreover, by Ref. 18, Corollary 6.2, N2 can  

be chosen so that 

lx(m y) - x*l + IA (m y) - A*t 

-< clF(,~*, x*, ~, y) - F(A*, x*, A*, x*)l, (21) 

for some constant c which is independent of (ix, y) c N2. By Ref. 18, Lemma 
6.5, and by the second-order sufficiency condition (Ref. 27, page 226), 
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X(Ak, Yk) is the unique local minimizer for (13) near x* when (Ak, Yk) is 
near (A*, x*). From the definition of F, we have 

F(A*, x*,/x, y) - F(A*, x*, A*, x*) 

= F(Vh(x*) - V h ( y ) ) r ( / z  - A*)l 
L V h ( y ) ( x * - y )  J" (22) 

The top component of  (22) is estimated by a Taylor expansion: 

[(Vh (x*) - V h(y)  ) r (lz - A *)I 

I~ - A*I IV h(x*)T _ Vh(y)rl  

(1/2)1~ - A*12+ (1/2) lVh(x*)  r -  Vh(y)rl  2 

-< (1/2)1~ - a*12+ (1/2)d21y -x* l  2, (23) 

where 

"]1/2 

d =  ~ maximumtV2hi(z~)12| . 
i=1 zie[y,x*] ..I 

Here, [y, x*] denotes the line segment connecting y and x*. Similarly, 
expanding h(x*)  in a Taylor series yields 

0 = h(x*)  = h ( y ) + V h ( y ) ( x * - y )  

+ (1/2) ~ [ (x*-y)TV2h, (~ , ) (x*-y) ]e , ,  (24) 

where ei is the unit vector with every component zero except the ith 
component, which is one, and where ~:~ is a point on the line segment 
connecting y and x*. Rearranging (24) and taking norms gives us 

IVh(Y)( x * - y ) l  <<- (1 /2)d ly  - x*12+ lh(Y)l. (25) 

Inserting y = Yk and ~ = Ak and combining (21)-(25), the proof is complete. 
E3 

Remark 3.1. Since the Xk+l generated by Algorithm 3.1 is determined 
from yk and Ak, the inequality 

lXk+l -- X*] ~ ClAk -- A "t 2 + Clyk -- X*I 2 + C I h(yk)l, 
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contained in (17), is valid regardless of how the multiplier is updated in 
Step 3 of  Algorithm 3.1. Since 

A* = -V  h(x*)- TV f(x*) r, 

by (4), an approximation Ak+l to A* with accuracy comparable to the 
accuracy in xk+l is given by the update 

/~-k+l ~- --V h(xk+,)- TV f(xk+l) T. 

The effect of the Newton iteration in Algorithm 3.1 is analyzed in the 
following theorem. 

Theorem 3.2. Suppose that x = x* satisfies the equation h(x) = O, h is 
twice continuously differentiable near x*, and the rows of Vh(x*) are 
linearly independent. Then, there exists a neighborhood N of x* and there 
exists a constant e such that, for every Xo E N, the Newton iteration 

X k +  1 = X k - -  Vh(xk)-lh(xk), (26) 

based upon the pseudoinverse of 7h(xk), converges to a point y for which 
h(y) = 0  and 

]xk -Yl <~ clh(xo)l(1/2) 2k. (27) 

The fact that the iteration (26) converges to a solution of  h(x) = 0 can 
be deduced from Ref. 28, Theorem 1. In the theorem stated above, we 
determine the convergence rate of the iteration. Using the terminology of 
Ortega and Rheinboldt (Ref. 29, page 290), (27) implies that the root 
convergence order of the iteration (26) is at least 2. This property will lead 
to a more practical implementation of Algorithm 3.1 (see Algorithm 3.2), 
where the Newton iterations are truncated and where the minimizer for 
(13) is approximated. Typically, the equation h (x) = 0 has an infinite number 
of solutions [otherwise, the optimization problem (12) is equivalent to 
minimizing over x in a finite set]. Consequently, the Newton iteration (26) 
usually does not converge to x*. 

Proof of Theorem 3.2. Let tr(x) be the square root of the smallest 
eigenvalue of Vh(x)Vh(x) 7-, and let B be a ball with center x* and with 
radius so small that, inside B, h is twice continuously differentiable and 
or(x) is uniformly bounded away from zero. That is, there exists a constant 
O-o>0 such that o-(x)->tro for every x ~ B .  Since h(x*) is zero, h(x) 
approaches zero as x approaches x*. Let xo~B be any point with the 
property that the ball with center Xo and radius 21h(xo)]/~r o lies in B and 
dlh(xo)l <- o-2o, where 

d [ E maximum 1'/2 
_-_ iv2h,(z,)l j 

k i= l  z i ~ B  
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Suppose that Xk+t and Xk lie in B, where xk+~ is given by (26). Expanding 
h(Xk+~) in a Taylor series about xk yields 

h(Xk+~) = h(xk) + V h(xk)(Xk+~ -- xk) 

+(1/2) ~ [(Xk+~--Xk)rV2h,(~)(Xk+~--Xk)]e,, (28) 
i=1 

where ~:~ lies between Xk+i and Xk for each i and e~ is the unit vector with 
every component equal to zero, except for the ith component which is one. 
From the discussion of the pseudoinverse that precedes the statement of 
Theorem 3.1, we conclude that 

Vh(xk)Vh(Xk)  -1= I, 

since the rows of •h(Xk) a r e  linearly independent. Substituting for xk+~ 
using (26) and (28) gives 

h(Xk+l)=(1/2)  ~ [(Vh(xk)-Ih(Xk))rV2h~(~,)Vh(xk)-lh(xk)]e, .  (29) 
i=1 

If Q A P  is the singular-value decomposition of Vh(x) and p T A - I Q T  is 
Vh(x) -1, then, for the matrix norm induced by the Euclidean norm, we have 

lVh(x)-ll = IA-'i = l / i t(x),  

IVh(x)-~h(x)l  <-Ih(x) l /o(x) .  

It follows from (29) that 

Ih(xk+,)l--< clh(xDI 2, where c = d/2o'g. 

Suppose that Xo, X l , . . . ,  Xk lie in B. Since 

cth(xDI <-lch(xk-OI 2 <- " " " <-Ich(xo)l 2k, 

(26) implies that 

Ixk+~- xd <~ l h ( xDI/  Oo <~ Ich ( xo)12k / CCro. (30) 

The triangle inequality and (30) yield 
k 

[Xk+I--XoI << - Y. IXj+I--Xjl 
j = 0  

k 

-<(1/co'o) • tch(xo)l 2' 
j = o  

k 

=Hh(xo)t/O'o] Y" tch(xo)12 j- ' .  (31) 
j = 0  

By assumption, 

clh(xo)l <- 1/2. 
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Since the series 

(2/22j)= 1 + 1 / 2 + 1 / 8 + 1 / 1 2 8 + 1 / 3 2 7 6 8 + "  • 
j=o 

is bounded by 2, it follows from (31) that 

[xk+, - Xol ~ 21h(xo)l/~o. 
Since the ball with center Xo and radius 2]h(xo)[/tro is contained in B, we 
conclude that Xk+l lies in B. Hence, the entire sequence {Xk} is contained 
in B. Similar to (31), it can be shown that the sequence {Xk} is a Cauchy 
sequence which has a limit, say y. By the triangle inequality, (30), and the 
assumption c]h(xo)l <- 1/2, we have 

co 

[Xk--Y[~ 2 [Xj+l--Xj[ 
j=k  

oo 
-<(1/C°'o) 2 Ich(xo)l 2j 

j=k  

<-[]h(xo)J/Oo](1/2) 2~ ~ E (1/2) 2j 2. 
j=k  

<_ ( 41h(xo)l/ O-o](1/2) 2~, 

which completes the proof. [] 

We now present a practical implementation of Algorithm 3.1 that 
employs a projected conjugate gradient scheme. Since one complete iteration 
of  Algorithm 3.1 essentially squares the error, only one Newton iteration 
will be used in Step 1, and in Step 2 it is only necessary to find an 
approximation Xk+l to Xk+l which satisfies 

IXk+l- )~k+ll ~ C]Xk+I -- ykl z, 

where c denotes a generic constant. Since n - m iterations of the conjugate 
gradient method essentially squares the error, Algorithm 3.1 can be imple- 
mented in the following way. 

Algorithm 3.2 

Step 1. Set 

Yk = Xk -- V h(xk) - l  h(xk) ,  

and set 

Ak = - -Vh(xk ) -  TV f ( x S  . 

Step 2. Apply n - m  projected conjugate gradient iterations to the 
function L(Ak, "), where the starting point is Yk and the gradient of L(Ak, • ) 
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is projected into the null space of Vh(yk) for each iteration. Let Xk+a denote 
the final conjugate gradient iteration. 

Note that the multiplier update discussed in Remark 3.1 is used in Step 
1. Of course, the conjugate gradient scheme in Step 2 can be replaced by 
a quasi-Newton scheme. The projection described in Step 2 can be construc- 
ted using either the singular-value decomposition Q A P  of Vh(yk)  or the 
decomposition (16) of A = V h ( y k ) .  In either case, the projection matrix H 
described in Step 2 is given by H = P[Po ,  where P0 is the submatrix of P 
formed from the last n - r  rows and r is the rank of Vh(yk). Moreover, 
when the rows of Vh(yk)  are linearly independent, the following representa- 
tion of H may be convenient: 

H = I - V h ( y k ) r ( V h ( y k ) V h ( y k ) r ) - a V h ( y k ) .  

If the rows of Vh(yk)  are linearly independent, then V h ( y k ) V h ( y k )  r is a 
nonsingular matrix and the pseudoinverse of V h (Yk) V h (Yk) T is the ordinary 
inverse. Explicitly, the projected conjugate gradient iteration of Algorithm 
3.2 appears in (54). 

Recall that each conjugate gradient iteration involves a one- 
dimensional minimization along a search direction. In stating our local 
convergence theorem for Algorithm 3.2, we assume implicitly that, in each 
conjugate gradient iteration, the closest local minimizer along the search 
direction is employed. Combining Theorem 3.1 and Theorem 3.2 with 
Cohen's quadratic convergence result (Ref. 30) for the conjugate gradient 
method, we have the following corollary. 

Corollary 3.1. In addition to the hypotheses of Theorem 2.1, assume 
that f and h are three times continuously differentiable in a neighborhood 
of x*. Then, for either the Daniel, Fletcher-Reeves, or Polak-Ribi6re 
formulations of the conjugate gradient method, there exists a neighborhood 
N of (x*, A*) and a constant c independent of (xk,)tk) in N such that 

I,~k+, - A *1 + [xk+a -- X*I <-- Cl Ak -- A "12 + ClXk - x*l 2, (32) 

where Ak+a and xk+a are generated either by Algorithm 3.1 or by Algorithm 
3.2. 

See Ref. 27 for a statement of various formulations of the conjugate 
gradient method and for a brief discussion of Cohen's result. For reference, 
we state the Fletcher-Reeves and the Polak-Ribibre formulations of the 
conjugate gradient method in Section 4. 

Proof. We just prove (32) for Algorithm 3.2, since the proof for 
Algorithm 3.1 is similar. Throughout the proof, c denotes a generic constant 
which is uniformly bounded in a neighborhood of (x*, ;t*). Let Xk÷l and 
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[k+~ denote the output of  Steps 2 and 3 of Algorithm 3.1, and let xk+~ 
denote the output of Step 2 of Algorithm 3.2. Theorem 3.1 tells us that 

[X~+l-A*l+l~k+,-x*l<~clak-'~*[2+clyk-x*12+c[h(yDI. (33) 

Since Yk is obtained from Xk by one Newton iteration, the proof of Theorem 
3.2 reveals that 

[h(yD[ ~ clh(xD[ 2<~ c[xk --x*[ 2. (34) 

Also, it follows from (30) that 

lYk -- Xkl <~ cl h ( xk  )[ ~ CtXk --X*I, (35a) 

tYk -- X*[ ~ c l y  k -- Xkt-+- C[Xk -- X*[--<: C[Xk -- X*  I. (35b) 

Combining (33)-(35) yields 

17t k+ ~ -- A *1 + I£k+l - x*l -< c[Ak - A "12 + ClXk -- X*] 2. (36) 

Cohen's quadratic convergence result (Ref. 30) for the conjugate method 
implies that 

IXk+l -- .'~k+ 11 <- Cl-~k+l -- Ykl 2" (37) 

The triangle inequalities 

[x~+~ - x*[-< lx~+~ --%+~1 + f~+~ - x*[, 

I~k+l - y k l  2-- ([Xk+l - -  x'l-l-[Yk -- X*[) 2 

-< 21~k+ 1 - x*12+ 21yk - x*l 2 

combine with (35), (36), (37) to show that Xk+l satisfies (32). Since 

a * = - V h ( x * ) - r V f ( x * )  r, a k + , = - V h ( X k + l )  rVf(xk+,) r, 

it follows that hk+~ also satisfies (32). [] 

4. Preconditioning 

A common criticism of the penalty approach to constrained optimiza- 
tion is that, as the penalty tends to infinity, algorithms for solving the 
penalized problem convergence slowly. In fact, some of the excitement 
surrounding augmented Lagrangians stems from the observation that good 
approximations to the primal solution are generated without a large penalty 
(see Theorem 2.1). Techniques for handling the instabilities due to the 
penalty are presented in Chapter 12 of Ref. 27, where the Luenberger 
suggests both a modified Newton scheme and an alteration of the penalty 
term. We now develop a preconditioning technique to eliminate the 
instabilities. 



52 JOTA: VOL. 55, NO. 1, OCTOBER 1987 

First, let us describe the instabilities associated with the penalty scheme. 
For simplicity, we consider the quadratic program 

minimize xrAx  + a 7x, subject to Bx = O, x ~ R n, (38) 

where A is an n x n positive definite matrix and B is an m x n matrix. The 
penalty approximation to (38) is 

minimize x r ( A +  rBTB)x + arx, subject to x c R". (39) 

And as r tends to infinity, the solution to (39) approaches the solution to 
(38). On the other hand, the convergence rate of gradient methods for 
solving (39) is governed by the ratio An/A1 between the largest eigenvalue 
A, and the smallest eigenvalue A1 of A +  rBrB. For example, the steepest 
descent iteration xk generated by exact line search satisfies the inequality 
(Ref. 27, page 152) 

E(Xk+I) ~ [(/}t n --/~ 1)/( /~n -~- A1)]2E(xk), (40) 

where E : R" ~ R is defined by 

E(x )  = x r ( A +  rBrB)x. 

Akaike (Ref. 31) has shown that, except for special starting points, the 
inequality (40) is nearly an equality as k tends to infinity if A,/A1 is much 
larger than 1. Applying Loewner's (Ref. 32) interlocking eigenvalue result, 
A~ is bounded from above by the second largest eigenvalue of A; and, since 
An is the maximum of the Rayleigh quotient E ( x ) / x r x  over nonzero x E R ", 
we conclude that An is bounded from below by the product between r and 
the spectral radius of BrB. Combining the upper bound for A1 with the 
lower bound for An yields 

(/~n -- /~1)/(/~n -t-/~1) = 1 "~ O ( r - l ) .  

The notation O(r -1) means a term whose norm is bounded by c/r, where 
c is a constant that is independent of r for r sufficiently large. Since the 
ratio ( A , - A I ) / ( A , + A 0  approaches one as r tends to infinity, steepest 
descent converges arbitrarily slowly as r tends to infinity. 

The eigenvalue ratio can be improved by changing variables. Let H 
denote the matrix (C + rB 7B)-1, where C is any symmetric, positive-definite 
matrix. Since C is positive definite, H is a positive-definite matrix which 
can be factored, 

H= UU< 

Of course, these factors are not unique--Gaussian elimination applied to 
H generates a lower triangular U while a symmetric positive-definite U is 
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constructed from the eigenvalues and the eigenvectors of H. Let us change 
from the variable x to the variable 

y = U-ix.  

Expressing (39) in terms of  ); we have 

minimize y r U T ( A +  rBrB)O),+ a rUy, subject to y ~  R ~. (41) 

Again, the convergence rate of  steepest descent applied to (41) is governed 
by the ratio between the largest and the smallest eigenvalue of  
U r ( A + rB rB) U. The eigenvalues of  U r (A + rB 7B) U are the roots of  the 
characteristic equation 

det( g r ( A  + rBrB) U - A I )  = 0. (42) 

Let U - r  denote the matrix ( u T )  -~. Multiplying the left side of (42) by 
de t (U - r )  and multiplying the right side of (42) by de t (U r)  gives us the 
equivalent equation 

det((A + rBrB)H - h i )  = 0. (43) 

In analyzing the product 

(A + rBTB)H = (A + rBTB)( C + rBTB) -1, 

it helps to remove redundant rows from B. If the rank of B is r, then, by 
the QR factorization, there exists an orthogonal matrix Q such that B = QR, 
where the first r rows of  R are linearly independent and the next m - r  
rows are completely zero. Letting S be the submatrix of  R formed by the 
first r rows, we have 

B T B = R T Q T Q R = R T R = S T S .  

Since 

B r B = S T S  

and the rows of  S are linearly independent, there is no loss of generality 
in assuming that the rows of B are linearly independent. 

Lemma 4.1. If C is a symmetric positive-definite matrix and the rows 
of  B are linearly independent, then, for any A, we have 

(A + rBrB)( C + rBTB) -I = D+O(r - ' ) ,  (44) 

where 

D = A C  -1 + (I  - AC-~)BT(BC- IBT) -~BC -~. 

Moreover, D is nonsingular if and only if 

minimum maximum xTAy > 0. (45) 
By=O Bx =0 
Iryll= t [Ixl[=l 
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Proof. The Woodbury formula (Ref. 24, page 3) tells us that 
(C  + rBrB)  -1 can be expressed as 

( C + rBTB) -1 = C -1 - C - 1 B r  (eI  + B C - I  B T ) - I  B C  -1, (46) 

where a denotes r -1. Recall that if Q is a nonsingular matrix and the spectral 
radius of  Q-~ is less than one, then we can expand ( I  - Q)-~ in a geometric 
series, 

(I - Q)-I = _(Q-,  + Q-2+ Q-3+ Q-4+... ). 

Furthermore, if IQ-l[ < 1 for some matrix norm I" [, then the partial sums 
in the expansion satisfy the relation 

( i _ Q ) - l + i = ,  ~ Q-i[  <_lQ- l[p+, / [ l_ lO- , i ] .  

Since the rows of B are linearly independent, 

Q = r B C - 1 B  T 

is nonsingular and, for e = 1/r  sufficiently small, we have the geometric 
series expansion 

(e l  + B C - I  BT ) -1 = ( B C - 1 B  T ) -1 - e( B C - 1 B T  ) -2 q- O(e2). (47) 

Combining (46) and (47) yields 

(A  + rBrB) (  C + rBTB) - '  

- -r~[BVBC-~ _ B T B C - 1 B r  ( B C - 1 B r ) - I  B C  -~] 

+ r ° [AC -~ + ( I  - A C - ~ ) B T ( B C - ~ B T ) - ~ B C  -~] 

- r - l ( I  _ A C - ~ ) B ~ ( B C - ~ B T ) - E B C  -~ + O(r-2).  

Observe that the coefficient of the r ~ term is zero, while the coefficient of  
the r ° term is D. 

To prove the last claim in the lemma, we first assume that C is the 
identity matrix L From the definition of D, it follows that 

D B  T = B T. 

Let P be a matrix whose rows are a basis for the null space of B. Since C 
is I, it also follows from the definition of D that 

D p  T = A p  T 

The vectors forming the rows of B combined with the vectors forming the 
rows of P are a basis for R". Hence, for any x in R ' ,  there exists y and z 
such that 

x =  B r y +  prz .  
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Utilizing the identities 

D B  -c = B r, D p  T = a p  r, 

we have 

D x  = D ( B ~ ,  + P-Cz) = B ry + apTz .  (48) 

We must prove that D is nonsingular if and only if P A P  T is nonsingular. 
Suppose that P A P  r is nonsingular. If  D x  = 0, then (48) and the orthogonal- 
ity condition PB -c= 0 implies that p A p T z  = 0, and z is zero since P A P  T is 
nonsingular. Furthermore, if z is zero, then by (48), Bry  = 0. Since the rows 
of  B are linearly independent, we conclude that y is zero. Since both y and 
z are zero, 

x = B Ty + p-Cz 

is zero and D is nonsingular. Conversely, suppose that D is nonsingular 
or, equivalently, suppose that the range of D is R". Since the rows of B 
are orthogonal to the rows of P and since the rows of B and the rows of 
P are a basis for R", (48) implies that the range of A P  T is p r  and P A P  T 
is nonsingular. 

Now, let C be an arbitrary, symmetric, positive-definite matrix. Recall 
that a symmetric positive-definite matrix can be expressed as the square of 
a symmetric positive-definite matrix. That is, there exists a symmetric posi- 
tive-definite matrix S such that 

C = SS. 

Replacing C by SS, the left side (44) can be written as 

(A  + rBTB)(  C + r B r B ) - t =  S ( A  +rfflTB)( I + rB'~B)-IS -1, (49) 

where 

= BS  -1, A = S - 1 A S  -1. 

Let / )  be the same as D, except  that C is replaced b y / ,  A is replaced by 
A, and B is replaced by B. By (49), 

D = $19S-1. 

Since S is positive definite, we conclude that D is nonsingular if and only 
i f /9  is nonsingular. However, it was just demonstrated that D is nonsingular 
if and only i f /5d /5r  is nonsingular, where/5  is the matrix whose rows are 
a basis for the null space of 

= BS  -1. 

Since 

/ 5=PS ,  
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it follows that 

f ~ T  = p A p T  

which completes the proof. [] 

Remark 4.1. Observe that hypothesis (45) of the lemma is the same 
as hypothesis (7) involved in the analysis of an augmented Lagrangian. 
Also note that the matrix A in Lemma 4.1 is not necessarily symmetric or 
positive definite. Moreover, in the proof of (44), the crucial property is that 
B C - 1 B  T is nonsingular. Hence, (44) can be established in the following 
more general setting: Suppose that A and C are n x n matrices where C is 
nonsingular, and suppose that V and W are m x n matrices for which 
W C  -~ V T is nonsingular. Then, we have 

(A  + r v T w ) (  c + r V r W )  -~ = E + O(r-1),  

where 

E = A C - '  + ( I  - A C  ') v T (  W E  -1 vT) -1 W C - ' .  

Now, let us examine the convergence speed of gradient methods for 
solving (41) when 

U U  T = H = ( C + rBTB) -1. 

If A is positive definite, then A + r B T B  is positive definite. Since the 
eigenvalues of the product of positive-definite matrices are positive, the 
eigenvalues of (A+ r B T B ) ( C  + rBTB) -1 are positive when both A and C 
are positive definite. If (45) holds, then the smallest eigenvalue hi is bounded 
away from zero and the largest eigenvalue h~ is bound away from infinity 
uniformly in r. Since ;t, grew with r before changing variables, the ill 
conditioning associated with large r has been eliminated. Clearly, the best 
choice for C is A. In this case, we have 

H = ( A + r B T B )  -~, ( A + r B r B ) H = I ,  h ~ = A n = l ,  

and by (40), steepest descent converges in one iteration. Of course, this one 
iteration is equivalent to solving the equation 

2(A  + rBTB)x  + a =O, 

which characterizes the solution to (39). For nonquadratic problems, the 
analog of A is a Hessian of the ordinary Lagrangian evaluated at the optimal 
solution. This Hessian is often difficult to evaluate and a more convenient 
C is the identity matrix I. With this choice for C, the Woodbury formula 
(46) implies that 

! im(I + rBTB) -~ = I - BT  ( B B T ) - '  B. 
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In other words, as r tends to infinity, 

n = ( I  + rBrB) -1 

approaches the matrix that projects a vector into the null space of B. 
To show that the preconditioner developed above also applies to 

nonquadratic problems, it must be demonstrated that preconditioning 
improves the eigenvalue structure for the Hessian of the augmented 
Lagrangian. Let L be the augmented Lagrangian introduced in (2), and let 

denote the matrix defined by 

~(h, x, y) = VEL(A, y ) ( C  + r V h ( x ) r V h ( x ) )  -~. 

Lemma 4.2. Under the hypotheses of Theorem 2.1, there exist neigh- 
borhoods N~ of x* and NA of A* (which depend on r) and there exists a 
constant c (which is independent of r for r sufficiently large) such that 
@(A, x, y) is nonsingular and 

]~(h, X, y)-l[-t-[~(h, x, y)[ ~< c, 

for every x and y in Nx and for every h in Nh. 

Proof. ~ can be written in the form 

~(A, x, y) = (A + E1 + rBrB)(  C + E2 + rBTB ) - ' ,  

where 

A = V ~ ( f ( x * ) + h ( x * ) T A * ) ,  B = V h ( x * ) ,  

and E~ and E2 approach zero as x and y approach x* and as A approaches 
A*. Now, proceed as we did in the proof of Lemma 4.1. The terms generated 
by E1 and E2 can be made arbitrarily small by taking x and y near x* and 
by taking A near h*. [] 

We now state the preconditioned versions of some standard optimiza- 
tion algorithms. Of course, the notion of preconditioning is widely used in 
numerical analysis (especially in the context of numerical techniques for 
partial differential equations--see Re/'. 33, pages 157-160). However, 
different authors seem to treat preconditioning (or scaling) in different ways. 
So, to be perfectly clear, we now state preconditioned versions of steepest 
descent, conjugate gradient, and quasi-Newton schemes. Let us consider 
the general unconstrained mathematical program 

minimize {f(x): x ~ R"}. 

We replace x by Uy to obtain the equivalent problem 

minimize {f(Uy): y ~ R~}. 

(50) 

(51) 
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Each iteration of steepest descent is given by 

Yk+l = Yk -- ~kUrgk ,  (52) 

where O~k is the step length, gk = Vf (Xk)  T is the gradient transpose at Xk, 

and Xk = Uyk. Multiplying (52) by U gives us the iteration in terms of Xk: 

Xk+ 1 = X k -- OtkHgk,  

where H = U U  r is the preconditioning matrix. Since the standard steepest 
descent iteration for (50) is Xk+I = Xk -- Otkgk, the effect of preconditioning 
is to replace gk by Hgk. 

For problem (51), the Fletcher-Reeves conjugate gradient scheme is 

Yk+l = Yk "t- Olkgk, (53a) 

qk+l = -- U-egg+, + flkqk, (53b) 

where 

ak = argmin f (  Uyk + aUqk) ,  
ot-O 

[~k T T T T 
---- g k + l  U U  g k + l / g k  U U  gk .  

Efficient schemes for computing cek appear in Refs. 34 and 35. The initial 
search direction q~ is the negative gradient -Urge .  Multiplying (53) by U 
and defining Pk = Uqk, we obtain the conjugate gradient iteration in terms 
of x, 

Xk+l = Xk + OlkPk, (54a) 

Pk+l = - - H g k + l  + f l kPk ,  (54b) 
where 

ak = a r g m i n  f ( x g  + apk),  
c~--O 

[~k T T = gk+lHgk+l/gk  Hgk,  

and the initial search direction Pl is -Hg l .  The Polak-Ribi~re formulation 
(Ref. 36, page 54) of the conjugate gradient method just differs from the 
Fletcher-Reeves formulation in the choice for ilk. Corresponding to Polak 
and Ribi~re's choice, we have 

flk = (gk+l - g k )  rHgk+l/  g~ Hgk. 

Finally, let us consider the Davidon-Fletcher-Powell quasi-Newton 
method (see refs. 37 and 38). The DFP iteration applied to (50) is 

Xk+l -~ Xk --  OlkSkgk, (55a)  

Sk+l  = Sk  T T T T - ak(Skgkgk S k / g k  Skqk) (55b) - Skqkqk Sk i  qk Skqk, 
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where the starting matrix S~ is symmetric and positive definite, 

qk = gk+l -- gk, 

ak = arg min  f (  xk - aSkgk ). 
a~_O 

Applying the DFP iteration to (51) and expressing y in terms of x as we 
did in the previous examples, it can be shown that the preconditioned 
iteration is identical to the iteration (55). The effect of preconditioning is 
to replace the starting matrix S~ by US1 U T. In particular, if $1 is the identity 
matrix, then the starting matrix for the preconditioned scheme is 

U U  r = H. 

5. Global Algorithms 

Algorithm 3.1 and Algorithm 3.2 are locally convergent. That is, they 
converge when the starting guess is sufficiently near a local minimizer for 
(12). We now modify these algorithms to obtain globally convergent 
schemes. For completeness, these globally convergent algorithms are stated 
in the context of  a general optimization problem containing both equality 
and inequality constraints: 

minimize f ( x ) ,  (56a) 

subject to gi(x)  -< 0, i = 1 to l, (56b) 

g~(x) =0 ,  i = I + 1  to m, x ~ R  ~, (56c) 

where f :  R ~ -~ R and gi : R ~ ~ R, for i = 1 to m. We employ Rockafellar's 
augmented Lagrangian which is given by 

L(A, x) = f ( x )  + Y~ [high(x) + rg~(x) 2] - (1/4r) ~ ;t 2, 
i~l+ i ~ i _  

where the sets I+ and I_ are defined by 

I + ( A , x ) = { i r [ 1 , / ] :  2rg , ( x )+  A,>--O}u{l+ l , . . . ,  m}, 

/_(a, x) = {i e [1, l]: 2rg,(x)  + ,X, < 0}. 

Recall that A and x satisfy the Kuhn-Tucker conditions for (56) if 

gi(X) ~ O, Ai >-- O, i ---- 1 to l, 

g~(x)=O, i - - / + 1  to m, 

h rg (x )  = O, Vf(x) ÷ h TVg(x) = O. 
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Any x and A which satisfies the Kuhn-Tucker  conditions will be called a 
Kuhn-Tucker  point for (56). We monitor convergence to a point which 
satisfies the Kuhn-Tucker  conditions using the function K:Rm+~->R 
defined by 

g ( x ,  x) = [Ia_12/4r2 + Ig+(x)12 + [VxLo(A, x)12] 1/2. (57) 

Here, A± and g±(x) denote the components of A and g(x) corresponding 
to indices i E I~(A, x), and V~L0(A, x) is defined by 

VxLo(A, x) = Vf(x) + ~ h,Vg~(x). 
i=1 

Some properties of  K are established in the following proposition. 

Proposition 5.1. The zeros of the function K defined in (57) are the 
Kuhn-Tucker  points of (56). If f and g are continuously differentiable at 
y, then K(A, x) is continuous at x = y  and A =/x for any /z  e R ' .  

Proof. Clearly, a Kuhn-Tucker  point for (56) is a zero of K. Con- 
versely, suppose that K ( A , x ) = 0 .  Since A_=0 and g+(x)=0 ,  it follows 
from the definition of A~ and g~ that g_(x) < 0 and A+ >- 0. Since VxLo(A, x) = 
0, we conclude that (A, x) is a Kuhn-Tucker  point for (56). To prove the 
second part of  the proposition, observe that 

I 
(gi(x)q-gi) 2q- ~ gi(X) 2=]a-12/4r2+lg+(x)[ 2, ( 58 )  

i=1 i=1+1 

when z~ is the solution to 

minimize A~(gi(x) + z~) + r(gi(x) + z,) 2. (59) 
z~O 

The zi which attains the minimum in (59) depends on both A and x and 
will be denoted z~(A, x). From the definition of zi, it follows that 

[z,(h, x) - z,(tz, Y)I -< [g,(x) - gl (Y) + (hi - 1~)/2r[. 

Therefore, z(h, x) is a continuous function of )t and x when g(x) is a 
continuous function of x. Hence, (58) implies that la_12+lg+(x)l  = is a 
continuous function of h and x when g(x) is a continuous function of x. 
Since K is the square root of the sum IA_I 2 + Ig+(x)12 + IVxto(a, x)l 2, it follows 
that K is continuous when f and g are continuously differentiable. .[7 

There are many other ways of  defining a function like K which just 
vanishes at Kuhn-Tucker  points for (56). For example, an alternative 
definition is obtained by substituting L for Lo in the definition of  K. We 
now show that K measures the distance to a Kuhn-Tucker  point in the 
neighborhood of that point. 
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Proposition 5.2. Let A* and x* denote a Kuhn-Tucker  point for (56). 
Suppose that both f and g+ are twice Fr6chet differentiable at x*, g is 
continuous at x*, h~*>0 for i c / + ( h * ,  x*) c~ [1,/] ,  and (7) is satisfied when 
h is identified with g+ and h is identified with h+. Then, there exists a 
neighborhood N of (A*, x*) and there exist positive constants Cl and c2 
such that 

clK (A, x) -< IA - A*[ + I x -  x*]-< c2K(A, x), 

for every (A, x) e N. 

Proof. Suppose that F: R N ~ R N, F(z*)  = 0 for some z* e R N, F is 
differentiable at z*, and the matrix VF(z*) is nonsingular. Note that 

[ 1 / I V f ( z * ) - l l ] l z - z * l < - l V F ( z * ) ( z - z * ) l < - l V f ( z * ) l  f(z- z*)l. (60) 

Let 2~ be defined by 

A(z)  = F ( z )  - F ( z * )  - V F ( z * ) ( z -  z*). 

Given by e > 0, there exists a neighborhood N of z* with the property that 

[A(z)[<_e]z-z*], whenever z c N .  

The identity 

F(z)  = A(z) + VF(z* ) ( z  - z*) 

and (60) imply that 

[F(z)[ / [e  + [VF(z*)]]_< Iz-  z*[ 

_< [F(z)] [VF(z*)-~I/[1 - elVF(z*)[] .  (61) 

We apply (61), where z is identified with the pair (A, x) and where the 
equation F(z)  = 0 is identified with the following system: 

Vf(x)  + A rVg(x)  = 0, 

i~ I+(A*, x*), 

i 6 I_ (A* , x* ) .  

gi(x)  =0, 

Ai/2r = O, 

Since 

A*>0, for i~ /+ (h* ,  x*) c~ [1, 1], 

we conclude that 

L(A, x) = I+(x*, x*), 

for (A, x) in a neighborhood of (A*, x*). As a consequence, 

K(h, x) = IF(A, x)l, 
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for (A, x) in a neighborhood of (h*, x*). By Ref. 39, Proposition 1.1, the 
gradient of F evaluated at (A*, x*) is nonsingular. Since the hypotheses 
used in the derivation of (61) are fulfilled, the proof is complete. [] 

Before stating the first of our globally convergent algorithms, we need 
some notation. Let Ly(h, x) be the same as L(A, x), except that l+(h, x) is 
replaced by the set l+(h, x)w/+(h,  y) and I_(h, x) is replaced by the set 
/_(h, x) ~ I_(A, y). That is, 

Ly(a, x) = f (x )  + E [A,g,(x) + rg,(x) 2] 
i~ l+(A,z)~ l+(X,y) 

- (1 /4 r )  2 X~. 
i~l_(Z,x)~l_(;t,y) 

Let B(t ,  x) denote the active constraint matrix Vg+(x). The active constraint 
matrix depends upon both )~ and x, since the indices in I+ depend upon 
both A and x. If xk and )tk denote the kth approximation to a solution and 
a corresponding multiplier for (56), then the matrix B(1k, Xk) is abbreviated 
Bk, the matrix B()tk_~, xk) is abbreviated Bk-, and the Lagrangian Lxk is 
abbreviated Lk. Let 7rk denote a vector with one component corresponding 
to each index i e/+()tk_~, xk), and let ~'k denote a vector with one component 
corresponding to each index i~ I-(~k-~, Xk). Let 1o and x~ denote the 
starting approximation to a Kuhn-Tucker point for (56), and assign the 
parameter/3 the initial value K(3.o, x~). The following rules are used to 
generate Xk+~ and /~k from Xk and )tk-~. 

Algorithm 5.1 

Step I. Set Vk = 0, set ¢r~ = -Vf(xk)Bk! ,  and let h be the m component 
vector formed from the components of ~'k and Vk. If K(A, xg)<--fl/2, then 
go to Step 3 after making the assignments/3 ~ K(A, xk) and hk ~- h. Other- 
wise, make the assignment hk ~ hk-~ and proceed to Step 2. 

Step 2. If [V~L(Ag, xk)l-< [g+(xk)l + I(Ak)-1/2r, then r ~ 10r. 

Step 3. Apply n iterations of the preconditioned conjugate gradient 
method to the function Lk(hk, "), where the iteration starting point is Xk 
and the preconditioning matrix is (I + rBTBk) -1. If a nonbinding constraint 
becomes binding after a conjugate gradient iteration, then stop the iterations 
and Xk+~ is the latest approximation to x*. Otherwise, Xk+l is the point 
generated by the complete set of n conjugate gradient iterations. 

The factor 1/2 in Step I and the factor 10 in Step 2 are somewhat 
arbitrary. Also, the conjugate gradient method can be replaced by a quasi- 
Newton scheme. With regard to Step 3, the phrase "nonbinding constraint 
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i becomes binding at y" means that i lies in both /-(hk, Xk) and /+(hk, y). 
By the Woodbury formula (46), the preconditining matrix employed in Step 
3 can be expressed as 

T --1 T -1 H = I - B k ( r  I+BkBk)  Bk. 

Also in Step 3, we minimize Lk(Ak, ") instead of L(Ak,- ) to prevent the 
chattering or zigzagging phenomenon that occurs when a constraint oscil- 
lates between binding and nonbinding. As will be seen shortly, L k c a n  be 
replaced by L in Step 3 of Algorithm 5.1 without affecting the global 
convergence. On the other hand, it is observed in practice that the conver- 
gence in Step 3 can be slow when Lk is replaced by L, since constraints 
oscillate between binding and nonbinding. The preconditioning aspect of 
Algorithm 5.1 is crucial. For the problem of optimally coating a surface 
discussed in Ref. 40, Algorithm 5.1 exhibits practically no convergence 
unless the preconditioner is included in Step 3. 

Algorithm 5.1 is similar to Algorithm 3.2, since the same estimate is 
used for the multiplier and nearly the same preconditioning matrix is 
employed. Algorithm 5.1 differs from Algorithm 3.2 in two respects. First, 
the constraint feasibility Step 1 of Algorithm 3.2 is omitted, and feasibility 
is enforced through the penalty term in the cost functional. Second, the 
multipliers generated in Step 1 are only utilized if they yield a smaller value 
for K. In analyzing the global convergence of Algorithm 5.1, it is assumed 
that the iterations are well defined; that is, f and g are differentiable at 
each point generated by the algorithm, and the one-dimensional minimizer 
computed in each iteration of the conjugate gradient method exists. It is 
also assumed that a convergent subsequence of the iterations can be extrac- 
ted. Often, it can be deduced from the nature of the cost or from the nature 
of the constraints that the iterations are bounded and a convergent sub- 
sequence of the iterations can be extracted. If the iterations are unbounded, 
then Algorithm 5.1 can be modified slightly to keep the iterations bounded. 
For example, if the update A k <- A in Step 1 is only performed when IA I is 
smaller than some predetermined bound [hopefully larger than the norm 
of the multiplier associated with the desired solution of (56)], then the A k 

are uniformly bounded. To keep the Xk bounded, add an extra inequality 
constraint of the form 

go(x) := a(Ixl 2 -  p2) <_ 0, 

where/9 is a positive constant chosen so large that the desired solution of 
(56) has magnitude less than p and a is another positive constant. Jus- 
tification for this strategy to keep the Xk bounded appears in Lemma 5.4. 
The global convergence proof for Algorithm 5.1 is partitioned into three 
c a s e s .  
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Lemma 5.1. Let {(/Zk, Yk)} denote any convergent subsequence of the 
iterations {(Ak, Xk)} generated by Algorithm 5.1, and let (x*, A*) denote the 
subsequence limit. If f and g are continuously differentiable at x*, the 
penalty parameter r generated by Algorithm 5.1 is uniformly bounded, and 
K (tzk, Yk) tends to zero, then x* and h * satisfy the Kuhn-Tucker conditions 
for (56). 

Proof. This follows immediately from Proposition 5.1. [] 

Lemma 5.2. Suppose that K(Ak, Xk) is bounded away from zero for 
the iterations generated by Algorithm 5.1. Let {(/zk, Yk)} denote any conver- 
gent subsequence of the iterations and let (A*, x*) denote the subsequence 
limit. I f f  and g are twice continuously differentiable in a neighborhood of 
x*, then the penalty parameter r generated by Algorithm 5.1 tends to infinity 
as k increases. 

Proof. We assume that r is uniformly bounded and we show that this 
leads to a contradiction. Since K(hk, Xk) is bounded away from zero, the 
update hk *- h in Step 1 of Algorithm 5.1 is performed just a finite number 
of times. Without loss of generality, we can assume that hk = h for every k 
and that the same penalty r is used for each k. By the definition of Lk, it 
follows that Lk(h, • ) -- L(A,. ). Also, since each step of the conjugate gradient 
method involves a one-dimensional minimization, we conclude that 

L(A, Xk)=Lk(A, Xk)>_Lk(A, Xk+1)>--L(A, Xk+t)=Lk+t(A, Xk+I). (62) 

Suppose that VxLk(A, Yk) is bounded away from zero. Since f and g are 
twice continuously differentiable near x*, it follows (see Ref. 41, Corollary 
A.6) that, in a neighborhood of x*, the second derivative of Lk(A, • ) exists 
almost everywhere and is essentially bounded. Since the first iteration of 
the conjugate gradient method is a steepest descent step, there exists e > 0 
such that 

Lk(A, Xk) >-- Lk(A, Xk+I) + e, (63) 

when Xk = y~ andj  is sufficiently large. Since L(A, Xk) is bounded from below 
by L(A, x*), (62) and (63) combine to yield a contradiction. Therefore, 
VxLk(Z, yk) approaches zero as k increases. Since 

VxLk(A, Yk) = VxL(A, Yk), 

we conclude that VxL(A, Yk) approaches zero as k increases. By assumption, 
the same penalty is used in each iteration. Thus Step 2 of Algorithm 5.1 
implies that 

VxL(A, Yk) > tg+(Yk)l-t-IA-I/2r, (64) 
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for each k. Since the left side of (64) approaches zero as k increases, we 
conclude that lg+(yk)l approaches zero as k increases and As =0, if i~ 
/-(;~,,Yk) and k is sufficiently large. Therefore, VxL(A, yk) approaches 
VxLo(h, Yk) as k increases. Since VxLo(A, Yk) approaches zero, we conclude 
that K(A, Yk) tends to zero as k increases. This contradicts the lemma's 
assumption that K(hk, Xk) is bounded away from zero. [] 

If the penalty generated by Algorithm 5.1 tends to infinity, then the 
inequality contained in Step 2 is satisfied an infinite number of times. Given 
any infinite sequence {(Ak, Xk) } of iterations generated by Algorithm 5.1, 
also note that a subsequence, say {(t~k, Yk)}, can be chosen so that l±(Ix~, yi) = 
I:~(p.j, yj) for every i and j. 

Lemma 5.3. Suppose that the penalty generated by Algorithm 5.1 
tends to infinity as k increases, and let {yk} denote any convergent sub- 
sequence of the iterations with the property that I+(/~k, Yk) is equal to a 
fixed set I+ for every k and 

IVxL(/zk, Yk)[-< [g+ (Yk )l + [(~k )-l/ 2rl,, (65) 

for every k. Here /-~k denotes the multiplier approximation corresponding 
to Yk and rk is the associate penalty. If x* denotes the limit of the Yk, f and 
g are continuously differentiable at x*, the vectors Vgi(x*) for i6 /+  are 
linearly independent, and IZk is uniformly bounded, then the quantity 
(IXk)÷+2rg÷(yk) approaches a limit, say h*. Moreover, if A* is the vector 
formed from A* by inserting zeros for those components corresponding to 
indices i ~ I÷, then A* and x* satisfy the Kuhn-Tucker conditions for (56). 

Proof. Applying the inequality 

la+bl>-Ial-lb[ 

to the left side of (65), we obtain the relation 

tnr((tzk)+ + 2rkg+(yk))l--< IVf(yk)l + lg+(Yk)I + I(~k)-I/2rk. 

By our hypotheses, the row of Bk are uniformly linearly independent for k 
sufficiently large. Therefore, there exists a positive constant 3' such that 

2rkYlg+(Yk)l <-- rl(~k)÷l + IV f(Yg)l + [g+(Yk)l + I(~k)-l/2rk, (66) 

for k sufficiently large. Since rg tends to infinity while the ratio I~kl/2rk 
tends to zero, (66) implies that g+(Yk) tends to zero as k increases. From 
the continuity of g, it follows that 

g+(x*) = O. 

Since 

2rkgi(yk)+lXk.~ <0, for i e / _ ,  
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and since [,.£k/rk tends to zero, we also conclude that 

g~(x*)-< 0, for every i ~ / _ .  

Since the right side of (65) approaches zero and the rows of Vg+(x*) are 
linearly independent, IVxL(izk, Yk)t approaches zero and the nonnegative 
vector (~k)++2rkg+(Xk) approaches a limit A*. If A* is the vector formed 
from A* by inserting zeros for those components corresponding to indices 
i ~ /_ ,  then the vectors A* and x* satisfy the Kuhn-Tucker conditions for 
(56). [] 

Now, let us consider the local convergence of Algorithm 5.1. Since the 
nonbinding inequality constraints can be dropped in a neighborhood of an 
optimum, we assume for simplicity that l = 0. In stating this local conver- 
gence result, it is implicitly assumed that in each conjugate gradient iteration, 
we employ the closest local minimizer along the search direction. 

Theorem 5.1. Suppose that 1 = 0 and the hypotheses of Theorem 2.1 
are satisfied, where the h of Theorem 2.1 is identified with the g of (56). 
I f f  and g are three times continuously ditterentiable in a neighborhood of 
x*, then for either the Daniel, Fletcher-Reeves, or Polak-Ribi~re formula- 
tions of the conjugate gradient method, there exists a neighborhood N of 
x* (this neighborhood depends on r) and there exists a constant c indepen- 
dent of Xk in N and independent of r for r sufficiently large such that 

IAk+I -- A*I + IXk+~ -- X*I <-- clxk -- X*I(Ixk -- X*I + r-l), (67) 

provided 

AT = Vf(Xk)B-k ' ,  A [+, = Vf(Xk+~)B-kl+l. 

Proof. Throughout the proof, c denotes a generic constant which is 
bounded uniformly in a neighborhood of x*. Theorem 2.1 asserts the 
existence of a unique local minimizer Yk for L(Ak,') which satisfies the 
inequality 

lYk-x*l -< clAk- A'l/r ,  

when r is sufficiently large. By Cohen's quadratic convergence result (Ref. 
30) for the conjugate gradient method, we have 

lxk+~-- ykl <_ Clxk-- y d  =. (68) 

The c in (68) depends on upper and lower bounds for the eigenvalues of 
the preconditioned Hessian of the augmented Lagrangian. By Lemma 4.2, 
these eigenvalues are bounded away from zero and away from infinity 
uniformly in r for some neighborhood of x*. Therefore, the c in (68) is 
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independent of  r for a neighborhood of  (A*, x*). From the definition of/~k 
and Ak+~, we have 

clxk-x*l, 
I k+, - *l <- c l x k + ,  - x * l .  

Combining these inequalities, the proof  is complete. [] 

Earlier, we noted that the Xk can be kept in a bounded set if an extra 
inequality of  the form 

go(x) := a(txl 2 -  p2) <~ 0 

is added to the constraints. Let us now expand upon this observation. The 
goal in Step 3 of  Algorithm 5.1 is to minimize over x the expression 

Ck(Ak, X)=(1/r )Lk(Ak ,  X)= Y~ gi(x)2+O(r-1),  (69) 
iClk+(X) 

where 

Ik+(X) = I+(Ak, Xk) U I+(Ak, X). 

Since Step 3 is a descent step, it tends to reduce the constraint violation 
until the summation appearing in (69) is comparable in size to the adjacent 
O(r  -~) term'. To show that some descent is possible even with precondition- 
ing, let us consider the first conjugate gradient iteration performed in 
Step 3. This first iteration is a steepest 
Ck(Ak, x k + a d )  over ce -->0, where 

d = --H(pk +2rkBrg+(Xk)), 

p Tk = Vf(Xk) + A'£Bk, 

H = ( I  + rB[Bk) -~. 

descent step which minimizes 

(70a) 

(70b) 

(70c) 

Lemma 5.4. I f f  and g are differentiabte at xk and the rows of  Bk are 
linearly independent, then we have 

( d /  da)Ck(hg, Xk + ad)l~=o = --4[g+(Xk)[2 +O(r-l). (71) 

Moreover, the norm of  the direction d is bounded by a constant which 
depends on f and g, but does not depend on r. 

Proof. From the definition of d, it follows that 

( a / aa )Ck( hk, Xk + aak)l~=0 
= (r-apk +2B[g+(xk))rd  

= --(r-lpk + 2B[g+(xk))rH(pk + 2rBrg+(xk)). (72) 

Applying the Woodbury formula to H and expanding the resulting inverse 
as we did in the proof  of  Lemma 4.1 yields 

H = 1 - Br (BkB[)  -~ Bk + (1 / r )B[ (BkBr ) -2B  k + O(r-2). (73) 
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Combining (72) and (73) yields (71). Finally, inserting the expansion (73) 
into (70), we see that d is bounded by a constant that depends on f and 
g, but which is independent of  r. [] 

By Lemma 5.4, the first conjugate gradient iteration in Step 3 of 
Algorithm 5.1 reduces the value of  Ck()tk," ) by E(lg+(xk)12+O(r-~)), where 
e > 0 and the size of  E depends on the second derivatives of  f and g near 
Xk. As these second derivatives become large, e becomes small. We now 
improve Algorithm 5.1 in two ways. First, the number of conjugate gradient 
iterations will be reduced by the number of  binding constraints. Second, a 
Newton step will be inserted to obtain quadratic convergence. Again, the 
parameter fl is assigned the initial value K(ho, x~). 

Algorithm 5.2 

Step 1. Set x = Xk--Bk~-g+(Xk), set Vk = 0, set ~r~'=--Vf(Xk)Bk~_, and 
let h be the m component vector formed from the components of 7rk and 
~'k- If K(h ,x )<- f l /2 ,  then go to Step 3 after making the assignments 
fl ~- K(A, x), hk ~ h, Xk ~ X, H ~ the matrix that projects a vector into the 
null space of Bk, and b (--the number of  elements in l+(hk, Xk). Otherwise, 
make the assignments hk ~ hk-t ,  H ~ (I  + rBTkBk) -l,  b ~ 0, and proceed to 
Step 2. 

Step 2. If  lVxL(hk, Xk)t <-- lg+(Xk)[ + l(hk)-l/2r, then r ~ 10r. 

Step 3. Apply n - b  iterations of  the preconditioned conjugate 
gradient method to the function Lk(Ak, " ), where the iteration starting point 
is xk and the preconditioning matrix is H. I ra  nonbinding constraint becomes 
binding after a conjugate gradient iteration, then stop the iterations and 
Xk+I is the latest approximation to x*. Otherwise, Xk+l is the point generated 
by the complete set of n - b  conjugate gradient iterations. 

As observed earlier, the matrices A -1 and A -T and the matrix H that 
projects a vector into the null space of A can be constructed from either 
the singular-value decomposition QAP of A or the decomposition LP~ + OPo 
given in (16). In particular, we have 

A-1 = pT A-I Qr = p f  L-1, 

A - T = Q A - T p =  L-Tp,, 

H = P~Po. 

Also, the Woodbury formula can be used to write the matrix (I  + rATA) -1 
in the form 

( I  + rArA)-~= I - A r ( r - l I  + A A r ) - I A  

-- I -  p f  L T (r-~ I + LL T)-~ LP~ 

= pT[ I  -- AT(r-~I + AAr)-~A]P. 
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If  Ai is the ith diagonal element of A, then the ith diagonal element of the 
diagonal matrix I - A r ( r - I I + A A r ) - I A  is equal to r-I/(A~+r-1), for i =  
1 . . . .  , l, and it is equal to one for i > L 

The global convergence results for Algorithm 5.1 also apply to 
Algorithm 5.2. From the analysis of Algorithm 3.2, it follows that Algorithm 
5.2 is locally quadratic. In stating this local convergence result, it is implicitly 
assumed that in each conjugate gradient iteration, we employ the closest 
local minimizer along the search direction. 

Theorem 5.2. Suppose that x* is a local minimizer of  (56), both f and 
g+ are three times continuously differentiable in a neighborhood of  x*, g 
is continuous at x*, A * > 0  for i~L(A*,x*)c~[1,1], and (6) is satisfied 
when h is identified with g+ and A is identified with A+. Then, for either 
the Daniel, Fletcher-Reeves, or Polak-Ribi~re formulations of  the conjugate 
gradient method, there exists a neighborhood N of (x*, A*) and there exists 
a constant c independent of  (Xk, Ak) in N such that 

[(~k+l --/~ *)+] "~ IXk+l -- X*[ ~ C[( ~ k --/~ *)+[2 .{_ ClXk -- X*12, 

when Ak+l and Xk+l are generated by Algorithm 5.2 and 

( a k + 0  + = 
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